266 research outputs found

    Methodology for high resolution spatial analysis of the physical flood susceptibility of buildings in large river floodplains

    Get PDF
    The impacts of floods on buildings in urban areas are increasing due to the intensification of extreme weather events, unplanned or uncontrolled settlements and the rising vulnerability of assets. There are some approaches available for assessing the flood damage to buildings and critical infrastructure. To this point, however, it is extremely difficult to adapt these methods widely, due to the lack of high resolution classification and characterisation approaches for built structures. To overcome this obstacle, this work presents: first, a conceptual framework for understanding the physical flood vulnerability and the physical flood susceptibility of buildings, second, a methodological framework for the combination of methods and tools for a large-scale and high-resolution analysis and third, the testing of the methodology in three pilot sites with different development conditions. The conceptual framework narrows down an understanding of flood vulnerability, physical flood vulnerability and physical flood susceptibility and its relation to social and economic vulnerabilities. It describes the key features causing the physical flood susceptibility of buildings as a component of the vulnerability. The methodological framework comprises three modules: (i) methods for setting up a building topology, (ii) methods for assessing the susceptibility of representative buildings of each building type and (iii) the integration of the two modules with technological tools. The first module on the building typology is based on a classification of remote sensing data and GIS analysis involving seven building parameters, which appeared to be relevant for a classification of buildings regarding potential flood impacts. The outcome is a building taxonomic approach. A subsequent identification of representative buildings is based on statistical analyses and membership functions. The second module on the building susceptibility for representative buildings bears on the derivation of depth-physical impact functions. It relates the principal building components, including their heights, dimensions and materials, to the damage from different water levels. The material’s susceptibility is estimated based on international studies on the resistance of building materials and a fuzzy expert analysis. Then depth-physical impact functions are calculated referring to the principal components of the buildings which can be affected by different water levels. Hereby, depth-physical impact functions are seen as a means for the interrelation between the water level and the physical impacts. The third module provides the tools for implementing the methodology. This tool compresses the architecture for feeding the required data on the buildings with their relations to the building typology and the building-type specific depth-physical impact function supporting the automatic process. The methodology is tested in three flood plains pilot sites: (i) in the settlement of the Barrio Sur in MaganguĂ© and (ii) in the settlement of La Peña in Cicuco located on the flood plain of Magdalena River, Colombia and (iii) in a settlement of the city of Dresden, located on the Elbe River, Germany. The testing of the methodology covers the description of data availability and accuracy, the steps for deriving the depth-physical impact functions of representative buildings and the final display of the spatial distribution of the physical flood susceptibility. The discussion analyses what are the contributions of this work evaluating the findings of the methodology’s testing with the dissertation goals. The conclusions of the work show the contributions and limitations of the research in terms of methodological and empirical advancements and the general applicability in flood risk management.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – MaganguĂ©, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 203In vielen StĂ€dten nehmen die Auswirkungen von Hochwasser auf GebĂ€ude aufgrund immer extremerer Wetterereignisse, unkontrollierbarer Siedlungsbauten und der steigenden VulnerabilitĂ€t von BesitztĂŒmern stetig zu. Es existieren zwar bereits AnsĂ€tze zur Beurteilung von WasserschĂ€den an GebĂ€uden und Infrastrukturknotenpunkten. Doch ist es bisher schwierig, diese Methoden großrĂ€umig anzuwenden, da es an einer prĂ€zisen Klassifizierung und Charakterisierung von GebĂ€uden und anderen baulichen Anlagen fehlt. Zu diesem Zweck sollen in dieser Arbeit erstens ein Konzept fĂŒr ein genaueres VerstĂ€ndnis der physischen VulnerabilitĂ€t von GebĂ€uden gegenĂŒber Hochwasser dargelegt, zweitens ein methodisches Verfahren zur Kombination der bestehenden Methoden und Hilfsmittel mit dem Ziel einer großrĂ€umigen und hochauflösenden Analyse