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difference between the inputs û—obtained employing a centralized approach—
and u—synthesized using a mixed centralized/decentralized strategy—is
close to 0. The difference peaks around the times of the endogenous and
exogenous disturbances: this phenomenon is due to the delay introduced by
the time required to solve the MIQP (5.19). The allocation changes 34 and
11 iterations later in the case of endogenous and exogenous disturbances,
respectively. This effect due to the computation time is highlighted in (5.40). 122

6.1 Surf plot of an example of environment field simulated over the Robotarium
testbed, which has to be estimated by the network of mobile sensors. . . . . 141

6.2 Plot of RMS error over time for one of the experiments performed in the
Robotarium. The different curves show how the RMS error decreases over
time as the sensor nodes exchange data between each other, as a function
of the maximum number of data points exchanged at each point in time by
any two sensor nodes (see legend). The blue curve at the bottom represents
the centralized approach where data collected by all robots are gathered by
a central computational unit, which is able to perform full GPR. As can
be seen, the higher the communication bandwidth—in terms of number of
data points exchanged—the faster the decrease of the RMS error towards
the centralized lower bound. . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3 Effective range li of the 16 ground mobile robots recorded over the course
of one of the experiment conducted on the Robotarium. The sensor nodes
start communicating between each other once enough data has been col-
lected (around 120 iterations). The graphs show how the selection of ex-
changed data according to Algorithms 5 and 6 allows the sensor nodes
to quickly increase their effective range and correspondingly decrease the
RMS estimation error (cf. Fig. 6.1). . . . . . . . . . . . . . . . . . . . . . 143

6.4 Snapshots from the video of the experiments performed on the Robotarium.
The estimation of a simulated environment field (blue surf plot) performed
by one of the 16 mobile robots employed in the experiment is depicted.
Its trajectory is shown as a thick black line, its communication and effec-
tive ranges are shown in green and yellow, respectively. As can be seen,
during the course of the experiment, the error between the true environ-
ment field and its estimate (orange surf plot) decreases, as the effective
range increases. The video of the experiment is available online at the link
https://youtu.be/6vTcnh4wsZU. . . . . . . . . . . . . . . . . . . 144

xxii



7.1 The SlothBot is a lightweight, solar-powered, minimally-actuated, wire-
traversing robot, capable of switching between branching wires and envi-
sioned for long-term environmental monitoring applications. . . . . . . . . 147

7.2 Example of monitoring applications in agricultural robotics using a wire-
traversing robot. Crosshatched areas represent different crops in a field.
The robot (depicted in yellow) has to collect measurements at the point
marked in green. It, therefore, traverses the wires (on the red path), over-
coming crossings, until it reaches the blue point, closest to the green location.148

7.3 One of the two bodies of the SlothBot, with the nomenclature used in the
chapter. Part of the top lid has been made transparent to be able to fully see
the top gear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.4 Kinematic scheme of the SlothBot highlighting its degrees of freedom. θff,
θfr, θrf, θrr are the angles of which the front and rear top gears of the front and
rear body, respectively, can rotate. These degrees of freedom are actuated
by 4 servo motors. θh is the relative angle between the two bodies of the
SlothBot, and is also actuated by a servo motor. ωf and ωr are the speeds of
the 2 DC motors that move the SlothBot. . . . . . . . . . . . . . . . . . . . 150

7.5 Diagram of forces acting on the SlothBot. The small triangles represent
hinge/cart supports. In the background the skeleton of the SlothBot is
shown, highlighting the contact points between its bodies and the wire.
Td is the force generated by the motor torque τ . Fi, i = 1, . . . , 4, are the
reaction forces due to friction. N and R are the force and the reaction due
to the weight of robot and payload. . . . . . . . . . . . . . . . . . . . . . . 151

7.6 Simulated wire-switching maneuver: the SlothBot switches from branch A
to branch B. The top lids, that ensure that the wire is in contact with the
tires, have been hidden to make the orientation of the top gears visible. . . . 153

7.7 The switching mechanism for the SlothBot. The red components of the
robot always remain above the wires, while the green components are con-
fined to stay below them. The C-shaped blue gear allows the red and green
parts to be held together, while, at the same time, allowing the wires to
disengage from the robot during wire-switching maneuvers. . . . . . . . . . 154

7.8 Example of turning one 4-way crossing into a sequence of four 3-way cross-
ings. This modification is required since the SlothBot is only able to tra-
verse 3-way crossings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xxiii
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SUMMARY

The transition that robots are experiencing from controlled and often static working

environments to unstructured and dynamic settings is unveiling the potential fragility of

the design and control techniques employed to build and program them, respectively. A

paramount of example of a discipline that, by construction, deals with robots operating un-

der unknown and ever-changing conditions is long-duration robot autonomy. In fact, dur-

ing long-term deployments, robots will find themselves in environmental scenarios which

were not planned and accounted for during the design phase. These operating conditions

offer a variety of challenges which are not encountered in any other discipline of robotics.

This thesis presents control-theoretic techniques and mechanical design principles to be

employed while conceiving, building, and programming robotic systems meant to remain

operational over sustained amounts of time. Long-duration autonomy is studied and ana-

lyzed from two different, yet complementary, perspectives: control algorithms and robot

design. In the context of the former, the persistification of robotic tasks is presented. This

consists of an optimization-based control framework which allows robots to remain oper-

ational over time horizons that are much longer than the ones which would be allowed by

the limited resources of energy with which they can ever be equipped.

As regards the mechanical design aspect of long-duration robot autonomy, in the sec-

ond part of this thesis, the SlothBot, a slow-paced solar-powered wire-traversing robot, is

presented. This robot embodies the design principles required by an autonomous robotic

system in order to remain functional for truly long periods of time, including energy ef-

ficiency, design simplicity, and fail-safeness. To conclude, the development of a robotic

platform which stands at the intersection of design and control for long-duration autonomy

is described. A class of vibration-driven robots, the brushbots, are analyzed both from

a mechanical design perspective, and in terms of interaction control capabilities with the

environment in which they are deployed.
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CHAPTER 1

INTRODUCTION

As robots gradually move from research laboratories and industrial settings to less struc-

tured and more dynamic environments, new challenges coming from unexpected and un-

modeled environmental phenomena arise. This is true even more so when robots are to be

deployed on the field for long-term applications, as in the case of environmental monitor-

ing scenarios [1, 2, 3]. Thus, a way of encoding survivability [4], intended as the ability to

remain alive—in a robotic sense—is needed now more than ever. In this thesis, we study

the problem of long-duration robot autonomy, which deals with robots deployed over long

time horizons, from two different, yet complementary, perspectives: control algorithms and

robot design.

Executing tasks over long periods of time is not always possible due to the limited

amount of energy that robots can store in their batteries. Even solutions such as recharge-

able batteries harvesting solar power are not guaranteed to provide the required amount

of energy, due to the variability of the environmental conditions. Moreover, when long-

duration autonomy is considered, it is desirable to design robots which are as flexible,

adaptable and robust to changing environmental conditions as possible. For this reason,

strategies obtained using optimal control techniques are not a viable solution, as they are

characterized by the fragility that comes with optimality, i.e. related to the precise model

assumptions utilized in the control design [5]. These assumptions, in fact, are very likely to

be violated during the long time horizons over which the robots have to remain operational

in long-duration autonomy scenarios. Therefore, in the first part of this thesis, we present a

control theoretic framework for the persistification of robotic tasks, intended as the process

of rendering robotic tasks persistent, that is equivalent to rendering robots able to execute

the tasks over time horizons much longer than the life of their batteries. This process will
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be formally defined and employed to enforce survivibility conditions on the robots in order

to let them sustainably execute the tasks for which they are deployed.

With this line of inquiry, the persistification strategy is recognized to be just one as-

pect of a broader robot control design idea: the constraint-driven robot control paradigm.

Besides its application to the control of robotic platforms, it is informative to notice that a

similar principle has been found to determine the actions of biological organisms. In fact,

ecological studies have shown that the constraints imposed by the environment strongly

determine the behaviors developed by animals living in it [6]. Inspired by this observation,

we ask whether robots can be controlled purely using constraints. This results in what we

call a robot-ecological formulation [4], in which robots are programmed to do nothing, sub-

ject to task and survivability constraints. This concept can be formalized in the following

optimization problem:

minimize
u

‖u‖2

subject to csurv(x, u) ≥ 0

ctask(x, u) ≥ 0,

(1.1)

where u represents the control effort spent by the robots, csurv(·, ·) ≥ 0 is the constraint

encoding survivability, and ctask(·, ·) ≥ 0 is the constraint corresponding to the task that

has to be executed by the robots. The effectiveness of the constraint-based approach is

demonstrated by the variety of applications in which it has been employed: from the coor-

dinated control of multi-robot systems [7, 8], to the multi-task prioritization of redundant

manipulators [9], from the multi-robot multi-task allocation problem [10, 11, 12] to the

learning of robotic tasks [13].

As was discussed so far and will be further elaborated in the following chapters, control

theory can allow us to develop strategies suitable for the long-term deployment of robotic

systems. Specification-driven robot design can facilitate the achievement of this goal. In the

second part of this thesis, we show this by presenting the design of two robotic platforms

envisioned for long-term environmental monitoring tasks :
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Figure 1.1: The SlothBot in the Atlanta Botanical Garden (Credit: Rob Felt, Georgia Tech).

Figure 1.2: Examples of brushbots.
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• the SlothBot [14], an energy-efficient solar-powered wire-traversing robot (see Fig. 1.1),

• and the brushbots [15], a class of vibration-driven robots which leverage elastic el-

ements, the brushes, to achieve robust locomotion and interaction with the environ-

ment (see Fig. 1.2).

Owing to their ability to move along cables, wires, and similar infrastructure, wire-

traversing robots are characterized by simplicity of motion control, reduced localization

error and low energy requirements [16]. These characteristics have allowed them to gain in-

creasing interest in different applications domains, ranging from power line inspection and

maintenance [17, 18, 19, 20] to environmental monitoring [21] and agricultural robotics—

e.g., plantation growth and health state monitoring [22]. Vibration-driven robots, on the

other hand, have the capability of efficiently extracting energy—in the form of mechanical

vibration—from the environment in order to locomote [23, 24]. For this reason, they per-

fectly lend themselves to be employed in ultra-low energy monitoring applications where

vibrations can be leveraged as a power source, such as traffic monitoring on suspended

bridges and structural health monitoring of mechanical components. Moreover, this design

principle suggests the applicability of similar robotic platforms for other kinds of long-

term monitoring applications, including human health. The deployment of nano-scale au-

tonomous robots inside the human body might allow the effective realization of an impor-

tant aspect of what is known as health-on-demand system, where targeted measurements to

assess the health state can be performed on demand, and drugs can be released in a precise

and fully autonomous fashion.

The remainder of this thesis is organized as follows. In the next chapter, the research

work carried out in this thesis is contextualized in the current research scenario, and in par-

ticular in the fields related to the different studied topics. The design of control algorithms

and robotic platforms will be the subjects of Part I and II of this thesis, which present

the algorithmic foundations and the design principles of robots envisioned for long-term

operations, respectively. In Part I, Chapter 3 is devoted to the development of the task
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persistification control strategy which allows robots to optimally execute tasks constrained

by the amount of remaining available energy. Chapter 4 extends the approach described

in Chapter 3 to develop the constraint-driven control paradigm, where both tasks to be

executed and robot survivability are encoded as constraints within a mininum-energy opti-

mization program. Using the constraint-based formulation formalized in Chapter 4, Chap-

ter 5 presents an energy-aware task assignment for heterogeneous multi-robot systems.

The algorithm is based on the idea of realizing the allocation of tasks through a different

prioritization across different robots. In Chapter 6, the energy related to communication

in distributed estimation applications is considered in order to design a communication-

constrained distributed estimation algorithm, where robots with communication bandwidth

limited by the available energy are deployed with the goal of estimating an environmental

field over a long-time horizon. In Part II, Chapter 7 describes the SlothBot, and in par-

ticular, two designs proposed to navigate a mesh of wires while switching wire branches

in a fail-safe fashion, and to locomote on a single wire, respectively. Moreover, strate-

gies to control the motion of these two robotic platforms for environmental monitoring

applications are developed. In Chapter 8, a different perspective on robot design principles

for long-duration autonomy is considered, where the brushbots are presented as platforms

capable of exploiting vibrational energy in order to locomote and perform swarm robotic

tasks. At the end of the chapter, a micro-scale version of the brushbots is showcased in an

experiment of density control in robotic swarms. Chapter 9 concludes the thesis providing

a summary of the main findings as well as directions for future work.
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CHAPTER 2

BACKGROUND

In this chapter, we highlight some of the research work carried out in long-duration au-

tonomy, both on the development of control algorithms as well as on the design of robotic

platforms. Following the partition of the thesis, in the first part of the chapter, we will

concentrate on the algorithmic foundations for rendering robotic task execution persistent,

as well as that of allocating multiple tasks to multiple robots in an energy efficient fashion,

allowing the task execution over extended amounts of time. In the second part of the chap-

ter, existing robot designs of wire-traversing and vibration-driven robots are analyzed and

compared to the SlothBot and the brushbots, respectively.

2.1 Long-Term Execution of Robotic Tasks

The deployment of robots for tasks such as environmental monitoring [25, 26, 27, 28], en-

vironment exploration [29, 30, 31] and sensor coverage [32, 33, 34] has been extensively

investigated. However, despite the fact that, in most cases, these tasks have to be exe-

cuted over long time horizons, the limited availability of energy is not directly taken into

account. Nevertheless, since low energy density is still a severe limiting factor in many

mobile robotic applications, energy-awareness is a necessary feature with which robots

have to be endowed [35]. This line of inquiry has been followed in [36], which consid-

ers a multi-robot, persistent coverage problem as a variant of the vehicle routing problem.

