10 research outputs found

    Derivation of the bidomain equations for a beating heart with a general microstructure

    Get PDF
    A novel multiple scales method is formulated that can be applied to problems which have an almost\ud periodic microstructure not in Cartesian coordinates but in a general curvilinear coordinate system.\ud The method is applied to a model of the electrical activity of cardiac myocytes and used to derive a\ud version of the bidomain equations describing the macroscopic electrical activity of cardiac tissue. The\ud treatment systematically accounts for the non-uniform orientation of the cells within the tissue and for\ud deformations of the tissue occurring as a result of the heart beat

    Modelling the effect of gap junctions on tissue-level cardiac electrophysiology

    Full text link
    When modelling tissue-level cardiac electrophysiology, continuum approximations to the discrete cell-level equations are used to maintain computational tractability. One of the most commonly used models is represented by the bidomain equations, the derivation of which relies on a homogenisation technique to construct a suitable approximation to the discrete model. This derivation does not explicitly account for the presence of gap junctions connecting one cell to another. It has been seen experimentally [Rohr, Cardiovasc. Res. 2004] that these gap junctions have a marked effect on the propagation of the action potential, specifically as the upstroke of the wave passes through the gap junction. In this paper we explicitly include gap junctions in a both a 2D discrete model of cardiac electrophysiology, and the corresponding continuum model, on a simplified cell geometry. Using these models we compare the results of simulations using both continuum and discrete systems. We see that the form of the action potential as it passes through gap junctions cannot be replicated using a continuum model, and that the underlying propagation speed of the action potential ceases to match up between models when gap junctions are introduced. In addition, the results of the discrete simulations match the characteristics of those shown in Rohr 2004. From this, we suggest that a hybrid model -- a discrete system following the upstroke of the action potential, and a continuum system elsewhere -- may give a more accurate description of cardiac electrophysiology.Comment: In Proceedings HSB 2012, arXiv:1208.315

    A mathematical model for mechanically-induced deterioration of the binder in lithium-ion electrodes

    Get PDF
    This study is concerned with modeling detrimental deformations of the binder phase within lithium-ion batteries that occur during cell assembly and usage. A two-dimensional poroviscoelastic model for the mechanical behavior of porous electrodes is formulated and posed on a geometry corresponding to a thin rectangular electrode, with a regular square array of microscopic circular electrode particles, stuck to a rigid base formed by the current collector. Deformation is forced both by (i) electrolyte absorption driven binder swelling, and; (ii) cyclic growth and shrinkage of electrode particles as the battery is charged and discharged. The governing equations are upscaled in order to obtain macroscopic effective-medium equations. A solution to these equations is obtained, in the asymptotic limit that the height of the rectangular electrode is much smaller than its width, that shows the macroscopic deformation is one-dimensional. The confinement of macroscopic deformations to one dimension is used to obtain boundary conditions on the microscopic problem for the deformations in a 'unit cell' centered on a single electrode particle. The resulting microscale problem is solved using numerical (finite element) techniques. The two different forcing mechanisms are found to cause distinctly different patterns of deformation within the microstructure. Swelling of the binder induces stresses that tend to lead to binder delamination from the electrode particle surfaces in a direction parallel to the current collector, whilst cycling causes stresses that tend to lead to delamination orthogonal to that caused by swelling. The differences between the cycling-induced damage in both: (i) anodes and cathodes, and; (ii) fast and slow cycling are discussed. Finally, the model predictions are compared to microscopy images of nickel manganese cobalt oxide cathodes and a qualitative agreement is found.Comment: 25 pages, 11 figure

    The cardiac bidomain model and homogenization

    Full text link
    We provide a rather simple proof of a homogenization result for the bidomain model of cardiac electrophysiology. Departing from a microscopic cellular model, we apply the theory of two-scale convergence to derive the bidomain model. To allow for some relevant nonlinear membrane models, we make essential use of the boundary unfolding operator. There are several complications preventing the application of standard homogenization results, including the degenerate temporal structure of the bidomain equations and a nonlinear dynamic boundary condition on an oscillating surface.Comment: To appear in Networks and Heterogeneous Media, Special Issue on Mathematical Methods for Systems Biolog

    Derivation of the bidomain equations for a beating heart with a general microstructure

    No full text
    A novel multiple scales method is formulated that can be applied to problems which have an almost periodic microstructure not in Cartesian coordinates but in a general curvilinear coordinate system. The method is applied to a model of the electrical activity of cardiac myocytes and used to derive a version of the bidomain equations describing the macroscopic electrical activity of cardiac tissue. The treatment systematically accounts for the nonuniform orientation of the cells within the tissue and for deformations of the tissue occurring as a result of the heart bea

    Derivation of the bidomain equations for a beating heart with a general microstructure

    No full text
    A novel multiple scales method is formulated that can be applied to problems which have an almost periodic microstructure not in Cartesian coordinates but in a general curvilinear coordinate system. The method is applied to a model of the electrical activity of cardiac myocytes and used to derive a version of the bidomain equations describing the macroscopic electrical activity of cardiac tissue. The treatment systematically accounts for the non-uniform orientation of the cells within the tissue and for deformations of the tissue occurring as a result of the heart beat
    corecore