erarbeitet und drittens diese Methode an drei Pilotstandorten mit unterschiedlichem Ausbauzustand erprobt werden. Die Rahmenbedingungen des Konzepts grenzen die Begriffe der VulnerabilitĂ€t, der physischen VulnerabilitĂ€t und der physischen AnfĂ€lligkeit gegenĂŒber Hochwasser ein und erörtern deren Beziehung zur sozialen und ökonomischen VulnerabilitĂ€t. Es werden die Merkmale der physischen AnfĂ€lligkeit von GebĂ€uden gegenĂŒber Hochwasser als Bestandteil der VulnerabilitĂ€t definiert. Das methodische Verfahren umfasst drei Module: (i) Methoden zur Erstellung einer GebĂ€udetypologie, (ii) Methoden zur Bewertung der AnfĂ€lligkeit reprĂ€sentativer GebĂ€ude jedes GebĂ€udetyps und (iii) die Kombination der beiden Module mit Hilfe technologischer Hilfsmittel. Das erste Modul zur GebĂ€udetypologie basiert auf der Klassifizierung von Fernerkundungsdaten und GIS-Analysen anhand von sieben GebĂ€udeparametern, die sich fĂŒr die Klassifizierung von GebĂ€uden bezĂŒglich ihres Risikopotenzials bei Hochwasser als wichtig erweisen. Daraus ergibt sich ein Ansatz zur GebĂ€udeklassifizierung. Die anschließende Ermittlung reprĂ€sentativer GebĂ€ude beruht auf statistischen Analysen und Zugehörigkeitsfunktionen. Das zweite Modul zur AnfĂ€lligkeit reprĂ€sentativer GebĂ€ude beruht auf der Ableitung von Funktion von Wasserstand und physischer Einwirkung. Es setzt die relevanten GebĂ€udemerkmale, darunter Höhe, Maße und Materialien, in Beziehung zum erwartbaren Schaden bei unterschiedlichen WasserstĂ€nden. Die MaterialanfĂ€lligkeit wird aufgrund internationaler Studien zur Festigkeit von Baustoffen sowie durch Anwendung eines Fuzzy-Logic-Expertensystems eingeschĂ€tzt. Anschließend werden Wasserstand-Schaden-Funktionen unter Einbeziehung der HauptgebĂ€udekomponenten berechnet, die durch unterschiedliche WasserstĂ€nde in Mitleidenschaft gezogen werden können. Funktion von Wasserstand und physischer Einwirkung dienen hier dazu, den jeweiligen Wasserstand und die physischen Auswirkung in Beziehung zueinander zu setzen. Das dritte Modul stellt die zur Umsetzung der Methoden notwendigen Hilfsmittel vor. Zur UnterstĂŒtzung des automatisierten Verfahrens dienen Hilfsmittel, die die GebĂ€udetypologie mit der Funktion von Wasserstand und physischer Einwirkung fĂŒr GebĂ€ude in Hochwassergebieten kombinieren. Die Methoden wurden anschließend in drei hochwassergefĂ€hrdeten Pilotstandorten getestet: (i) in den Siedlungsgebieten von Barrio Sur in MaganguĂ© und (ii) von La Pena in Cicuco, zwei Überschwemmungsgebiete des Magdalenas in Kolumbien, und (iii) im Stadtgebiet von Dresden, das an der Elbe liegt. Das Testverfahren umfasst die Beschreibung der DatenverfĂŒgbarkeit und genauigkeit, die einzelnen Schritte zur Analyse der. Funktion von Wasserstand und physischer Einwirkung reprĂ€sentativer GebĂ€ude sowie die Darstellung der rĂ€umlichen Verteilung der physischen AnfĂ€lligkeit fĂŒr Hochwasser. In der Diskussion wird der Beitrag dieser Arbeit zur Beurteilung der Erkenntnisse der getesteten Methoden anhand der Ziele dieser Dissertation analysiert. Die Folgerungen beleuchten abschließend die Fortschritte und auch Grenzen der Forschung hinsichtlich methodischer und empirischer Entwicklungen sowie deren allgemeine Anwendbarkeit im Bereich des Hochwasserschutzes.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – MaganguĂ©, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 203El impacto de las inundaciones sobre los edificios en zonas urbanas es cada vez mayor debido a la intensificaciĂłn de los fenĂłmenos meteorolĂłgicos extremos, asentamientos no controlados o no planificados y su creciente vulnerabilidad. Hay mĂ©todos disponibles para evaluar los daños por inundaciĂłn en edificios e infraestructuras crĂ­ticas. Sin embargo, es muy difĂ­cil implementar estos mĂ©todos sistemĂĄticamente en grandes ĂĄreas debido a la falta de clasificaciĂłn y caracterizaciĂłn de estructuras construidas en resoluciones detalladas. Para superar este obstĂĄculo, este trabajo se enfoca, en primer lugar, en desarrollar un marco conceptual para comprender la vulnerabilidad y susceptibilidad fĂ­sica de edificios por inudaciones, en segundo lugar, en desarrollar un marco metodolĂłgico para la combinaciĂłn de los mĂ©todos y herramientas para una anĂĄlisis de alta resoluciĂłn y en tercer lugar, la prueba de la metodologĂ­a en tres sitios experimentales, con distintas condiciones de desarrollo. El marco conceptual se enfoca en comprender la vulnerabilidad y susceptibility de las edificaciones frente a inundaciones, y su relaciĂłn con la vulnerabilidad social y econĂłmica. En Ă©l se describen las principales caracterĂ­sticas fĂ­sicas de la susceptibilidad de edificicaiones como un componente de la vulnerabilidad. El marco metodolĂłgico consta de tres mĂłdulos: (i) mĂ©todos para la derivaciĂłn de topologĂ­a de construcciones, (ii) mĂ©todos para evaluar la susceptibilidad de edificios representativos y (iii) la integraciĂłn de