A heuristic algorithm is proposed that is based on the cost-to-go-to-target, which can be

adjusted online to take into account detours that pass through refueling stations present

in the environment. A different approach is adopted in [37], where a formulation based

on Markov decision processes is presented, that is able to ensure persistent surveillance

coverage, including communication constraints and sensor failure models.
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Energy-aware control policies for persistent surveillance using a team of robots are

considered in [38], where an optimization problem is defined in order to trade-off between

the coverage mission and the conservation of a desired energy level. This is achieved

by transitioning between coverage-directed and charging-directed behaviors, based on the

current energy levels. The coverage performances are improved by employing standby

robots that can be deployed when a robot is docked at a charging station. Similarly, in [39]

a solution to the problem of long-duration missions is proposed, which considers the team

of robots split into task robots, which are in charge of executing tasks, and delivery robots,

which are deployed with the goal of providing the task robots with the energy resources

they require. Also in [40], the strategy consists in making use of a team of robots dedicated

to charging tasks (ground mobile docking stations), whose trajectories are planned based

on the working robots’ trajectories (UAVs), in order to guarantee randezvous and recharge

without suspending the operation of the working robots. Limited energy reserve is used

as an additional constraint in [41] for a path planning strategy for the optimal deployment

of multi-robot teams. A definition of persistency different from the one introduced in this

thesis is considered in [42], where environment persistent monitoring is solved by varying

the robots’ speed along predefined trajectories with the goal of keeping a regenerating

environment information field bounded, analogously to what happens to a robot cleaner in

an environment in which dust is generated.

In this thesis, we will use Control Barrier Functions (CBFs) in order to develop the

persistification framework of robotic taks. CBFs can be used to synthesize controllers that

ensure the forward invariance of a set C of the robot state space. This way, defining C as

the set where the battery energy level of the robots executing the task is always greater

than a desired minimum value, the persistification of a task can be formally guaranteed by

ensuring the forward invariance of C. One of the first definitions of CBFs was given in

[43]; in our work, we use the one introduced in [44]. See [45] for a survey on the subject.

Several variations have been introduced in order to employ CBFs with different categories
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of nonlinear dynamic systems for different control applications [46, 47, 48, 49, 50, 51].

2.2 Constraint-Driven Control of Robotic Systems

Robots are gradually leaving academic laboratories, e.g. [52, 53], in favor of industrial set-

tings, as in the case of [54], to reach even less structured and more dynamic environments,

like agricultural lands and construction sites [1]. This presents new challenges that robots

have to face, which come either from unexpected and/or unmodeled phenomena or from

changing environmental conditions. These issues become even more pronounced when

the robots are deployed on the field for long-term applications, like persistent environment

surveiling [2] or plant growth monitoring [3]. Therefore, a way of encoding survivability

[4], i.e., the ability to remain alive (in a robotic sense), is needed now more than ever. In our

work, we introduce a method which can be used to ensure survivability, and which makes

use of optimization tools that allow to only minimally influence the task which the robots

are asked to perform.

Several solutions have been proposed in order to make robots robust to unknown or

changing environmental conditions and to ensure their applicability to unstructured or even

hazardous environments [55]. Moreover, in order to let the robots survive for as much time

as possible, some of the proposed methods entail scheduled periodic maintenance [56], or

path optimization with the aim of maximizing the time spent in the field/minimizing the

consumed energy [57]. Some other methods employ a power-dependent multi-objective

optimization to ensure that the robots execute their task, while maintaining a desired energy

reserve, as done in [38]. In both cases, a careful tuning of parameters is required in order

to prevent situations in which the robots trade survivability for shorter-term rewards.

As a matter of fact, goal-oriented control strategies may not be ideal for long-term

applications, where robustness to changing environmental conditions is required. Indeed,

control policies obtained using optimal control strategies are characterized by a fragility

related to the precise model assumptions [5]. These are likely to be violated during the
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long time horizons over which the robots are deployed in the field. For this reason, we

adopt a constraint-oriented approach, where the survivability of the robots is enforced as

a constraint on the robots’ task, encoded by the nominal input to the robots. The control

input is then synthesized, at each point in time, by solving a constrained optimization prob-

lem. Inspired by ecological theories where the actions taken by biological organisms are

driven by environmental constraints [6], we ask whether robots can be controlled using

constraints only. What this entails is that robots are programmed to do nothing, subject to

task and survivability constraints. Thus, what we could call a robot-ecological formulation

[4] naturally lends itself to be implemented using optimization-based control techniques.

2.3 Energy-Aware Task Allocation

In this section, we briefly review the relevant literature on multi-robot task allocation. For

a comprehensive survey on a broader class of task allocation problems, see [58, 59, 60]

and references within. In [61], the authors present a framework for assigning heteroge-

neous robots to a set of tasks by switching between different predefined behavioral rou-

tines. To tackle the challenges of computational complexity associated with such discrete

assignment-based approaches, market-based methods [62, 63, 64, 65] have been proposed,

where robots can split tasks among them via bidding and auctioning protocols. In scenarios

where a large number of robots with limited capabilities are present, decentralized stochas-

tic approaches have been developed where allocations are described in terms of population

distributions and are achieved by modifying transition rates among tasks [66, 67, 68].

The development of heterogeneous robots, characterized by different availability of

features and resources, necessitates the characterization of resource diversity and access

within the multi-robot system [69, 70]. In [71, 72], the authors define a community of

robot species, each endowed with specific capabilities, and develop an optimization-based

framework to allocate sufficient capabilities to each task. This is realized using transition

rates, which the robots use to switch between the different tasks. In comparison, the enery-
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aware task allocation approach we present in this thesis explicitly models how different

feature bundles available to the robots might endow them with capabilities required to

execute a task. This has the benefit of enduing the allocation framework with a degree of

resilience, as will be demonstrated in the later chapters.

Indeed, adaptivity and resilience are commonly studied aspects of task allocation in

multi-robot systems (see, e.g., [73, 74, 75, 76]). Typically, adaptivity is incorporated by

defining a time-varying propensity of robots to participate in different tasks. These mea-

sures of utility are based on predefined objective functions and aim to capture the effective-

ness of the robots at performing tasks in real-time [77]. Such frameworks, however, do not

account for drastic unexpected failures in the capabilities of the robots, adversarial attacks,

or varying environmental conditions that might affect the operations of the robots. Such

considerations point to the question of resilience in multi-robot systems, which has been

explored in the context of coordinated control tasks [78], as well as resource-availability in

heterogeneous systems [79]. Building up on our previous work, presented in [7, 10, 11],

in this thesis we present three distinct novel developments towards the achievement of a

resilient task allocation and execution framework. These are:

(i) an optimization-based framework which considers the real-time performance of robots

in executing the tasks

(ii) the explicit feature- and capability-based models of robot heterogeneity, which allows

for greater flexibility in allocating tasks

(iii) a minimum-energy task execution framework, geared towards long-duration auton-

omy applications.

2.4 Communication-Constrained Distributed Estimation

An approach to reduce the amount of data transferred between sensor nodes in a network

has been presented in [80], where a novelty detection algorithm is employed in an online
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learning framework in order to limit the amount of data that needs to be stored and therefore

transferred. A similar objective is pursued in [81], where the authors propose a way of

generating small data sets that still keep a high proportion of the information contained in

the original, large, data-set. General guidelines for choosing the size of subsets of data

based on detailed experimental studies are reported in [82]. Finally, with the ultimate goal

of decreasing the computational burden of Gaussian Process Regression (GPR) models,

massively scalable Gaussian processes are introduced in [83].

Communication constraints are not explicitly considered in the approaches reported

above, which do not aim at reducing the amount of data that is to be exchanged between the

nodes of the sensor network. The amount of data that a node of a mobile Wireless Sensor

Network (WSN) has to transfer significantly affects the amount of consumed energy. With

the objective of reducing this energy, [84] consider information theoretical bounds in order

to find the minimum number of bits per symbol to be employed in the communication

scheme. Similarly, limited communication capabilities in terms of communication range

are considered in [85], introducing a Distributed Gaussian Process Regression (DGPR) in

which each sensor node only needs to communicate with its neighboring nodes. A similar

concept has been further explored in [86], where, however, the problem of keeping the

amount of exchanged data between nodes of WSNs bounded has not been specifically

investigated.

2.5 Wire-Traversing Robots

Surveys of the state of the art of robots designed to traverse cables are presented in [16]

and [87]. In [88] a robot consisting of multiple units allowing wire switching and obstacle

avoidance is presented. More recent work on the development of wire-traversing robots

can be found in [17, 89, 90, 91]. In [17], the presented robot has folding capabilities that

allow it to avoid obstacles. A modular robot that is able to slide on horizontal wires as well

as climb on vertical ones is presented in [89]. In [90], the proposed robot uses a caterpillar-
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like locomotion strategy that allows it to climb up and move on ropes. In [91], the authors

present a robot that is able to locomote using different methods, such as inchworm-like or

brachiating motion patterns, which allow it to move fast and avoid occasional obstacles.

The obstacle avoidance feature has been subject of research because the designed robots

have been mainly employed in power cables or suspension bridge maintenance. In these ap-

plications, since the robots have to adapt to existing infrastructures, the capability of avoid-

ing obstacles along the wires constitutes an essential design requirement. Consequently,

the resulting designs feature multiple robotic-arm-like attachments, each of which needs

several motors to be fully actuated. The few existing robots capable of switching-wires

also rely on similar multi-joint arm mechanisms that are large and complex. Furthermore,

relatively little design effort has been put into designing energy efficient robotic platforms

capable of staying out in the field for long-term missions. The maintenance operations of

bridges and power cables mentioned above are, in fact, usually limited to a few hours. The

robots shown in [92], for instance, only have up to 6 hours of autonomy.

Because of the long-term applications targeted by the SlothBot presented in this thesis,

we consider two aspects that have not been explicitly taken into account in the state-of-

the-art designs, namely energy efficiency and fail-safeness. The definition of fail-safeness

adopted in this thesis is the ability of a wire-traversing robot to remain hung on the wire at

any point in time given the undetectable failure of one of its actuators. Table 2.1 shows a

comparison between the SlothBot and other existing wire-traversing robotic platforms. The

metrics considered for the comparison are the wire-switching capabilities, the fail-safeness

(as defined above), and the actuation complexity. The SlothBot possesses all the charac-

teristics desirable for the long-term applications mentioned before, and has the minimum

number of actuators among the platforms capable of wire-switching.
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2.6 Robot Control Under Motion Constraints

Robots with constrained motion, e.g. those with the ability to move only along pre-designed

infrastructures, lend themselves to a large variety of applications, such as environmental

monitoring [21] and agricultural robotic tasks [22]. Some of the reasons of their success

can be recognized in the following features [21, 91]:

• low energy requirements

• simplicity in the motion control

• small localization errors

• absence of navigation problems even in unknown environments.

However, these advantages are obtained to the detriment of a more complex infrastructure.

Nevertheless, there are a lot of applications in which an infrastructure is already present

and it can be exploited virtually at no additional cost. An example is power transmission

line maintenance [20].

A particular category of constrained motion robots are wire-traversing robots [91, 16].

The approach presented in this thesis focuses on the motion planning and control for this

kind of robots whose objective is sensor coverage of the surrounding environment. Wire-

traversing robots have already found their application in several domains. In [18] the de-

velopment of a mobile robot which is able to autonomously navigate on power transmis-

sion lines is described. The goal is automating the inspection of power transmission lines

and their equipment. Robotics in agriculture and forestry [22] has already experienced an

automation process that introduced the use of cable-driven robots whose tasks consist in

harvesting fruits and vegetables, dispensing fertilizer and monitoring growth and health of

plants. Moving to a different branch, in [94] an algorithm to monitor traffic starting from

videos recorded from Skycams ([95]) suggests the viability of wire-traversing autonomous

robots for traffic and road network management. In [21, 96] a cable-based robotic platform
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is described, whose objective is monitoring the environment and characterizing its phenom-

ena. As also pointed out before, the strength of such a system lies in its overall robustness

and reliability, accurate and reproducible motion, long range mobility even in complex

environments as well as low energy consumption that enables sustainable operation.

Although the technology for the deployment of wire-traversing robots in the environ-

ment is somewhat mature, none of the above-mentioned approaches explicitly deals with

the motion planning of the robots on the wires on which they are constrained to navigate.

In [97] the concept and the design of a mobile manipulator for autonomous installation and

removal of aircraft-warning spheres on overhead wires of electric power transmission lines

are presented. [19] describes the development of a mobile robot that can navigate aerial

power transmission lines autonomously with the goal of automating inspection of power

transmission lines. In [88] a multi-unit structure wire mobile robot is proposed, which

allows the robot to transfer to a branch wire and avoid obstacles on the wire.

The motion planning for robots on wires is typically left to general purpose motion

planners that use search algorithms on grid maps in order to plan a route to a desired lo-

cation (see e.g. [98]). The main contribution of the work in this thesis is a solution to the

motion planning problem for wire-traversing robots and, in general, for robots constrained

to move on grid maps or on curves. This is achieved by including the motion constraints

in the formulation of the motion control law. The described concept is applied to a cover-

age control task, where the robots have to spread in the environment in order to monitor

its phenomena. Constrained locational optimization has already been considered in [99],

where the author proposes a decentralized gradient projection method in order to obtain the

motion control law. Moreover, a hybrid method, which uses both locational optimization

and path planning algorithms to generate robots’ motion, is presented in [100].
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2.7 Vibration-Driven Robots

The principle on which the motion of a brushbot relies is the alternation of stick and slip

phases during which the brushes adhere or not to the ground. One of the first applications of

the stick-slip mechanism to robot locomotion can be found in [101], where a three-degree-

of-freedom micro-robot is presented. Using this principle, in [102], the authors propose an

improved, energy-efficient design of a micro robot, together with a control strategy suitable

for trajectory tracking. Due to the design simplicity and the resulting robustness, brushbots

lend themselves to swarm robotic applications, where groups of robots are utilized to per-

form coordinated tasks in a decentralized fashion. This idea is explored in [53], where the

authors present the Kilobot, a small scale brushbot equipped with an infrared and a light

sensor that enable the execution of decentralized swarming algorihtms. Collective behav-

iors of brushbots are also investigated in [103], where the authors analyze the parameters

governing the transition from a disordered motion to an organized collective motion.

As far as the analysis of brush dynamics is concerned, in [23], a model is developed

and validated using an experimental robotic platform. Here the authors do not focus on the

motion control explicitly, as much as it is done in [104]. In the latter, an omnidirectional

stick-slip robot is presented and a way of automatically calibrating it is proposed. A more

theoretical analysis is performed in [24], where the derived equations of motion are solved

using a heuristic approach in order to obtain analytical formulas for the average velocity of

the robot.

In this thesis, we propose a dynamic model for brushbots, which starts from the mi-

croscopic analysis of the brushes to culminate in the macroscopic model of the robot. In

particular, this model improves the ones which can be found in literature by explicitly tak-

ing into account the inertia of the brushes and the effects that it has on the resultant brushbot

velocity. Moreover, the derived model will be further validated through the development of

a trajectory tracking controller and the implementation of a coordinated control algorithm
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for a swarm of brushbots.