los dos mĂłdulos a travĂ©s herramientas tecnolĂłgicas. El primer mĂłdulo de topologĂ­a de construcciones se basa en una clasificaciĂłn de datos de sensoramiento rĂ©moto y procesamiento SIG para la extracciĂłn de siete parĂĄmetros de las edficaciones. Este mĂłdulo parece ser aplicable para una clasificaciĂłn de los edificios en relaciĂłn con los posibles impactos de las inundaciones. El resultado es una taxonomĂ­a de las edificaciones y una posterior identificaciĂłn de edificios representativos que se basa en anĂĄlisis estadĂ­sticos y funciones de pertenencia. El segundo mĂłdulo consiste en el anĂĄlisis de susceptibilidad de las construcciones representativas a travĂ©s de funciones de profundidad del impacto fĂ­sico. Las cuales relacionan los principales componentes de la construcciĂłn, incluyendo sus alturas, dimensiones y materiales con los impactos fĂ­sicos a diferentes niveles de agua. La susceptibilidad del material se calcula con base a estudios internacionales sobre la resistencia de los materiales y un anĂĄlisis a travĂ©s de sistemas expertos difusos. AquĂ­, las funciones de profundidad de impacto fĂ­sico son considerados como un medio para la interrelaciĂłn entre el nivel del agua y los impactos fĂ­sicos. El tercer mĂłdulo proporciona las herramientas necesarias para la aplicaciĂłn de la metodologĂ­a. Estas herramientas tecnolĂłgicas consisten en la arquitectura para la alimentaciĂłn de los datos relacionados a la tipologĂ­a de construcciones con las funciones de profundidad del impacto fĂ­sico apoyado en procesos automĂĄticos. La metodologĂ­a es probada en tres sitios piloto: (i) en el Barrio Sur en MaganguĂ© y (ii) en la barrio de La Peña en Cicuco situado en la llanura inundable del RĂ­o Magdalena, Colombia y (iii) en barrio Kleinzschachwitz de la ciudad de Dresden, situado a orillas del rĂ­o Elba, en Alemania. Las pruebas de la metodologĂ­a abarca la descripciĂłn de la disponibilidad de los datos y la precisiĂłn, los pasos a seguir para obtener las funciones profundidad de impacto fĂ­sico de edificios representativos y la presentaciĂłn final de la distribuciĂłn espacial de la susceptibilidad fĂ­sica frente inundaciones El discusiĂłn analiza las aportaciones de este trabajo y evalua los resultados de la metodologĂ­a con relaciĂłn a los objetivos. Las conclusiones del trabajo, muestran los aportes y limitaciones de la investigaciĂłn en tĂ©rminos de avances metodolĂłgicos y empĂ­ricos y la aplicabilidad general de gestiĂłn del riesgo de inundaciones.:1 INTRODUCTION 1 1.1 Background 1 1.2 State of the art 2 1.3 Problem statement 6 1.4 Objectives 6 1.5 Approach and outline 6 2 CONCEPTUAL FRAMEWORK 9 2.1 Flood vulnerability 10 2.2 Physical flood vulnerability 12 2.3 Physical flood susceptibility 14 3 METHODOLOGICAL FRAMEWORK 23 3.1 Module 1: Building taxonomy for settlements 24 3.1.1 Extraction of building features 24 3.1.2 Derivation of building parameters for setting up a building taxonomy 38 3.1.3 Selection of representative buildings for a building susceptibility assessment 51 3.2 Module 2: Physical susceptibility of representative buildings 57 3.2.1 Identification of building components 57 3.2.2 Qualification of building material susceptibility 62 3.2.3 Derivation of a depth-physical impact function 71 3.3 Module 3: Technological integration 77 3.3.1 Combination of the depth-physical impact function with the building taxonomic code 77 3.3.2 Tools supporting the physical susceptibility analysis 78 3.3.3 The users and their requirements 79 4 RESULTS OF THE METHODOLOGY TESTING 83 4.1 Pilot site “Kleinzschachwitz” – Dresden, Germany – Elbe River 83 4.1.1 Module 1: Building taxonomy – “Kleinzschachwitz” 85 4.1.2 Module 2: Physical susceptibility of representative buildings – “Kleinzschachwitz” 97 4.1.3 Module 3: Technological integration – “Kleinzschachwitz” 103 4.2 Pilot site “La Peña” – Cicuco, Colombia – Magdalena River 107 4.2.1 Module 1: Building taxonomy – “La Peña” 108 4.2.2 Module 2: Physical susceptibility of representative buildings – “La Peña” 121 4.2.3 Module 3: Technological integration– “La Peña” 129 4.3 Pilot site “Barrio Sur” – MaganguĂ©, Colombia – Magdalena River 133 4.3.1 Module 1: Building taxonomy – “Barrio Sur” 133 4.3.2 Module 2: Physical susceptibility of representative buildings – “Barrio Sur” 141 4.3.3 Module 3: Technological integration – “Barrio Sur” 147 4.4 Empirical findings 151 4.4.1 Empirical findings of Module 1 151 4.4.2 Empirical findings of Module 2 155 4.4.3 Empirical findings of Module 3 157 4.4.4 Guidance of the methodology 157 5 DISCUSSION 161 5.1 Discussion on the conceptual framework 161 5.2 Discussion on the methodological framework 161 5.2.1 Discussion on Module 1: the building taxonomic approach 162 5.2.2 Discussion on Module 2: the depth-physical impact function 164 6 CONCLUSIONS AND OUTLOOK 167 6.1 Conclusions 167 6.2 Outlook 168 REFERENCES 171 INDEX OF FIGURES 199 INDEX OF TABLES 201 APPENDICES 20

    Assessment of ecological connectivity for urban environments: A multispecies approach

    Get PDF
    The habitats of many ground-based fauna species in developing urban regions have altered in their structure and are often isolated from other habitat locations due to the urban growth. Habitat areas that are well connected to other fragments of habitat have been shown to assist particular fauna in their movement from one location to another. Two key benefits of faunal movement are the transfer of genes resulting in improved genetic diversity and support for larger populations of particular species. Habitat connectivity is therefore seen as critical to the survival of many fauna species in urban locations. Lack of habitat connectivity in the landscape poses the critical threat of extinction to many ground-based species. This thesis develops a multispecies method for assessing habitat connectivity in urban landscapes. While effective conservation management requires a multispecies approach to establishing conservation priorities, connectivity is in fact a species-specific attribute of the landscape. This study aims to assess connectivity by developing a multispecies method based on species-specific considerations, thereby addressing the differences in the two aspects. The application of graph theory is well suited to modelling the structure of urban landscapes. A graph-based multispecies method was designed based on specific criteria relating to a biologically realistic assessment of connectivity. This was then applied to Metropolitan Melbourne by determining the habitat networks of four ground-based fauna species and assessing connectivity across species networks. The method was then evaluated by testing the sensitivity of modelling outputs to the determination of the maximum effective distance for the target species and the resistance values that were used to quantify the species resistance layers. The species-specific connectivity outcomes were then overlaid and combined in order to assess overall ecological connectivity. The revised method comprises four key steps. These are: (1) choice of target species for a given urban region; (2) construction of species-specific networks within that region; (3) connectivity measurement of species-specific networks; and (4) combination of connectivity results to assess the ecological connectivity for the urban region. In general, this study offers three innovations. First, the graph-based multispecies method is innovative in terms of multispecies capacity to consider species-specific characteristics when assessing connectivity. Second, it establishes a rigorous set of graph-based metrics that determine essential dimensions of connectivity: connectivity between two specific habitats, connectivity of the whole network, and those habitats that contribute most to connectivity. Third, the study developed a new algorithm for the identification of gaps in species habitat networks. In addition, the method offers new insights into the development of species-specific resistance layers. The multispecies method allows for flexibility in decision-making by providing opportunities for trade-offs between different conservation alternatives. The method will serve as a foundation to support conservation planning and decision-making through the establishment of priority areas within the urban landscape that will enhance connectivity and support biodiversity. This multispecies method will assist any conservation authority to avoid redundancy in planning and decision-making, thereby ensuring long-term financial savings in conservation projects