To summarize, the main contributions of this work are the following:

(i) we propose a brush model which considers the inertia of the brushes and the contact

dynamics of their interaction with the ground

(ii) we analyze and qualitatively characterize different regimes of operation for the dif-

ferent models of brushbots developed in the literature

(iii) we present the mechanical design of two brushbots, a fully-actuated platform that can

switch between regimes of operations, and a differential-drive-like brushbot, specifi-

cally designed for swarm robotics applications

Furthermore, in our related work [105], we build upon the results presented in this thesis

and demonstrate the ability of brushbot swarms to achieve collective behaviors using simple

local interactions.
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Part I

Control Algorithms
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CHAPTER 3

PERSISTIFICATION OF ROBOTIC TASKS

In the first part of this thesis, we study the algorithmic foundations of long-duration robot

autonomy. In this first chapter, we start by presenting a control framework that enables

robots to execute tasks persistently, i.e., over time horizons much longer than robots’ bat-

tery life. This is achieved by ensuring that the energy stored in the batteries of the robots

is never depleted. This condition is framed as a set invariance constraint in an optimization

problem whose objective is that of minimizing the difference between the robots’ control

inputs and nominal control inputs corresponding to the task that is to be executed. We re-

fer to this process as the persistification of a robotic task. Forward invariance of subsets

of the state space of the robots is turned into a control input constraint by using control

barrier functions. The solution of the formulated optimization problem with energy con-

straints ensures that the robotic task is persistent. To illustrate the operation of the proposed

framework, we focus in particular on two tasks whose persistent execution is particularly

relevant: environment exploration and environment surveillance. We show the persistifica-

tion of these two tasks both in simulation and on a team of wheeled mobile robots on the

Robotarium.

Robotic tasks such as environmental monitoring and exploration, as well as sensor cov-

erage, typically evolve over long time horizons. However, robots employed for these tasks

are limited by the amount of energy that can be stored in their batteries. For this reason,

we can say that such tasks are not persistent as either the robots cannot complete them be-

fore their batteries deplete, or they are required to be executed repeatedly and continuously.

Although robots can be designed with greater energy capacity to handle longer-duration

tasks, hardware solutions will never allow robots to operate perpetually.

The objective of this chapter is to present a control framework that provably guarantees
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the persistent execution of robotic tasks. This is achieved by minimally modifying the

nominal control inputs corresponding to the task that the robots have to execute in order to

ensure the continuous execution of the task. As a result, the robots are allowed to freely

execute their task whenever they have enough energy stored in their batteries, whereas they

are forced to go and recharge their batteries whenever they are running out of energy.

The persistification approach, through which a robotic task is rendered persistent, that

we present in this chapter, leverages control barrier functions (CBFs) to formulate an opti-

mization problem where the task execution is constrained by the robots’ energy level. As

formalized in [4] and [7], the constraint-driven formulation resulting from the use of CBFs

is particularly amenable for long-duration robotic tasks, where goal-driven strategies, de-

rived starting from precise model assumptions, do not guarantee enough robustness. The

persistification strategy developed in the following extends the work in [106] in order to be

able to handle more general robot and energy dynamics. The presented method generalizes

to different charging models as well as different robotic tasks. The tasks will be encoded

through different nominal inputs to the robots. This allows us to formally guarantee the

persistent execution of a large number and variety of robotic tasks.

The remainder of the chapter is organized as follows: in Section 3.1, the models of the

robots, the environment, and the energy dynamics are presented, and the problem of persis-

tification of robotic tasks is formulated. In Section 3.2, the control framework required to

ensure robotic task persistence is introduced and its application is demonstrated by means

of preliminary examples. In particular, Section 3.2.4 discusses the application of the pre-

sented framework to the persistification of robotic tasks. Section 3.3 reports the results of

the proposed theoretical formulation implemented for two robotic tasks whose persistent

execution is particularly relevant, both in simulation and on a team of mobile robots.
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3.1 Problem Formulation

The goal of this chapter is the persistification of robotic tasks, i.e., ensuring that the bat-

tery energy level of the robots executing the tasks never falls below a minimum value. In

this section, we introduce the models used for the robots, the environment in which the

robots execute their task, and the robots’ energy dynamics. We conclude the section by

formalizing the persistification of robotic tasks.

3.1.1 Robot Model

Consider a collection of N robots which are to be deployed to execute a task. The state of

robot i, i = 1, . . . , N , is denoted by xi ∈ X ⊆ Rn. We model the robots using the control

affine dynamical system:

ẋi = f(xi) + g(xi)ui, (3.1)

where ui ∈ U ⊆ Rm is robot i’s input, and f and g are two Lipschitz vector fields. Control

affine dynamics arise in many robotic systems, whose models are derived using Euler-

Lagrange equations (as observed in [98]), therefore they lend themselves to the description

of a large variety of robotic platforms. Throughout this chapter, we will assume that the N

robots are homogeneous, i.e., f and g in (3.1) are the same for each robot. This assumption

does not compromise the proposed persistification strategy, which can be easily employed

in the heterogeneous case too, as will be pointed out in Section 3.2.4.

The robots considered in this chapter are equipped with a rechargeable source of energy,

e.g., a battery, and a technology required to recharge it, e.g., solar panels. In the following

two subsections, we present a model for the robot energy dynamics which is coupled with

the model of the environment in which the robots move. A paramount example of this

scenario is that of solar power harvester circuits employed to use solar panels to recharge

the batteries of robots.
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3.1.2 Environment Model

The environment, i.e., the domain in which the robots are deployed to perform their task,

is represented by the compact set E ⊂ Rp, with p = 2 or p = 3, for ground or aerial robots,

respectively. The function π : X ⊆ Rn → E ⊂ Rp maps the robot state to its position

expressed in a Cartesian reference system defined in the environment E .

Moreover, we consider the time-varying scalar field

I : E × R+ → I ⊂ R+, (3.2)

where I is an interval, defined over the environment, which represents a bounded time-

varying non-negative physical quantity (e.g., solar light intensity) associated to each posi-

tion in E at each time instant. We insist on I being Lipschitz continuous in its first argument

and differentiable in its second argument. The need for these assumptions will be explained

in the next section.

3.1.3 Energy Model

State of Charge Dynamics

The State of Charge (SOC) is used to describe the remaining capacity of a battery, and it

is therefore a very important parameter to take into account while designing energy-aware

control strategies [107]. Its accurate knowledge allows us to design algorithms to protect

batteries from overdischarge and overcharge, increasing their life. However, batteries store

chemical energy, which cannot be directly measured and has to be, therefore, estimated.

The SOC estimation still remains a fundamental challenge, as it hinges on battery models

which, in turn, depend on many parameters [108]. A survey of methods which have been

proposed to estimate the SOC of batteries can be found in [109, 110]. In the following, we

present the basic SOC dynamic model (found, e.g., in [111]) which can be employed in the

proposed task persistification strategy to prevent robot batteries from depleting.

22



Let SOCi(t) denote the value of the SOC of robot i’s battery at time t, CN its rated

capacity, η its coulombic efficiency, and ii(t) the current flowing from the battery of robot

i—ii(t) > 0 if current is flowing out of the battery at time t, ii(t) < 0 if flowing in. Then,

the value of SOCi(t) can be evaluated as

SOCi(t) = SOCi(t0)− 1

CN

∫ t

t0

ηii(t) dt, (3.3)

where, in general, the efficiency η can be a function of the current i(t), the temperature, the

SOC itself, as well as the state of health (SOH) of the battery [111].

In a large variety of robotic applications, it is reasonable to assume that the current

supplied by the battery is proportional to the magnitude of the control input ‖ui‖ of robot

i. This holds, for instance, in cases where electric motors and actuators—for which ex-

erted torque is proportional to absorbed current—are employed for motion and locomotion

purposes [112]. Starting from (3.3), and using this assumption, yields the following SOC

dynamic model for the battery of robot i:

˙SOCi = fSOC(ui, t). (3.4)

The function fSOC is used to gather the dependencies of the efficiency η on current, tem-

perature, SOC, and SOH, as well as the relationship between current ii and control input

ui discussed above. In particular, the explicit dependence of fSOC on the time variable t is

used to reflect its dependence on the temperature at which the robot battery is operating.

It is informative to notice that the value of SOC and battery voltage have been experi-

mentally observed to be related. In particular battery voltage is a monotonically increasing

function of the SOC [113]. Therefore, when the estimation of the SOC described in the

previous section is not feasible, the battery voltage can be used as a proxy for the amount

of energy stored in the battery of the robots. Starting from the following section, we will

talk about the energy level of the battery of the robots, where both SOC estimations and
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battery voltage measurements can be used in place of it in the discussion that follows.

Energy Model

Let Ei ∈ (0, 1) ⊂ R be the battery energy level of robot i. The charging and discharging

behaviors of the battery are modeled by the following dynamic equation:

Ėi = F (xi, Ei, t) = k (w(xi, Ei, t)− Ei) , (3.5)

where k > 0 and

w(xi, Ei, t) =
1

1 + 1−Ei
Ei

e−λ(I(xi,t)−Ic)
. (3.6)

In (3.6), λ > 0 and 0 < Ic < 1 are two scalars whose meaning and effect on the energy

dynamics will be explained in Remark 3.1, and I(xi, t) : E ×R+ → [0, 1] is a time-varying

scalar-valued function introduced in (3.2). The expression of F (xi, Ei, t) has been designed

in order to model the exponential charging-discharging dynamics of batteries that are used

to power robotic platforms in a large number of applications [114].

In [14], the design of a solar-powered robot, the SlothBot, is presented, and data of

solar intensity and battery charge collected during the course of a 1-day-long experiment

are reported (see Fig. 3.1a). Figure 3.1b shows the difference ∆Ė between the measured Ė

and its value predicted using the energy model (3.5). The thick green line depicts the mean

of ∆Ė and the shaded area denotes the region of one standard deviation around the mean.

Moreover, Fig. 3.1c shows the simulated battery charge and discharge curves that can be

obtained using (3.5) in the cases when I > Ic and I < Ic, respectively. A comparison with

Fig. 3.1a indicates that the theoretical model is able to capture the exponential charging and

discharging dynamics of real batteries commonly used for robotics applications.

Remark 3.1. I(xi, t) can be interpreted as a time-varying power source distributed over

the environment E . For instance, in the case where it represents a measure of the solar

light intensity at the position xi and time t, F (xi, Ei, t) can be used to describe the energy
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(a) Data collected during the course of a 24-hour
experiment using a solar-powered robot. E, in blue,
and I , in red, are measured battery energy and solar
light intensity, respectively.
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(b) Comparison between measured and predicted val-
ues of Ė: ∆Ė represents the difference between the
measured Ė and its value predicted using the model in
(3.5). The mean of ∆Ė is depicted as a thick green
line, whereas the shaded area represents the region of
one standard deviation from the mean value.
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(c) Simulated battery charging and discharging dy-
namics: a comparison with Fig. 3.1a shows that the
model proposed in (3.5) is able to reproduce the true
dynamics of a real battery used in robotics applica-
tions.

Figure 3.1: Validation of the energy model proposed in (3.5) using data collected during a
long-term experiment with a solar-powered robot [14].
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0

Ic

1

E Ic

Figure 3.2: Example of the function I(xi, t) over the environment E at a given time instant:
inside the bold level curve marked with Ic, Ėi > 0, whereas outside Ėi < 0. In other
words, the robots can recharge their batteries in the regions bounded by the bold curves.

dynamics of a solar rechargeable battery. With the given dynamics we have that:

• Ėi < 0, i.e., the battery is discharging, whenever I(xi, t) < Ic

• Ėi > 0, i.e., the battery is charging, when I(xi, t) > Ic

• Ėi = 0, i.e., the value of I(xi, t) = Ic is such that the generated energy is equal to

the energy required by the robot at time t.

Figure 3.2 shows an example of what has been described: the surface plot of the field I

at a given time instant t is depicted in grayscale (black to white for values of I that go

from 0 to 1). Below the surface plot, the contour plot of I highlights the level curves where

I(xi, t) = Ic. Inside the regions bounded by the bold curves, characterized by I(xi, t) > Ic,

Ėi > 0, i.e., the robots can charge their batteries.

Remark 3.2. Lumped sources of energy, such as charging stations, can be also modeled

using (3.2). Bump-like functions [115] at the locations of the charging stations can be

employed to obtain the desired charging behavior, as depicted in Fig. 3.3.
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Figure 3.3: Example of the modeling of lumped sources of energy (charging stations) via a
suitable I(xi, t) function. In Fig. 3.3a, a rectangular environment E is shown, and the posi-
tions of four charging stations, denoted by C1 to C4, are depicted as black dots. Fig. 3.3b
shows the surf plot of I(xi, t) corresponding to the charging stations of Fig. 3.3a modeled
by means of bump-like functions.

Remark 3.3. The proposed energy model does not depend on the control input ui of the

robot. At first, this can seem too conservative, however in Section 3.2.4 it is shown why

this choice was made and how it increases the robustness of the proposed persistification

approach, ensuring that the robots will never run out of energy while executing the given

task.
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3.1.4 Task Persistification

The compound model of robot and energy dynamics is given by the following set of differ-

ential equations: 
ẋi = f(xi) + g(xi)ui

Ėi = F (xi, Ei, t).

(3.7)

Indicating the augmented state of robot i by

zi =

xi
Ei

 , (3.8)

the robot model (3.7) can be rewritten in the following control affine form:

żi = f̂(zi, t) + ĝ(zi)ui, (3.9)

where

f̂(zi, t) =

 f(xi)

F (xi, Ei, t)

 and ĝ(zi) =

g(xi)

0

 . (3.10)

We will use

x =
[
xT1 , . . . , x

T
N

]T ∈ XNn, u =
[
uT1 , . . . , u

T
N

]T ∈ UNm (3.11)

to represent the joint states and inputs of theN robots performing the task to be persistified.

Let the task that has to be executed by the robots be encoded through the nominal input

ûi(x, t), i = 1, . . . , N , or collectively as:

û : XNn × R+ → UNm. (3.12)

This modeling choice for the tasks that the robots have to execute is general insofar as
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it encompasses both reactive feedback controllers, through the dependence of û from the

state x, and controllers generated by a high-level planning strategy, through the dependence

of û from the time t. Examples of such tasks include, for instance, the stabilization of a

dynamical system, the coordinated control of multi-robot systems, as well as robot col-

lision avoidance strategies. The execution of robotic tasks using this formulation will be

showcased in Section 3.2.4.

Definition 3.4 (Task Persistification). A task is persistified if the energy E of the N robots

deployed to execute it is such that, for all i ∈ {1, . . . , N} and for all t,

Ei(t) ∈ [Emin, Echg], (3.13)

where Emin and Echg, with 0 < Emin < Echg < 1, are desired minimum and maximum

energy values.