    Geo-visual Analytics of Canada-U.S. Transborder Traffic Data

    Get PDF
    This research aims to investigate new geo-visual analytics methods and techniques for visually analyzing the large amount of historical and near real time geospatial and temporal traffic data at the border crossings between Canada and the U.S. Historical traffic-related time-series data are available from different agencies in both countries for at least the last four decades for different modes of transportation and different purposes. Supplementary historical and near real-time data about delays, weather conditions, and different types of alerts and conditions at the ports of entry can be used to analyze the decision processes behind changes in traffic patterns. The data are gathered, processed, and linked to a web-based Geographic Information System (GIS) that can be accessed by authorized users over the Internet using an intuitive graphical user interface (GUI) to support different types of queries. The resulting database and information system can be beneficial for understanding the impact of the different factors affecting delays at the ports of entry and the impacts of these delays on the decision-making of travelers, planners, and supply chain operators

    RE-MODELING THE INTERIOR: SPATIAL METHODS AND POLICY REVISIONS TO IMPROVE INVENTORY AND DESIGNATION OF BLM’S AREAS OF CRITICAL ENVIRONMENTAL CONCERN

    Get PDF
    The Bureau of Land Management (BLM) manages a vast amount of public land in the western United States, most of which they currently manage for multiple uses. Specific conservation and management of these lands could mitigate climate change impacts and contribute to the global initiative to conserve 30 percent of lands and waters by 2030. Particularly, the agency can achieve this through more effective administration of Areas of Critical Environmental Concern (ACEC), a designation that is prioritized under the Federal Land Policy and Management Act (FLPMA). To do so requires updated regulations that set clear parameters around inventory and designation, as well as a strategy for how to inventory and assess potential ACEC land—the latter of which can be achieved through a geospatial approach. This study models ACEC suitability across a case study using existing regulatory framework, predicting where high suitability exists and highlighting gaps in agency planning. Results indicate the need for a more robust tribal consultation process and specific revisions in the guiding designation criteria. Ultimately, if the BLM can reconsider ACECs as a priority and utilize existing geospatial data in the inventory process, they will realign their planning process with FLPMA’s intentions and be well-equipped to contribute to 30 by 30

    Long-duration robot autonomy: From control algorithms to robot design

    Get PDF
    The transition that robots are experiencing from controlled and often static working environments to unstructured and dynamic settings is unveiling the potential fragility of the design and control techniques employed to build and program them, respectively. A paramount of example of a discipline that, by construction, deals with robots operating under unknown and ever-changing conditions is long-duration robot autonomy. In fact, during long-term deployments, robots will find themselves in environmental scenarios which were not planned and accounted for during the design phase. These operating conditions offer a variety of challenges which are not encountered in any other discipline of robotics. This thesis presents control-theoretic techniques and mechanical design principles to be employed while conceiving, building, and programming robotic systems meant to remain operational over sustained amounts of time. Long-duration autonomy is studied and analyzed from two different, yet complementary, perspectives: control algorithms and robot design. In the context of the former, the persistification of robotic tasks is presented. This consists of an optimization-based control framework which allows robots to remain operational over time horizons that are much longer than the ones which would be allowed by the limited resources of energy with which they can ever be equipped. As regards the mechanical design aspect of long-duration robot autonomy, in the second part of this thesis, the SlothBot, a slow-paced solar-powered wire-traversing robot, is presented. This robot embodies the design principles required by an autonomous robotic system 1in order to remain functional for truly long periods of time, including energy efficiency, design simplicity, and fail-safeness. To conclude, the development of a robotic platform which stands at the intersection of design and control for long-duration autonomy is described. A class of vibration-driven robots, the brushbots, are analyzed both from a mechanical design perspective, and in terms of interaction control capabilities with the environment in which they are deployed.Ph.D