One way to persistify a task is letting the robots execute the input u∗ solution of the

following optimization program:

u∗(x, t) = argmin
u∈U

‖u− û(x, t)‖2

subject to Ei(t) ∈ [Emin, Echg] ∀i ∈ {1, . . . , N}
(3.14)

for all t ≥ 0. At time t, the value u∗(x, t) is the control input closest to nominal input

û(x, t) encoding the task, satisfying the desired energy constraints.

The task persistification is referred to as the process of turning a task characterized by

the nominal input û to the persistified task characterized by the input u∗.

Remark 3.5. Definition 3.4 is not tailored to the specific robot and environment models,

which, as a matter of fact, can be quite different from the ones presented above, depending

on the particular application that is considered.

The specific choice of the cost in the optimization program (3.14) allows us to synthesize
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control signals for the robots, which are as close as possible—in a squared norm sense—to

the nominal input û. Nevertheless, the concept of task persistification prescinds from the

particular expression of the cost to minimize, and hinges on the energy constraint

Ei(t) ∈ [Emin, Echg] ∀i ∈ {1, . . . , N}, ∀t ≥ 0. (3.15)

3.2 Persistification Framework

The task persistification expressed as the optimization problem (3.14), will be realized by

employing control barrier functions (CBFs). In the following subsection, we give a brief

introduction to CBFs in their basic form. Then, in Section 3.2.2, we present the extensions

that represent the main theoretical contribution of this chapter, namely a framework to deal

with time-varying and high relative degree CBFs and control Lyapunov functions (CLFs).

The results obtained in this section will be employed in Section 3.2.4 to formulate the

optimization program whose solution achieves the persistification of robotic tasks.

3.2.1 Control Barrier Functions

Control barrier functions have been used with the goal of ensuring safety, intended as the

invariance property of a subset of the state space, the safe set.

Definition 3.6 ([45]). Let h : X ⊂ Rn → R be a continuously differentiable function with

0 a regular value, and C its zero superlevel set, i.e., C = {x ∈ Rn : h(x) ≥ 0}. Then, for

a control affine system

ẋ = f(x) + g(x)u, (3.16)

x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, h is a Control Barrier Function (CBF) if there exists a locally

Lipschitz extended class K function [116] α such that

sup
u∈U
{Lfh(x) + Lgh(x)u+ α(h(x))} ≥ 0, (3.17)
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for all x in the interior of the set C. Lfh(x) and Lgh(x) represent the Lie derivative of h in

the directions of the vector fields f and g, respectively.

Starting from this basic definition, in the next sections we will develop tools required

for the persistification of robotic tasks.

3.2.2 High Relative Degree CBFs and CLFs

In the previous section, we introduced the robot and energy models, and in Remark 3.3,

we have pointed out that the energy dynamics do not depend explicitly on the robot in-

put ui. This is intended to be a conservative choice which increases the robustness of the

persistification strategy. In fact, the rate of charge and discharge of the battery, obtained

when I(xi, t) = 1 and I(xi, t) = 0, respectively, are designed to be the rates obtained

when the robot input ui attains its maximum norm. This would correspond, for instance,

to the fastest discharge rate obtained when the actuators of the robot are absorbing maxi-

mum current. Then, the actual discharge rate will always be slower than the modeled one,

increasing, this way, the robustness of the proposed persistification strategy against un-

modeled phenomena which can occur in the environment, or unmodeled robot dynamics.

Nevertheless, the gained robustness comes at the price of increasing the relative degree of

the CBF h, defined as follows.

Definition 3.7 (Relative degree of a CBF, based on [47]). Given the nonlinear system

(3.16), with f and g sufficiently smooth vector fields on a domain D, the CBF h : Rn → R

has relative degree ρ, 1 ≤ ρ ≤ n, in D0 ⊂ D if the system


ẋ = f(x) + g(x)u

y = h(x)

(3.18)

has a relative degree ρ, ∀x ∈ D0.

In the following, we give an example in which high relative degree CBFs [47] are
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required. This example will be generalized in Theorem 3.9 for arbitrarily high relative-

degree CBFs. Theorem 3.9 will be then applied in order to formulate an optimization

program which realizes the proposed persistification strategy.

Example 3.8 (Cascade of CBFs). Let us consider the nonlinear dynamical system in con-

trol affine form (3.16) and a sufficiently smooth function h1 : Rn → R with relative

degree 2 (i.e., Lgh1(x) = 0 and LgLfh1(x) 6= 0) that defines the superlevel set C1 =

{x ∈ Rn : h1(x) ≥ 0}. To prove the forward invariance of the set C1, we want h1 to be a

CBF for which the following must hold:

Lfh1(x) + α1(h1(x)) ≥ 0, (3.19)

where α1 is a continuously differentiable extended class K function, and we used the fact

that h1 has relative degree 2. Then, we can define an additional function

h2(x) = Lfh1(x) + α1(h1(x)) (3.20)

whose zero superlevel set is C2 = {x ∈ Rn : h2(x) ≥ 0}. If there exists a positive constant

γ1 and a locally Lipschitz extended class K function α2 such that

sup
u∈U

{
L2
fh1(x) + LgLfh1(x)u+ γ1Lfh1(x) + α2(h2(x))

}
≥ 0, (3.21)

then the function h2 is a CBF. The condition in (3.21) has been obtained using the definition

(3.20) and employing α1(s) = γ1s. Its expression for an arbitrary high relative degree

will be given in the next theorem. The existence of the CBF h2(x) ensures the forward

invariance of the set C2, which, in turn, ensures the existence of the CBF h1(x). The forward

invariance of the set C1 is thus proved.

The technique shown in example 3.8 is generalized in the following theorem.

32



Theorem 3.9. Given a dynamical system (3.16), a sufficiently smooth CBF h1(x) with

relative degree ρ and a CBF hρ(x) which can be evaluated recursively starting from h1(x)

using the following equation

hn+1(x) = ḣn(x) + αn(hn(x)), 1 ≤ n < ρ, (3.22)

with αn continuously differentiable extended class K functions, we define the set Kρ(x) as

Kρ(x) =

ß
u ∈ U : Lρfh1(x) + LgL

ρ−1
f h1(x)u

+

ρ−1∑
i=1

∑
C∈(ρ−1

i )

∏
j∈C

∂αj
∂hj

Lρ−if h1(x) + αρ(hρ(x)) ≥ 0

™
,

(3.23)

where
(
ρ−1
i

)
is the set of i-combinations from the set {1, . . . , ρ−1} ⊂ N and αρ is a locally

Lipschitz extended class K function. Then, any Lipschitz continuous controller u ∈ Kρ(x)

will render the set C1 = {x ∈ Rn : h1(x) ≥ 0} forward invariant.

Remark 3.10. Employing a cascade of CBFs as shown in Example 3.8 and in Theorem 3.9

is a technique which can be used not only to prove set forward invariance, but also stability

of dynamical systems using high relative degree Lyapunov functions, as will be shown in the

following. Set forward invariance and stability will be used, in Section 3.2.4, to ensure that

the energy stored in the battery of the robots performing a task is never depleted, realizing,

this way, the desired task persistification.

Note that the energy model proposed in Section 3.1.3 is time-dependent, as it depends

on the environment model, through the value I(xi, t) at xi at time t. As we will use CBFs

to ensure the persistent execution of a task, we now extend the notion of CBFs to the case

in which the function h that defines the safe set C explicitly depends on time.

For the nonlinear control affine system (3.16), we wish to ensure the forward invariance

of a time-varying set C(t) ⊂ Rn defined by the superlevel set of a function h : Rn×R+ →
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R as:

C(t) = {x ∈ Rn : h(x, t) ≥ 0} . (3.24)

Notice that, due to the locally Lipschitz continuity assumption on the system dynamics, the

solution x(t) is guaranteed to exist in an interval [t0, t0 + ∆tmax(x0)], where x0 = x(t0),

and ∆tmax(x0) ∈ (0,∞]. We then extend the definition of CBFs given in [116] to the

time-varying case as follows.

Definition 3.11 (Time-Varying CBFs). Given a dynamical system (3.16) and a set C(t)

defined in (3.24), the function h is a time-varying CBF defined on D × R+, with C(t) ⊆

D ⊂ Rn, if there exists a locally Lipschitz extended class K function α such that, ∀x ∈ D,

∀t ∈ [t0, t0 + ∆tmax(x0)],

sup
u∈U

ß
∂h

∂t
+ Lfh(x, t) + Lgh(x, t)u+ α(h(x, t))

™
≥ 0. (3.25)

Starting from the condition in (3.25), we can define the set:

K(x, t) =

{
u ∈ U :

∂h

∂t
+ Lfh(x, t) + Lgh(x, t)u+ α(h(x, t)) ≥ 0

}
. (3.26)

The following lemma ensures that the set C(t), defined in (3.24), is rendered forward

invariant by the application of a control input u ∈ K(x, t). This result will be used in

Section 3.2.4 to express the constraints on the energy in (3.14) in terms of the control input

u.

Lemma 3.12. Given a set C(t) defined as in (3.24), if h is a time-varying CBF on D×R+,

then any Lipschitz continuous controller u ∈ K(x, t), where K(x, t) is given in (3.26), will

render the set C(t) forward invariant, namely x(t0) ∈ C(t0) =⇒ x(t) ∈ C(t), ∀t ∈

[t0, t0 + ∆tmax(x0)].

Remark 3.13. In case ∂h
∂t

= 0 and Lgh(x, t) = 0 we are not able to ensure the existence

of a control input such that (3.25) holds, condition on which Lemma 3.12 relies. This case
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can be tackled by making use of a cascade of control barrier functions and the result of

Theorem 3.9.

So far, we have described the condition in which the robots are executing the assigned

task and we want them to keep their energy level Ei within a certain interval [Emin, Echg].

This is realized, employing CBFs, by letting the robots reach regions of the state space

where the field I introduced in (3.2) is larger than Ic. In these regions, as observed in

Remark 3.1, Ėi > 0 and the robots are charging.

The use of CBFs will allow the robots to keep the energy stored in their batteries within

the desired interval by synthesizing a controller by solving an optimization problem at

each time instant. Nevertheless, although computationally efficient, this point-wise in time

approach does not allow the robots to plan their charging strategy. Therefore, in order to

make sure that the robots leave the charging stations—intended, in a broader sense, as the

regions of the state space where I(xi, t) ≥ Ic—only when their battery is fully charged,

i.e., when Ei ≈ Echg, we will make use of control Lyapunov functions (CLFs).

Similarly to what happens with CBFs encoding energy constraints, since the input ui

does not directly show up in the expression of Ėi, a CLF defined to fully recharge the

robots’ battery will have relative degree higher than 1. Therefore, in the following, we will

proceed analogously to what has been done for high relative degree CBFs to handle the

case of high relative degree CLFs.

Suppose that, besides the forward invariance of a set, one would like to stabilize the

dynamical system (3.16) around the origin x = 0 using a CLF. Similarly to what has been

done for the CBFs, the existence of a CLF V : Rn → R suggests the definition of the

following set:

KV (x) = {u ∈ U : − LfV (x)− LgV (x)u ≥ 0} . (3.27)

It is easy to see how the choice of a control input u ∈ KV (x) will stabilize the system

35



around x = 0.

Remark 3.14. In case LgV (x) = 0, i.e., the relative degree of the Lyapunov function is

greater than 1, we cannot ensure the stability of the origin.

In Example 3.8 and in Theorem 3.9, a technique for dealing with high relative degree

control barrier functions has been introduced: we will proceed here in a similar fashion. We

first give an example that shows how to construct high-relative degree CLFs by employing

CBFs. Then, we generalize this construction in Theorem 3.16.

Example 3.15 (Constructing high relative degree CLFs using CBFs). Let us consider the

nonlinear dynamical system in control affine form (3.16) and a sufficiently smooth function

V : Rn → R with relative degree 2, i.e., LgV (x) = 0 and LgLfV (x) 6= 0. In order

for V to be a CLF we must have −LfV (x) > 0. We can then define the CBF h1(x) =

−LfV (x), and its superlevel set C1 = {x ∈ Rn : − LfV (x) ≥ 0}, and let u ∈ K ′2(x) ={
u ∈ U : − L2

fV (x)− LgLfV (x)u+ α(−LfV (x)) ≥ 0
}

. where α is a locally Lipschitz

class K function. This way, the set C1 can be rendered forward invariant. Consequently,

the existence of the CLF V (x) guarantees that the origin x = 0 is (asymptotically) stable.

Theorem 3.16. Consider the dynamical system (3.16), a CLF V (x) with relative degree ρ

defined with the objective of stabilizing the system state x to x∗, and a CBF hρ(x) which

can be evaluated from V (x) using the following recursive formula:


h1(x) = −LfV (x)

hn+1(x) = ḣn(x) + αn(hn(x)), 1 ≤ n < ρ,

(3.28)

where αn are continuously differentiable extended class K functions. In addition, assume

that {x∗} is the largest invariant set in ∂C1 = {x : h1(x) = 0}, boundary of the set C1 =
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{x : h1(x) ≥ 0}. Then, any Lipschitz continuous controller

u ∈ K ′ρ(x) =

ß
u ∈ U : − LρfV (x)− LgLρ−1

f V (x)u

+

ρ−2∑
i=1

∑
C∈(ρ−2

i )

∏
j∈C

∂αj
∂hj

(−Lρ−1−i
f V (x)) + αρ(hρ(x)) ≥ 0

™
,

(3.29)

where αρ is a locally Lipschitz class K function, will asymptotically stabilize the system to

x = x∗.

3.2.3 Integral Control Barrier Functions

The model of battery SOC dynamics presented in (3.4) depends on the control input ui, and

in general it does so in a non-control-affine fashion. As such, it is easy to see that applying

the standard CBF approach would result in differential constraints which are not affine in

ui. As will be shown in the next section, affine input constraints are amenable in order

to synthesize robot controllers under real-time constraints at high frequencies commonly

used in the control loops of modern robotic platforms. To circumvent this issue, control de-

pendent control barrier functions [117] or the more general formulation of integral control

barrier functions (I-CBFs) [118], defined below, can be employed.

Definition 3.17 ([118]). For the system ẋ = f(x, u), with corresponding safe set S ⊂

Rn × Rm defined as the 0-superlevel set of a function h : Rn × Rm → R with 0 a regular

value: S = {(x, u) ∈ Rn × Rm : h(x, u) ≥ 0}. Then, h is an integral control barrier

function (I-CBF) if for any (x, u) ∈ Rn × Rm and t ≥ 0:

p(x, u) = 0 ⇒ d(x, u, t) ≤ 0. (3.30)

With this definition, the following theorem gives sufficient conditions for the forward

invariance of sets defined by an I-CBF.
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Theorem 3.18 ([118]). Consider the control system ẋ = f(x, u), with x ∈ Rn and u ∈ Rm,

and suppose that there is a dynamically defined controller: u̇ = φ(x, u, t). If the safe set

S ⊂ Rn × Rm is defined by an integral control barrier function, h : Rn × Rm → R, then

modifying the dynamically defined controller to be of the form:

u̇ = φ(x, u, t) + v∗(x, u, t) (3.31)

with v∗ the solution to the QP:

v∗(x, u, t) = argmin
v∈Rm

||v||2

subject to p(x, u)Tv ≥ d(x, u, t)

(3.32)

where

p(x, u) :=
∂h

∂u

T

(x, u) (3.33)

d(x, u, t) := −∂h
∂x

(x, u)f(x, u)− ∂h

∂u
(x, u)φ(x, u, t)− γ(h(x, u)), (3.34)

results in safety, i.e., the control system ẋ = f(x, u) with the dynamically defined controller

(3.31) results in S being forward invariant: if (x(0), u(0)) ∈ S then (x(t), u(t)) ∈ S for

all t ≥ 0.

There are cases in which a dynamically defined controller u̇ = φ(x, u, t) is available,

as, e.g., in the case of tracking and regulation control objectives [119]. In the case when a,

possibly time-varying, state feedback nominal controller

u = k(x, t). (3.35)
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is considered, one could set

u̇ = Lfk(x, u) +
∂k

∂t︸ ︷︷ ︸
=:φ(x,u,t)

+v∗, (3.36)

where v∗ is given by (3.32) in order to guarantee the safety of a set S. This choice, however,

may cause u(t) to diverge more and more from its nominal expression k(x, t), due to the

fact that v∗ from (3.32) is the minimizer of the difference between the time derivative of

the input functions:

‖v‖ = ‖u̇− φ(x, u, t)‖, (3.37)

i.e. the difference between the derivatives of u and φ rather than the input functions them-

selves. To solve this issue, in the following, we propose a dynamically defined control

law which, together with the integral control barrier functions introduced above, allows for

the efficient implementation of safety controllers, starting from static state feedback input

controllers.

Theorem 3.19. Consider the system in ẋ = f(x, u) and the time-varying nominal feedback

controller in (3.35). Consider the integral control barrier function h : Rn × Rm → R

defined to ensure the safety of the set S ⊂ Rn × Rm defined as its 0-superlevel set. Then,

the dynamically defined controller

u̇ = Lfk(x, t) +
∂k

∂t
+
α

2
(k(x, t)− u)︸ ︷︷ ︸

=:φk(x,u,t)

+v∗, (3.38)

where v∗ is given by (3.32), will ensure the safety of the set S, as well as the tracking of the

nominal feedback controller (3.35) whenever the nominal controller φk(x, u, t) is safe.

Remark 3.20. The variable u̇ only appears in the software implementation of the safety

controller for the system ẋ = f(x, u). The input fed to the system is its integral, u(t).

Therefore, the value α in the expression of the dynamically defined controller (3.38) can
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be chosen arbitrarily large (without introducing numerical errors). As can be noticed in

the proof of 3.19, the larger the value of α is, the faster the convergence of the nominal

controller u to k(x, t), when no safety-related modifications of u̇ are required (i.e., when

v∗ = 0).

Remark 3.21. Integrating the expression of the dynamically defined controller in (3.38)

with respect to time, we get:

u(t) =

∫ t

0

Å
Lfk(x(τ), u(τ)) +

∂k

∂t

ã
dτ +

α

2

∫ t

0

(k(x(τ), t(τ))− u(τ)) dτ︸ ︷︷ ︸
Integral control

, (3.39)

where we explicitly recognize once again the centrality of the integral controller.

Remark 3.22. A similar construction can be employed when dealing with non-control-

affine dynamical systems as well. In fact, in case the dynamical system to control is control

affine, the classic construction of an optimization-based controller proposed in [46] re-

sults in a convex quadratic program which minimizes the difference between u and k(x, t).

Therefore, it lends itself to an efficient online implementation. However, when the dynamics

are not control affine, the same construction can lead to non-convex optimization problems,

preventing the online synthesis of safety controllers. As will be shown in the next section,

by dynamically extending the system, a construction similar to (3.38) can be leveraged.

In the next section, it will be shown how high-relative degree CBFs and CLFs, as well as

I-CBFs, can be utilized to enforce constraints on the energy and the SOC of robot batteries

in a computationally efficient fashion.

3.2.4 Application to Robotic Tasks

In view of what has been introduced in the previous section, in this section we show that the

persistification of robotic tasks, specified in Definition 3.4, can be framed as a constrained

optimization problem.
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In order for the robots to be able to perpetually execute the given task, their energy

Ei, i = 1, . . . , N must be strictly greater than zero at each point in time. Moreover, in

order to extend the battery life of the specific types of batteries used in robotic applications,

the lower bound for the residual energy should not be too low in order to protect the battery

from deep discharge [120]. Considering the robot model (3.7), the constraints to control

the residual energy can be formally encoded by the following CBF related to robot i:

hi1(zi) = (Echg − Ei)(Ei − Emin), (3.40)

where Echg and Emin are the upper and lower bounds between which we want the energy

Ei to be confined, corresponding to charged and depleted battery, respectively.

Following the procedure adopted in Example 3.8, we start by evaluating the time deriva-

tive of hi1(zi):

ḣi1(zi, t) =
∂hi1
∂t

+ Lfhi1(zi) + Lghi1(zi)ui

=

ï
∂hi1
∂xi

∂hi1
∂Ei

ò
f(zi, t) +

ï
∂hi1
∂xi

∂hi1
∂Ei

ò
g(zi)ui

= (Echg + Emin − 2Ei)F (xi, Ei, t),

(3.41)

which does not depend on ui as the relative degree of hi1(zi) is 2. Therefore, we define the

CBF hi2(zi, t) as done in (3.20), namely:

hi2(zi, t) = ḣi1(zi, t) + γi1hi1(zi), (3.42)

in which the locally Lipschitz class K function has been chosen to be the linear function

αi1(s) = γi1s, with γi1 > 0.

Using Theorem 3.9 and Lemma 3.12, we can define the set of control inputs ui that will

render the set Ci1 = {zi ∈ Rn+1 : hi1(zi) ≥ 0} = {Ei ∈ R : Emin ≤ Ei ≤ Echg} forward
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invariant:

K2i(zi, t) =

ß
ui ∈ U :

∂hi2
∂t

+ L2
fhi1(zi)

+ LgLfhi1(zi)ui + γi1Lfhi1(zi) + γi2hi2(zi, t) ≥ 0

™
,

(3.43)

in which αi2(hi2(zi, t)) = γi2hi2(zi, t), with γi2 > 0, is the locally Lipschitz extended class

K function in (3.21).

For single integrator robot dynamics and the CBFs (3.40) and (3.42), the expressions

of ∂hi2
∂t

, L2
fhi1(zi) and LgLfhi1(zi) required to evaluate (3.45) are given by:

∂hi2
∂t

= (Echg + Emin − 2Ei)
∂F

∂w

∂w

∂I

∂I

∂t
=

= (Echg + Emin − 2Ei)kw
2 1− Ei

Ei
λe−λ(I(xi,t)−Ic)

∂I

∂t

L2
fhi1(zi) =

Å
− 2F (xi, Ei, t)+

+ (Echg + Emin − 2Ei)
∂F

∂Ei

ã
F (xi, Ei, t)

LgLfhi1(zi) = (Echg + Emin − 2Ei)
∂F

∂w

∂w

∂I

∂I

∂xi
=

= (Echg + Emin − 2Ei)kw
2 1− Ei

Ei
λe−λ(I(xi,t)−Ic)

∂I

∂xi

(3.44)

Note that, due to the control affine form of (3.9), ui ∈ K2i(zi, t) is an affine constraint

in ui and therefore it can be written as:

ACBFi(zi, t)ui ≤ bCBFi(zi, t), (3.45)

with ACBFi(zi, t) = −LgLfhi1(zi) and bCBFi(zi, t) = ∂hi2
∂t

+ L2
fhi1(zi) + γi1Lfhi1(zi) +

γi2hi2(zi, t).

Remark 3.23. Recalling the expression of Ė introduced in (3.5), the behavior resulting by

enforcing the constraint (3.45) is the following: when the battery level Ei is getting close

to its minimum value Emin, robot i will drive towards areas of the environment E where the

value of the function I(xi, t) is such that Ėi ≥ 0, i.e., robot i starts recharging its battery.
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During operation, the battery of each robot continuously discharges according to the

dynamics in (3.5). The mere application of the constraint (3.45) prevents the battery level

to go lower than Emin or higher than Echg. However, it does not ensure that the battery will

be completely charged before robot i leaves areas of the environment where Ėi > 0. This

behavior is desirable for two reasons: (i) these kinds of charging/discharging cycles will

extend the life of robot batteries [114, 120], and (ii) it is more efficient from the point of

view of the time spent by the robots recharging their batteries, allowing them to deviate

from the nominal task input for less time. A quantitative justification of the second reason

is given in Section 3.3.1.

This behavior can be encoded using a CLF whose objective is that of driving the energy

Ei to Echg. We can then define the following CLF:

Vi(zi) = (Echg − Ei)2, (3.46)

related to robot i, whose time derivative is given by

V̇i(zi, t) =
∂Vi
∂t

+ LfVi(zi) + LgVi(zi)ui

=

ï
∂Vi
∂xi

∂Vi
∂Ei

ò
f(zi, t) +

ï
∂Vi
∂xi

∂Vi
∂Ei

ò
g(zi)ui

= −2(Echg − Ei)F (xi, Ei, t).

(3.47)

As in the case of hi1(zi) in the previous section, here Vi(zi) has relative degree 2 and there-

fore its time derivative is not a function of the control input ui. Proceeding as before, we

define the CBF hi1(zi, t) = −LfVi(zi). Its superlevel set C(t) = {zi ∈ Rn+1 : hi1(zi, t) ≥

0} = {zi ∈ Rn+1 : V̇i(zi, t) ≤ 0} is the set in which the value of the function Vi(zi) is not

increasing. Its boundary ∂C(t) = {zi ∈ Rn+1 : hi1(zi, t) = 0} is the set where V̇i(zi, t) = 0

which, if Ė 6= 0, coincides with the n-dimensional manifold {zi ∈ Rn+1 : Ei = Echg}.
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Therefore, by Theorem 3.16, if

ui ∈ K ′2i(zi, t) =

ß
ui ∈ U :

∂hi2
∂t
− L2

fVi(zi)− LgLfVi(zi)ui + γi2hi2(zi, t) ≥ 0

™
,

(3.48)

with γi2 > 0, the value of Ei will asymptotically converge to Echg.

For single integrator robot dynamics and the CLF (3.46), the expressions of ∂hi2
∂t

, L2
fVi

and LgLfVi required to evaluate (3.50) are given by:

∂hi2
∂t

= −2(Echg − Ei)
∂F

∂w

∂w

∂I

∂I

∂t
=

= −2(Echg − Ei)kw2 1− Ei
Ei

λe−λ(I(xi,t)−Ic)
∂I

∂t
,

L2
fVi(zi) =

Å
2F (xi, Ei, t)− 2(Echg − Ei)

∂F

∂E

ã
F (xi, Ei, t),

LgLfVi(zi) = −2(Echg − Emin)
∂F

∂w

∂w

∂I

∂I

∂xi
=

= −2(Echg − Emin)kw
2 1− Ei

Ei
λe−λ(I(xi,t)−Ic)

∂I

∂xi
.

(3.49)

Note that ui ∈ K ′2i(zi, t) is an affine constraint in ui, and therefore it can be written as:

ACLFi(zi, t)ui ≤ bCLFi(zi, t), (3.50)

with ACLFi(zi, t) = LgLfVi(zi) and bCLFi(zi, t) = ∂hi2
∂t
− L2

fVi(zi) + γi2hi2(zi, t).

In order to combine the CBF constraints (3.45) and the CLF constraints (3.50), letting

z =
[
zT1 , . . . , z

T
N

]T , the following nonlinear program can be formulated:

u∗(z, t) = argmin
u,δ

‖u− û(x, t)‖2 + δTκδ

subject to

ACBF(z, t) 0N

ACLF(z, t) −IN

u
δ

 ≤
bCBF(z, t)

bCLF(z, t)

 , (3.51)

44



where
ACBF(zi, t) = diag (ACBF1(zi, t), . . . , ACBFN(zi, t)) ,

ACLF(zi, t) = diag (ACLF1(zi, t), . . . , ACLFN(zi, t)) ,

bCBF(zi, t) =


bCBF1(zi, t)

...

bCBFN(zi, t)

 , bCLF(zi, t) =


bCLF1(zi, t)

...

bCLFN(zi, t)

 ,
(3.52)

u = [uT1 , . . . , u
T
N ], and IN and 0N are N × N identity and zero matrices, respectively.

Moreover, δ = [δ1, . . . , δN ]T ∈ RN is a vector of relaxation parameters introduced to make

the constraints in (3.51) always feasible. The matrix κ = diag(κi) is a diagonal, positive

definite, weighting matrix for δ. Furthermore, the nominal input û(x, t) is what encodes

the task introduced in Definition 3.4.

Both (3.45) and (3.50) are affine functions of the optimization variables. Moreover, the

cost ‖u− û(x, t)‖2 + δTκδ is a convex quadratic form. Hence, (3.51) is a convex quadratic

program (QP) and, as such, can be efficiently solved—see, e.g., [121]—and employed to

generate controllers in an online fashion as shown, for instance, in [122].

Remark 3.24. As discussed in Section 3.1, the proposed persistification approach also

works when the N robots are not homogeneous, i.e., when they are characterized by differ-

ent dynamic models. In fact, in this case, once the constraints of the optimization program

(3.51) have been changed accordingly, the solution u∗(z, t) guarantees the heterogeneous

multi-robot system persistently executes the task characterized by the nominal input û.

Remark 3.25. In order to achieve the desired charging behavior, discussed in Section 3.2,

κi can be made a function of Ei in such a way that robot i charges up to Ei = Echg once

it started charging and, at the same time, discharge down to Ei = Emin while operating.