    Urbogeosystemic Approach to Agglomeration Study within the Urban Remote Sensing Frameworks

    Get PDF
    The spatial arrangement of human activity within urban areas is normally provided by areal management, and its effective provision is a complicated problem. The current urban development causes a number of problems and urgent challenges, which can be met and resolved exclusively on the basis of innovative scientific and technological advances. The main research objective of this chapter is to represent the authors’ theoretic concept of the urban geographical system combined with the original Urban Remote Sensing approach based on the advanced technique of airborne LiDAR (Light Detection And Ranging) data processing. The authors attempted to prove that the presented concept could contribute to an understanding of the urban agglomeration as an urbanized spatial entity. The chapter explains in what way the urbanistic environment is a quasi-rasterized 3D model of actual city space, and the urbogeosystem (UGS) is a quasi-vector 3D model of the hierarchical formalized aggregate of UGS elementary functional units–buildings, both can efficiently simulate and visualize an urbanized area. Web-based geoinformation software for LiDAR data processing with the objectives of urban studies has been introduced together with its key functionalities. The population estimation use case has been examined in detail within the presented approach frameworks

    Managing Growth or Outgrowing Management? A Nature-Society Perspective in Urban Planning and Land Use Change

    Get PDF
    A focus on place-specific attributes situates this thesis within a paradigm of nature-society research in examining the material forces and the legitimating discourses of land use change. The extent to which place based attributes present an obstacle or opportunity for building sustainable human societies is the primary motivation for my research. Locating interactions between nature and society is important because individuals do not just respond to social facts , but to a number of contextual factors. Place is context, and although many disciplines thoroughly explore the social, economic, cultural, psychological context of individuals and societies, these are themselves spatially bounded by landscape that is both physical and social. The discipline of human geography brings these process and place strands together, to examine the co-creation of landscape and society. This thesis concentrates specifically on processes of land use change, either directly by conversion of land, or indirectly by increased household car use and zoning policy in three separate studies. First is a macro-level study of household automobile dependency contingent upon a suite of physical landscape and social context factors. Second is a macro-level study of urban growth in Germany from 2000-2006 explained by a number of landscape, topographical, and social factors. Lastly, a third study is a micro-level examination of urbanization and nature-society linkages in a case study of West Hayden Island in Portland, USA. Land use change is one of the most important global processes of our era because it is the largest factor in driving global environmental change (see for review: Lambin and Geist 2006). A nature-society perspective in research moves empirical work away from a Ăą dominationĂą perspective, incapable of adapting with dramatic alterations of landscape to a Ăą co-habitationĂą perspective, allowing a flexible approach to understanding the metabolism of nature-society

    NEW, MULTI-SCALE APPROACHES TO CHARACTERIZE PATTERNS IN VEGETATION, FUELS, AND WILDFIRE

    Get PDF
    Pattern and scale are key to understanding ecological processes. My dissertation research aims for novel quantification of vegetation, fuel, and wildfire patterns at multiple scales and to leverage these data for insights into fire processes. Core to this motivation is the 3-dimensional (3-D) characterization of forest properties from light detection and ranging (LiDAR) and structure-from-motion (SfM) photogrammetry. Analytical methods for extracting useable information currently lag the ability to collect such 3-D data. The chapters that follow focus on this limitation blending interests in machine learning and data science, remote sensing, wildland fuels (vegetation), and wildfire. In Chapter 2, forest canopy structure is characterized from multiple landscapes using LiDAR data and a novel data-driven framework to identify and compare structural classes. Motivations for this chapter include the desire to systematically assess forest structure from landscape to global scales and increase the utility of data collected by government agencies for landscape restoration planning. Chapter 3 endeavors to link 3-D canopy fuels attributes to conventional optical remote sensing data with the goal of extending the reach of laser measurements to the entire western US while exploring geographic differences in LiDAR-Landsat relationships. Development of predictive models and resulting datasets increase accuracy and spatial variation over currently used canopy fuel datasets. Chapters 4 and 5 characterize fire and fuel variability using unmanned aerial systems (UAS) and quantify trends in the influence of fuel patterns on fire processes
    • 

    corecore