A candidate mapping κi(Ei) : [0, 1] → [0, κi,MAX] is depicted in Fig. 3.4. Note that the

function κi changes according to the sign of Ėi. This way, the weight of the corresponding

relaxation parameter δi changes when the energy Ei reaches Echg or Emin.
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κi,MAX

Ėi > 0

Ėi < 0

Ei

κ
i

Figure 3.4: Example of the function κi(Ei) that can be employed in order to let robot i
charge its battery up to Echg once it has started charging. The two branches of the curve
are labeled with Ėi > 0 and Ėi < 0: at a given value of Ei, the value of κi is higher for
a robot that is recharging its battery (Ėi > 0) compared to the one of a robot for which
Ėi < 0. This way, once a robot starts recharging its battery, the weight of its corresponding
component of the vector δ in (3.51) is larger. This ensures that the robot charges its battery
until Echg.

We now have the necessary constructions to state the proposition which ensures the task

persistification defined in Definition 3.14.

Proposition 3.26. The control law u∗(z, t), solution of the QP (3.51), makes the robots

execute the persistified task corresponding to the task encoded through the control input

û(x, t).

In case the battery SOC is to be employed to represent the amount of energy stored in

the robot batteries, the following CBF can be used to leverage the SOC dynamics (3.4) in

keeping its value above a minimum threshold SOCmin:

hx(SOCi) = SOCi − SOCmin, (3.53)

where SOCi is the value of the SOC of the battery of robot i. Proceeding similarly to [118],

the robot system is dynamically extended by the additional state equation

u̇i = φûi(xi, ui, t) + vi, (3.54)
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where

φûi(xi, ui, t) = Lf ûi(xi, t) + Lgûi(xi, t)ui +
∂ûi
∂t

+
α

2
(ûi(xi, t)− u) , (3.55)

as in (3.38). Then, one can define the I-CBF

hu(SOC, ui, t) = ḣx(SOCi, ui, t) + hx(SOCi), (3.56)

that leads to the following differential inequality—equivalent to p(x, u)Tv ≥ d(x, u, t) in

(3.32) and affine in vi—which can be inserted in (3.51) to allow the robots to keep the value

of SOC of their batteries above the minimum threshold SOCmin:

∂fSOC
∂ui

vi +
∂fSOC
∂t

+ fSOC(ui, t) ≥ 0. (3.57)

In order to fully substitute the optimization variable ui with vi in (3.51), a similar strategy

has to be adopted to incorporate the overcharge protection using a SOC-dependent CLF.

In the next section, the developed theoretical control framework will be validated by

means of simulations and experiments. Two robotic tasks are introduced and the results of

their persistent implementation are reported.

3.3 Simulations and Experimental Results

In this section, two robotic tasks, whose persistent application is particularly relevant, are

presented to showcase the persistification strategy developed in this chapter. The tasks

consist in environment exploration and environment surveillance. Both tasks are typically

required to be executed for a long period of time. In the case of environment exploration,

the long execution time can be due to the size and/or the dynamic nature of the environ-

ment to explore [123, 124]. As regards the environment surveillance, the time-scale of

the observed environment phenomena is the factor that determines the length of the task.
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Nowadays, longevity is still a limiting factor for the deployment of robotic systems for

environment surveillance and monitoring, as discussed in [125]. The persistification of

these two tasks through the control framework described in this chapter is discussed in

Section 3.3.1 and Section 3.3.2, respectively.

3.3.1 Environment Exploration

The first application that is considered is that of environment exploration. There are many

approaches to this task in literature and many solutions have been proposed. Here we

consider the one presented in [126], since the result of a trajectory optimization problem

provides directly the nominal inputs to the robots. The optimal trajectories are evaluated

by minimizing the distance from ergodicity [127]. This results in a trajectory that, instead

of maximizing information in a greedy way, distributes information according to its proba-

bility density function defined over the environment.

Following what is presented in [126], let us start by defining the ergodic metric ε =∑K
k=0 Λk |ck − ϕk|2 [127]. where ck are the time-averaged Fourier coefficients of the tra-

jectory, ϕk are the Fourier coefficients of a spatial distribution of information φ : E 7→ R+,

E being the environment to explore, and Λk = 1
/

(1+ξT ξ)
3
2 ,with ξ ∈ Z = {0, 1, . . . , K−

1} × {0, 1, . . . , K − 1}, K being the number of employed Fourier basis functions.

By minimizing this ergodic measure at time t̄ over a time horizon T , the nominal tra-

jectory x̂i(t) for t ∈ [t̄, t̄+T ] of each robot is obtained. Solving this optimization problem

at every time instant, in a model predictive control fashion, provides the nominal input ûi

that is to be executed at time t̄ in order to track the trajectory x̂i [126]. This ûi can be

plugged in the QP defined in (3.51) allowing, this way, a straightforward application of the

persistification framework presented in this chapter to the environment exploration task.

The persistent environment exploration task has been implemented and tested in a sim-

ulation environment. For the simulated experiment a planar robot is given the task of ex-

ploring an environment E on which a spatial distribution of information has been defined.
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The information is assumed to be distributed according to the Gaussian density function φ :

x ∈ E ⊂ R2 7→ e−
‖x−xo‖2

σ2 ∈ R+, where, for the experiments, the following values are used:

xo = [0, 0]T and σ2 = 0.1. The time-varying environment field I is modeled as a mixture

of time-varying Gaussians of the following form I(x, t) = e−‖x−M1(t)xc‖2 + e−‖x−M2(t)xc‖2 ,

where xc = [1, 1]T and M1(t) = diag(−1, sin (2t)), M2(t) = diag(sin (2t), 1). In the case

of robots that are able to exploit solar power to recharge their batteries, this choice of the

function I simulates the sunlight intensity that is characterized by a periodic expression

over a spatially fixed environment. The other values required to model Ėi (3.5) in (3.7) are

set to Ic = 0.85 and λ = 3.

The optimization problem aimed at minimizing the ergodic cost metric ε is solved of-

fline and the resulting trajectory is given to the robot as a reference for the tracking con-

troller. The input required to track the trajectory is wrapped by the QP (3.51) in such a

way that the robot explores the environment while satisfying at the same time the energy

constraint that prevents its battery level to go below the lower threshold Emin. The result of

this controller is a persistified environment exploration.

Figures 3.5a to 3.5e show a sequence of snapshots taken during the course of the en-

vironment exploration experiment described above. The contour plot of the function φ is

depicted as green thin solid lines, while the contour plot of the environment field I is rep-

resented by the yellow thin dashed lines. The position that the robot is tracking under the

nominal control input is depicted as a black square, whereas its actual position obtained by

executing the controller (3.51) is represented by a black circle. Furthermore, nominal and

executed trajectories are represented by a gray thick solid line and a red thick dashed line,

respectively.

Figure 3.6 compares the probability density function representing the spatial informa-

tion distribution φ (Fig. 3.6a) with the probability density functions for the time-averaged

optimized trajectory with energy constraints (Fig. 3.6b) and without energy constraints

(Fig. 3.6c). Even though the latter more closely matches the spatial distribution φ, it does
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(a) (b)

(c) (d) (e)

Figure 3.5: Sequence of images recorded during the course of the environment exploration
simulated experiment. The contour plots of the information distribution function φ and
the environment field I are depicted as green thin solid lines and yellow thin dashed lines,
respectively. The position tracked by the robot under the nominal control input is repre-
sented as a black square, while the actual position of the robot is shown as a black dot. The
nominal and actual trajectories are depicted as a gray thick solid line and a red thick dashed
line, respectively. In order to persistently explore the environment, the robot follows the
nominal input as long as its energy level is high enough. When its battery is depleting, it
moves towards regions of the environment where the value of the time-varying field I is
such that its energy starts increasing.
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Figure 3.6: Comparison between the spatial probability density function φ, in Fig. 3.6a,
and the probability density function obtained averaging over time the ergodic trajectory
resulting from the implementation of the persistified environment exploration, in Fig. 3.6b;
Figure 3.6c depicts the probability density function representing the time-averaged opti-
mized ergodic trajectory obtained without taking into account energy constraints. x(1) and
x(2) are the two components of the state vector x ∈ E ⊂ R2.
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Figure 3.7: Simulated battery level of the robot during the course of the persistified ex-
ploration experiment. Employing the persistification strategy presented in this chapter,
achieved by executing the control input solution of the QP (3.51), the robot energy (thin
line) is constrained within the bounds Emin and Echg.

not take into account that the robot has a finite availability of energy.

In Fig. 3.7, the energy level of the robot during the persistified exploration experiment

is reported. The application of the control framework presented in this chapter is demon-

strated to be successful in persistifying the robotic exploration. This is realized by keeping

the robot energy level constrained above a minimum value in an optimal way by means

of the QP (3.51). This way, the robot is completely free of tracking the ergodic trajec-

tory given as input to its motion controller, as long as its battery level is above the lower

threshold Emin and below the upper threshold Echg, depicted as thick solid lines in Fig. 3.7.

In Section 3.2.4, CLF constraints were introduced with the objective of completely

recharging the battery of the robots before leaving areas of the environment where Ė > 0,

referred to as charging stations. This leads to a more efficient task execution in the sense

that the robots overall spend less time recharging their batteries. This condition allows

them to deviate from the nominal task input of a smaller amount over the course of the

experiment. In Fig. 3.8, the value of C at time t represents the integral over the time

interval [0, t] of the difference between the nominal control input û—corresponding to the

exploration task—and the input u executed by the robot:

C(t) =

∫ t

0

‖u(τ)− û(τ)‖2 dτ. (3.58)

52



0 400 800 1200
0

3
·104

t [s]
C

Figure 3.8: Comparison between persistent task execution with and without battery
recharging constraints. The green curve depicts the value of C, defined in (3.58), in which
the robot input u(t) = u∗(t), solution of (3.51). The red curve has been obtained by letting
the robot execute the input u(t) solution of (3.51) from which the constraint (3.50) corre-
sponding to battery recharging has been removed. As a result, the value of C in the latter
case is higher than the one in the former, i.e. the robot spends more time deviating from
the nominal input û(t) in order to visit charging stations in the environment and prevent its
energy from depleting.

The green curve is generated letting the robot execute the input u(t) = u∗(t), solution of

(3.51). The red curve corresponds to the situation where the robot executes the input solu-

tion of (3.51) in which the CLF constraint (3.50) for battery recharging has been removed.

As can be seen, the battery recharging constraint allows the robot to visit charging stations

less often, so that its input deviates from the nominal one of a smaller amount over the

course of the task execution.

3.3.2 Environment Surveillance

The second application that is considered as showcase is environment surveillance. The

employment of mobile sensors improves coverage and data gathering performances com-

pared to static sensors, whose positions are determined based on offline optimization al-

gorithms. In this sense, mobility can allow a more efficient estimation of time-varying

information fields. However, this comes at the price of higher power consumption. Most

of the approaches developed so far assume that the mobile sensors are able to move for an

unlimited amount of time. The control framework presented in this chapter can be used to
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persistify such surveillance tasks.

The task of environment surveillance can be framed as a sensor coverage control prob-

lem, that is an instance of the broader optimal sensor placement problem whose applica-

tions can be found in many other disciplines, such as [128]. As in Section 3.3.1, let the

map φ : E → R+ represent a spatial distribution density function. This can be interpreted

as a measure of the information spread over the environment E or the probability that an

event can take place at a location x ∈ E . Moreover, let us define the locational optimization

function as in [32]:

H(X,W) =
N∑
i=1

∫
Wi

σ(‖x− xi‖)φ(x)dx, (3.59)

where X = {x1, . . . , xN} are the positions of the N robots present in the environment E ,

W = {W1, . . . ,WN} is a partition of E , σ : R+ → R+ is a non-decreasing differentiable

function describing the degradation in the sensing performances of the robots. Proceeding

as in [32], we aim at minimizing H(X,W) with respect to both X andW . The minimiza-

tion with respect to the environment partitionW leads toW = V = {V1, . . . , VN} [128],

V being the Voronoi partition of E defined by the Voronoi cells

Vi = {x ∈ E : ‖x− xi‖ ≤ ‖x− xj‖ ∀i 6= j} . (3.60)

As far as the minimization with respect to the robot locations X is concerned, considering

the single integrator dynamics of the robots, and setting σ(‖x− xi‖) = ‖x− xi‖2 allows

us to define the following gradient descent flow to be used as a control law for moving the

robots [129]:

ûi(xi) = kp(CVi − xi). (3.61)

In (3.61), kp > 0 is a proportional gain and CVi is the centroid of the i-th Voronoi cell

defined as CVi =
∫
Vi
xφ(x)dx

/ ∫
Vi
φ(x)dx. In case the map φ is time-varying, the ex-
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tension presented in [33] and [8] can be employed. The coverage task with û(x) =

[û1(x1)T , . . . , ûN(xN)T ]T and ûi(xi) given by (3.61), can be persistified by the implemen-

tation of the optimization-based controller solution of the QP in (3.51).

The persistified environment surveillance has been implemented and deployed on the

Robotarium, a remotely accessible swarm robotics research testbed [52, 130]. A team of

7 differential-drive robots attempts to cover a 4.5 × 3.5 m testbed area by making use of

the coverage control introduced above. The Robotarium is endowed with wireless charging

stations, allowing the modeling of the charging field I given in (3.2) by means of bump-

like functions as depicted in Fig. 3.3. The robot model is a single integrator model, where

we can directly control the robots’ velocities utilizing the proportional control law given in

(3.61). This input is wrapped by the QP (3.51) in order to satisfy the energy constraints.

The result is a persistified environment surveillance.

Figures 3.9a to 3.9d show the salient frames of the persistent environment surveillance

experiment performed on the Robotarium. The Voronoi cells are superimposed on the

frames. The yellow and blue wireless charging station are arranged along one of the edges

of the testbed. Following the nominal controller (3.61), the robots perform sensor coverage

(3.9a). The actual controller executed by the robots is the solution of (3.51), which allows

them to go back and recharge their batteries to prevent the stored energy from going below

the minimum desired value Emin as shown in 3.9b, 3.9c and 3.9d (the charging stations

occupied by robots are marked in red).

In Fig. 3.10, the thin line shows the value of the locational cost defined in (3.59) evalu-

ated during the course of the experiment. Here the information distribution density function

φ has been set to a constant value, meaning that the information is equally spread over the

testbed. The thick line in Fig. 3.10 represents the value of the cost (3.59) obtained if no

energy constraints were imposed, in which case, the robots are able to asymptotically reach

a centroidal Voronoi configuration, where each robot is in the centroid of its correspond-

ing Voronoi cell. This configuration leads to a local minimum of (3.59). The value of
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(a) (b)

(c) (d)

Figure 3.9: Sequence of salient frames extracted from the video of the persistent environ-
ment surveillance experiment. A team of 7 small differential-drive robots are deployed to
perform persistent sensor coverage of the testbed of the Robotarium [130]. On one edge of
the testbed yellow and blue wireless charging stations are arranged, where the robots can
recharge their batteries. The environment (charging) field has been modeled similarly to
the one shown in Fig. 3.3. The black lines represent the boundaries of the Voronoi cells
corresponding to each robot. The sequence of images shows the robots performing cover-
age under the nominal control input (3.9a), two robots, marked with red circles, going back
to the charging stations to recharge their batteries (3.9b to 3.9d) driven by the controller
(3.51).
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Figure 3.10: Locational cost (3.59) evaluated during the course of a coverage control ex-
periment: the thin line is the cost obtained imposing the energy constraints to the robots,
whereas the thick line is the cost obtained assuming infinite availability of energy.
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Figure 3.11: Measured battery levels of the 7 robots executing the persistified coverage
control experiment: as a result of implementing the input solution of (3.51), the energy
levels of all the robots are constrained to be between the values Emin and Echg.

H decreases in correspondence of the situations in which all the available robots are not

constrained to charge and are consequently free of following the coverage control input.

Figure 3.11 displays the actual energy stored in the batteries of the robots as measured

during the course of the experiment. The inputs to the robots are constrained by (3.45) and

(3.50) in such a way that their energies never exceed Echg or go below Emin. As a results

of the optimization-based formulation, each individual robot is able to follow as closely

as possible the input encoding the coverage task as long as its battery level satisfies the

imposed constraints.
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3.4 Conclusions

In this chapter, we introduced the concept of robotic task persistification, i.e., the process of

rendering a robotic task persistent. This allows robots to execute a task over long time hori-

zons, by ensuring that the energy stored in their batteries never gets depleted. The control

of the robot energy level is wrapped around the task controller by holistically utilizing con-

trol barrier functions, control Lyapunov functions, and integral control barrier functions,

combined in a single optimization-based controller which can be efficiently executed in an

online fashion. The result of this formulation is a control framework that allows the robots

to execute as accurately as possible the assigned task, while simultaneously never depleting

the energy in their batteries. This constraint is enforced by expressing the task persistence

condition in terms of the forward invariance of a subset of the state space of the robots.

The forward invariance property is then ensured by employing control barrier functions,

whereas battery recharging is achieved by defining a suitable control Lyapunov function.

The results in Theorem 3.9, Lemma 3.12 and Theorem 3.16 allow us to apply the pre-

sented framework to many different kinds of robots endowed with rechargeable sources of

energy. In order to be able to efficiently enforce energy constraints, we insist on the robot

dynamic model being in control affine form, case that is often encountered in robotic ap-

plications. Since the persistified task is obtained as the output of an optimization problem,

the robots are free to execute the given task as closely as possible as long as their source of

energy is not discharging below a given lower threshold. The persistification strategy has

been applied to environment exploration and monitoring tasks, and it has been tested both

in simulation and on an team of ground mobile robots.
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CHAPTER 4

CONSTRAINT-DRIVEN CONTROL OF ROBOTIC SYSTEMS

The task persistification strategy developed in Chapter 3 allows the execution of tasks de-

scribed by means of nominal robot control inputs û—which can be both state and time

dependent—for sustained periods of time. This objective is achieved by altering the value

of the nominal control input û(x, t) as little as possible provided that the desired energy

constraints are satisfied. In long-duration autonomy application, it is often desirable to

spend as little control effort as possible even to execute a task, as, in such settings, longevity

and survivability take precedence over performances [4]. Nevertheless, this prioritization,

is not always taken into account when designing the nominal controller of the robots û (see,

e.g., examples considered in Chapter 3).

For this reason, in this chapter, we present a reformulation—framed as a constrained

optimization problem—of robotic tasks which are encoded by means of a cost function that

is to be minimized. The advantages of this approach are multiple. First of all, as discussed

above, the constraint-based formulation provides a natural way of enabling long-term robot

autonomy applications, where resilience and adaptability to changing environmental con-

ditions are essential. Moreover, under mild assumptions on the cost function encoding

the task, the constraint-driven control approach can be applied to multi-robot systems in

order to design a decentralized control strategy. Furthermore, finite-time task execution

can be achieved, and, in the multi-robot case, this can be done by always leveraging local

information only.

An optimization-based control framework which possesses the properties described

above is presented in the following. Then, sufficient conditions for turning certain classes

of (multi-robot) tasks into constraints within an optimization problem are given. And, fi-

nally, we propose an effective task prioritization technique obtained by combining hard and
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soft constraints, as, e.g., survivability and task execution, respectively. Building up on this

task prioritization technique, in the next chapter, a multi-robot multi-task allocation algo-

rithm is presented, which is amenable for long-duration autonomy applications. The results

of the implementation of the developed constraint-based control framework on a team of

ground mobile robots executing a long-term environmental monitoring task conclude the

chapter.

4.1 Constraint-Based Control Design

In this chapter, we make use of control Lyapunov functions and control barrier functions

introduced in the previous chapter, which will then be used to formulate optimization prob-

lems whose solution corresponds to the execution of decentralized coordinated controllers

for multi-robot systems.

4.1.1 Finite-Time Stability and Control Barrier Functions

In order to design controllers that allow the execution of multi-robot tasks, we make use

of control Lyapunov functions and, in particular, we resort to methods from finite-time

stability theory of dynamical systems.

Consider the dynamical system in control affine form

ẋ = f(x) + g(x)u, (4.1)

with x ∈ Rn, u ∈ U ⊆ Rm, and f and g locally Lipschitz continuous vector fields. One of

the results we will use is given by the following theorem.

Theorem 4.1 (Based on Theorem 4.3 in [131]). Given a dynamical system (4.1) and a

continuous, positive definite function V : Rn → R, a continuous controller u such that

inf
u∈U
{LfV (x) + LgV (x)u+ c(V (x))γ} ≤ 0 ∀x ∈ Rn, (4.2)
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where LfV (x) and LgV (x) denote the Lie derivatives of V in the directions of f and g,

respectively, c > 0 and γ ∈ (0, 1), renders the origin x = 0 finite-time stable.

Moreover, an upper bound for the settling time T is given by

T ≤ 1

c(1− γ)
(V (x0))1−γ , (4.3)

where x0 is the value of x(t) at time t = 0.

To enforce constraints, such as survivability or task execution for multi-robot systems,

we employ control barrier functions. These are suitable for synthesizing constraints that

can be encoded in terms of set-membership, in order to ensure forward invariance (as seen

in Chapter 3) and asymptotic stability, as summarized by the following theorem.

Theorem 4.2 (Safe set forward invariance and asymptotic stability [116]). Given a dy-

namical system (4.1) and a set S ⊂ Rn defined by a continuously differentiable function

h : Rn → R, such that the S can be defined as the zero-superlevel set of h, i.e.,

S = {x ∈ Rn : h(x) ≥ 0}, (4.4)

any Lipschitz continuous controller u such that

sup
u∈U
{Lfh(x) + Lgh(x)u+ α(h(x))} ≥ 0 ∀x ∈ Rn, (4.5)

renders the set S forward invariant and asymptotically stable, i.e.

x(t)|t=0 ∈ S ⇒ x(t) ∈ S ∀t ≥ 0 (4.6)

x(t)|t=0 /∈ S ⇒ x(t)→∈ S as t→∞. (4.7)
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4.1.2 Minimum-Energy Gradient Flow

In this section, we consider the problem of minimizing a cost function J . We present a

method to reformulate the classic gradient flow algorithm using the tools introduced in

Section 4.1.1. This allows us to synthesize a constrained optimization program that is

equivalent to the minimization of the cost J .

Consider the single integrator dynamical system ẋ = u, where x, u ∈ Rn are the state

and the control input, respectively. Assume that the objective consists in minimizing a cost

J(x), where J : Rn → R+ is a continuously differentiable function. Applying gradient

flow algorithms, a solution to the problem

minimize
u(t)

J(x)

subject to ẋ(t) = u(t)

x(t0) = x0,

(4.8)

can be found by setting

u = −∂J
∂x

T

(x). (4.9)

In fact, with this choice of input, applying chain rule leads to:

J̇(x) =
dJ

dt
=
∂J

∂x
ẋ =

∂J

∂x
u = −

∥∥∥∥∂J∂x
∥∥∥∥2

≤ 0. (4.10)

We now show that the minimization problem (4.8) can be formulated as a minimum-energy

problem that achieves the same objective of minimizing the cost J .

To this end, let us define the barrier function

h(x) = −J(x) (4.11)
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and its zero-superlevel set, i.e. the safe set,

S = {x : h(x) ≥ 0} = {x : J(x) ≤ 0} = {x : J(x) = 0} . (4.12)

By Theorem 4.2, the differential constraint

ḣ(x) =
∂h

∂x
u ≥ −α(h(x)), (4.13)

where α is an extended class K function, ensures that the set S is forward invariant when

h(x(0)) ≥ 0 and asymptotically stable when h(x(0)) ≤ 0, x(0) being the value of the state

x at time t = 0.

Observation 4.3. Theorem 4.2 shows the existence of the control Lyapunov function

V (x) =


−h(x) if x /∈ S

0 if x ∈ S

=


J(x) if x /∈ S

0 if x ∈ S

≡ J(x).

(4.14)

Indeed, from (4.10), since J(x) ≥ 0, ∀x ∈ Rn, one can see that J(x) is a control Lyapunov

function. In fact, if x belongs to X ⊂ Rn compact, LaSalle’s Invariance Principle ensures

that the state will converge to a stationary point of J(x), namely, x→ x∗, with ∂J
∂x

(x∗) = 0.

We can now introduce the following optimization problem:

minimize
u,δ

‖u‖2 + δ2

subject to
∂h

∂x
u ≥ −α(h(x))− δ,

(4.15)

δ ∈ R, which solves the problem in (4.8), as shown in the following proposition.
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Proposition 4.4. The solution of the optimization problem (4.15), where h(x) is given

by (4.11) and α is an extended class K function, solves (4.8), driving the state x of the

dynamical system ẋ = u to a stationary point of the cost J .

Corollary 4.5. Under the same hypotheses as in Proposition 4.4 and J such that ∂J
∂x

=

0⇔ x = 0, the solution of the optimization program

minimize
u

‖u‖2

subject to
∂h

∂x
u ≥ −α(h(x)),

(4.16)

solves the problem in (4.8).

In summary, we saw that the expression for u given in (A.11) solves the initial opti-

mization problem (4.8), which can be equivalently solved following the gradient flow of

the cost J using (4.9).

We now illustrate that, besides the above-mentioned advantages related to long-term

autonomy applications, the formulation in (4.15) can be used to design decentralized cost

minimization algorithms that are faster than gradient descent. In the optimization literature,

there are plenty of methods that can be employed to improve the convergence speed of gra-

dient flow algorithms (see, e.g., [121]). Nevertheless, these second order methods, such as

Newton’s method or conjugate gradient, suffer from their centralized nature. Only in some

cases, this issue can be partially mitigated by resorting to distributed optimization tech-

niques, such as [132, 133]. The above-mentioned methods are all suitable for minimizing

a cost function. However, we insist on having a constrained optimization formulation—

where we encode cost minimization as a constraint—because of the flexibility and robust-

ness properties discussed above, useful for long-term robot autonomy applications.

The following proposition shows that, using the formulation in (4.15), it is possible to

minimize the cost J and to be not just faster than gradient descent, but actually to reach a

stationary point in finite time.
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Proposition 4.6. Given the dynamical system ẋ = u and the objective of minimizing the

cost function J , the solution of the optimization problem

minimize
u,δ

‖u‖2 + δ2

subject to
∂h

∂x
u ≥ −c(h(x))γ − δ,

(4.17)

where h(x) is given by (4.11), c > 0 and γ ∈ (0, 1), will drive the state x to a stationary

point of the cost J in finite time.

Using the results derived in this section, the next section presents a procedure to syn-

thesize decentralized optimization problems whose solutions result in coordinated control

of multi-robot systems.

4.2 Constraint-Based Control of Multi-Robot Systems

Local, scalable, safe and emergent are four essential features that decentralized multi-robot

coordinated control algorithms should possess [134]. Many algorithms that satisfy these

properties have been developed for applications ranging from social behavior mimicking

[135], formation assembling [136] and area patrolling [32]. In [134], the authors analyze

the common features among these algorithms and discuss their decentralized implemen-

tations in robotic applications. In this section, we apply the results derived in Section 4.1

with the aim of obtaining constrained optimization problems equivalent to the decentralized

execution of multi-robot tasks.

Consider a collection ofN robots, whose position is denoted by xi ∈ Rd, i ∈ {1, . . . , N},

where d = 2 for planar robots and d = 3 in the case of aerial robots. Assume each robot

is equipped with an omni-directional range sensor that allows it to measure the relative

position of neighboring robots, namely robot i is able to measure xj − xi, when robot j

is within its sensing range. These interactions among the robots are described by a graph

G = (V , E), where V = {1, . . . , N} is the set of vertices of the graph, representing the
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robots, and E ⊆ V × V is the set of edges between the robots, encoding adjacency rela-

tionships. If (i, j) ∈ E , then robot i can measure robot j’s position. For the purposes of

this chapter, we assume that the graph is undirected, namely (i, j) ∈ E ⇔ (j, i) ∈ E . In

order to obtain decentralized algorithms, we want each robot to act only based on local

information, by which we mean the relative positions of its neighbors. By construction,

this leads to inherently scalable coordinated control algorithms.

Denoting the ensemble state of the robotic swarm by x = [xT1 , . . . , x
T
N ]T ∈ RNd, a

general expression for the cost that leads to decentralized control laws is given by

J(x) =
N∑
i=1

∑
j∈Ni

Jij(‖xi − xj‖), (4.18)

where Ni is the neighborhood set of robot i, and Jij : R→ R, Jij(‖xi − xj‖) = Jji(‖xj −

xi‖) is a symmetric, pairwise cost between robots i and j. We assume that Jij(x) ≥

0, ∀(i, j) ∈ E , ∀x ∈ Rn, so that J(x) ≥ 0, ∀x ∈ Rn. Assuming we can directly control

the velocity of robot i, ẋi, we can employ a gradient descent flow policy like (4.9) to

minimize J , obtaining

ui = −
∑
j∈Ni

∂Jij
∂‖xi − xj‖

xi − xj
‖xi − xj‖

=
∑
j∈Ni

wij(xj − xi). (4.19)

This is nothing but a weighted consensus protocol, and it is decentralized insofar as the

input ui only depends on robot i’s neighbors. The construction shown in Section 4.1 can be

then applied to minimize the cost given in (4.18) by formulating the following minimum-

energy problem:

minimize
u,δ

‖u‖2 + δ2

subject to − ∂J

∂x
u ≥ −α(−J(x))− δ,

(4.20)

where u = [uT1 , . . . , u
T
N ]T ∈ RNd is the vector of robots’ inputs, and a single integrator

dynamics, ẋi = ui, is assumed for each robot. Solving (4.20) leads to the accomplishment
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of the task, by which we mean that a stationary point of the cost J has been reached. As

explicitly shown by (A.11) in Proposition 4.4, a minimum-energy formulation, initially

introduced in [44], allows the robots to move towards lower values of the cost J until the

task is accomplished (u ≡ 0).

The following proposition gives the expression of the optimization problems whose

solutions lead to a decentralized minimization of the cost J in (4.18).

Proposition 4.7 (Constraint-driven decentralized task execution). Given the pairwise cost

function J defined in (4.18), a collection of N robots, characterized by single integrator

dynamics, minimizes J in a decentralized fashion, if each robot executes the control input,

solution of the following optimization problem:

minimize
ui,δi

‖ui‖2 + δ2
i

subject to − ∂Ji
∂xi

ui ≥ −α(−Ji(x))− δi,
(4.21)

where Ji(x) =
∑

j∈Ni Jij(‖xi − xj‖) and α is an extended class K function, α : x ∈ R 7→

α(x) ∈ R, superadditive for x < 0, i.e. α(x1 + x2) ≥ α(x1) + α(x2), ∀x1, x2 < 0. If

α(x) = cxγ , c > 0, γ ∈ (0, 1), a stationary point of the cost J is reached in finite time,

with the upper bounds on the settling time given in Theorem 4.1.

The structure of the cost function J(x), even though quite specific, allows us to encode

a rich set of multi-robot tasks, by carefully choosing the weights wij as a function of the

state x. The following section shows two variations on the cost function which allow a

multi-robot system to perform formation control, i.e., assembling particular shapes, and

coverage control, consisting in spreading out the robotic swarm in the environment in an

optimal way.
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4.3 Applications

In this section we recall the expression of the cost J for two specific multi-robot tasks:

formation control and coverage control.

4.3.1 Formation Control

In formation control applications, the robots are asked to assemble a predefined shape,

specified in terms of inter-agent distances. In order to frame this problem as a cost mini-

mization problem, let J be the formation error

J(x) =
n∑
i=1

∑
j∈Ni

1

2
(‖xi − xj‖ − dij)2 =

n∑
i=1

Ji(‖xi − xj‖), (4.22)

where dij is the desired distance between robots i and j. J measures how far the robots are

from assembling the desired formation characterized by the relative distances dij . J = 0

corresponds to the robots forming the desired shape. Note that, as Ji(x) is a sum of squares,

Ji(x) ≤ J(x), ∀i, required as a hypothesis in order for Proposition 4.7 to hold.

The gradient the Ji(x) evaluates to

∂Ji
∂xi

=
∑
j∈Ni

‖xi − xj‖ − dij
‖xi − xj‖

(xi − xj)T . (4.23)

This can be interpreted as follows: if the distance between robots i and j is smaller than

dij , then the weight wij =
‖xi−xj‖−dij
‖xi−xj‖ is negative, and the robots experience a repelling

effect. Conversely, if the two robots are further than dij apart, the positive weight wij will

attract one towards the other. The special case in which dij = 0, ∀i, j corresponds to the

well-known consensus problem.

The expression of the gradient in (4.23) is decentralized as robot i has to compute

relative distances only with respect to its neighboring robots.
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4.3.2 Coverage Control

In coverage control, the task given to the robots is that of covering a domain D. Given

a coverage performance measure, the robots should spread over the domain in an optimal

way. As shown in [137], each robot should be in charge only of a subset of the domain

D that, more specifically, is its Voronoi cell, defined as Vi = {p ∈ D : ‖p − xi‖ ≤

‖p− xj‖ ∀i 6= j}.

Let us introduce the measure of how bad a domain is being covered:

J(x) =
N∑
i=1

1

2
‖xi −Gi(x)‖2 =

n∑
i=1

Ji(x), (4.24)

where Gi denotes the centroid of the Voronoi cell Vi. This form is just a reformulation of

the locational cost originally introduced in [32]. Taking the derivative of Ji with respect to

xi, required in the optimization problem (4.21), one obtains:

∂Ji
∂xi

= (xi −Gi(x))T
Å
I − ∂Gi(x)

∂xi

ã
, (4.25)

where I is the identity matrix. Note that, even if Gi(x) virtually depends on the entire

ensemble state, x, of the robotic swarm robot i, in order to compute it, only requires infor-

mation from the robots with which it shares part of the boundary of its Voronoi cells.

The formulation presented in this chapter also allows an exact decentralized implemen-

tation of the coverage control with time-varying density functions. In [33], the authors

show that the control law

u =

Å
I − ∂G

∂x

ã−1 Å
(G(x, t)− x) +

∂G

∂t

ã
(4.26)
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minimizes the locational cost

H(x, t) =
N∑
i=1

∫
Vi

‖q − xi‖2φ(q, t)dq. (4.27)

φ : (q, t) ∈ D×R+ 7→ φ(q, t) ∈ R+ is a time-varying density function, which specifies the

importance of point q at time t. The cost in (4.27) is equivalent to the one defined in (4.24)

when the centroids Gi(x) are calculated weighting the points in the domain according to

the value of the density function associated to them, as shown in [32].

However, inverting the matrix I−∂G
∂x

in (4.26) cannot be done in a decentralized fashion.

For this reason, in [33], the inverse is approximated by a truncated Neumann series asÅ
I − ∂G

∂x

ã−1

≈ I +
∂G

∂x
, (4.28)

which, on the contrary, can be evaluated only based on information about neighboring

robots.

With the formulation presented in this chapter, instead, by implementing the optimiza-

tion problem (4.21) in Proposition 4.7, each robot has to solve

minimize
ui,δi

‖ui‖2 + δ2
i

subject to − (xi −Gi(x, t))
T

Å
I − ∂Gi(x, t)

∂xi

ã
ui

≥ −α(−Ji(x, t))− (xi −Gi(x, t))
T ∂Gi(x, t)

∂t
− δi,

(4.29)

which is both exact and decentralized.

We deployed the optimization-based control algorithms with the expressions of the

costs J derived in Sections 4.3.1 and 4.3.2 on a real multi-robot system and, in the next

section, we show the experimental results. Moreover, the constraint-driven formulation of

Section 4.2 is used to achieve long-term environmental monitoring, where the robots are

tasked with covering a domain over a time-horizon which is much longer than their battery
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life, and during which the robots will also have to avoid collisions with obstacles moving

around in the domain.

4.4 Experimental Results

The coordinated control approach presented in this chapter has been tested on the Robotar-

ium [130], a remotely accessible swarm robotics testbed. The Robotarium is populated by

small-scale differential-drive robots which can be programmed by uploading code scripts

via a web interface.

Throughout the chapter, we assumed we can directly control the velocity of the robots,

by modeling them using single integrator dynamics. However, a differential-drive robot

can be more accurately modeled using unicycle dynamics:


ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω,

(4.30)

where [x, y]T and θ are the robot’s position and orientation in the plane, respectively, and

v and ω are the linear and angular velocity inputs, respectively. Nevertheless, in [138], it

is shown that it is possible to derive a near-identity diffeomorphism that can be used to

partially feedback linearize the system (4.30). This way, the unicycle can be abstracted as

a single integrator. This is realized through the invertible map

v
ω

 = RT (θ)

1 0

0 1
d

ẋd
ẏd

 , (4.31)

where R(θ) is the matrix that rotates vectors in R2 counterclockwise by an angle θ, and

[ẋd, ẏd]
T is the velocity in the plane of a point located in front of the unicycle at a distance d

from its center. This method is used to control the robots on the Robotarium, by calculating
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(a) (b)

(c) (d)

Figure 4.1: A team of six small-scale differential-drive robots on the Robotarium executes
formation control using (4.22) and (4.23) in the optimization program (4.21). The edges
encoding maintained distances between robots are projected onto the testbed.

linear and angular velocities of robot i, vi and ωi, from the control input ui = [ẋd,i, ẏd,i]
T ,

obtained by solving the optimization problems derived in Section 4.2.

Regarding the implementation of the optimization program (4.21) needed for the exe-

cution of the tasks presented in the previous section, the function α has been chosen to be

α(x) = 3
√
x, which is an extended class K function, convex for x < 0. This implies it is

also superadditive for x < 0, as required by the hypotheses in Proposition 4.7.
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(a) (b)

(c) (d)

Figure 4.2: A team of six small-scale differential-drive robots performs coverage control of
a rectangular area on the Robotarium using (4.24) and (4.25) in (4.21). The Voronoi cells
of the robots are projected onto the testbed, together with their centroids, depicted as gray
circles.
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4.4.1 Formation and Coverage Control

The optimization problem (4.21) has been implemented with the specific expressions of Ji

and ∂Ji
∂xi

given in (4.22) and (4.23) in order to achieve formation control, as explained in

Section 4.3.1. A sequence of snapshots recorded during the experiments in the Robotarium

is shown in Fig. 4.1: six robots are asked to assemble a hexagon specified through the inter-

agent distances dij in (4.22). The edges corresponding to distances that are maintained are

projected down onto the testbed and depicted as black lines in Figures 4.1a to 4.1d.

Similarly, coverage control has been implemented using the constraint-based optimiza-

tion (4.21) and the expressions of Ji and ∂Ji
∂xi

in (4.24) and (4.25). The results are shown in

Fig. 4.2. Six robots are asked to spread over a rectangular domain. The Voronoi partition

of the domain is projected on the testbed. As a result of the optimization program, the

robots are moving towards the centroids of their respective Voronoi cells, represented as

gray circles in Figures 4.2a to 4.2d.

4.4.2 Combining and Prioritizing Tasks

In this section, we present the application of the proposed constraint-driven coordinated

control to long-term environmental monitoring.

The setup of the experiment is as follows. Six robots are asked to monitor an area

by performing coverage control. While executing this task, the robots must not run out

of energy and must not collide with two dynamic obstacles, embodied by two additional

robots moving in the environment. In order to do so, we define constraints that allow the

robots to always keep enough residual energy in their batteries and to be always a minimum

distance apart from the obstacles.

To accomplish the first goal, we use a method similar to the one developed in Chapter 3

and in [106]. Assuming that the domain is endowed with charging stations, i.e. locations
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where the robots can recharge their batteries, let us define the following barrier function:

he,i(xi, Ei) = Ei − Emin − k(‖xc,i − xi‖ − dchg)2, (4.32)

where xi is the position of robot i, Ei is the energy in its battery, Emin is the minimum

residual energy we want the robots to keep, xc,i is the location of the charging station

dedicated to robot i, dchg is the minimum distance from the charging station at which the

robots can recharge their batteries (typical behavior of wireless charging technologies), and

k is a constant such that k(‖xc,i − xi‖ − dchg)2 upper-bounds the energy required to reach

a charging station.

As far as obstacle avoidance is concerned, we define, for each obstacle, the following

barrier function, which ensures collision-free operations in multi-robot systems [139]:

ho,i(xi) = ‖xi − xo‖2 − d2
o, (4.33)

where xo is the position of the obstacle and do is the minimum distance we want the robots

to maintain from the obstacle.

Combining the energy constraint ḣe,i ≥ he,i(xi, Ei) and the obstacle constraint ḣo,i ≥

ho,i(xi) together with the coverage task constraints, the following optimization problem

can be formulated:
minimize

ui,δi
‖ui‖2 + δ2

i

subject to − ∂Ji
∂xi

ui ≥ −α(−Ji(x))− δi

ḣe,i ≥ he,i(xi, Ei)

ḣo,i ≥ ho,i(xi).

(4.34)

The variable δi in the coverage constraint acts as a relaxation parameter, which allows

the constraints related to energy and collisions to be fulfilled. This translates to trading

task execution for survivability. Consequently, this formulation allows tasks prioritization
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obtained by combining hard and soft constraints.

The results of the long-term environmental monitoring experiment are shown in Fig. 4.3.

The Voronoi partition generated by the robots is projected down onto the testbed, as in

Fig. 4.2. Arranged vertically along the left edge of the domain, there are six charging sta-

tions depicted as blue circles that turn yellow when the robots are charging. The two robots

circle in red are moving in the environment acting solely as obstacles. The sequence of

snapshots shows the robots starting to perform coverage (Fig. 4.3a), two robots avoiding a

obstacles (top right and bottom left in Fig. 4.3b), and two robots recharging their batteries

(Fig. 4.3c). In Fig. 4.3d the robots have reached a configuration corresponding to a local

minimum of the locational cost (4.24). A video of the experiments can be found online

[140].

Due to the limited amount of time that each experiment submitted to the Robotarium is

allowed to last, we simulate the battery dynamics in such a way that the robots experience

multiple charging cycles during the course of a single experiment. Fig. 4.4 shows the

energy levels of the robots employed to perform coverage. The minimum desired energy

level, Emin, and the value corresponding to fully charged battery, Echg, are depicted as

black thick lines. Enforcing the energy constraints using (4.32) allows the robots to keep

their energy level always above Emin.

We have shown how the constraint-driven control formulation can be used to build a

minimum-energy optimization problem, whose constraints encode both the task that the

robots are asked to perform and the survivability specifications, thus enabling the robust

deployment of robots for long-term applications.

4.5 Conclusions

In this chapter, we presented a reformulation of optimization-based robotic tasks in terms

of constrained optimization. Identifying a task with a cost function that needs to be min-

imized, we leverage control barrier functions to synthesize optimization-based controllers
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(a) (b)

(c) (d)

Figure 4.3: A team of six robots is tasked with monitoring a rectangular domain on the
Robotarium, by performing coverage control as in Fig. 4.2. This time, however, the robots
are asked to perform this task over a time horizon which is much longer than their (sim-
ulated) battery life. Additionally, two more robots (circled in red) act as obstacles which
have to be avoided by the remaining six robots. These execute (4.34) to avoid the obstacles,
go and recharge their batteries at the dedicated charging stations (blue circles on the left of
the figures that turn yellow when the robots are charging), while always covering the given
domain. A video of the experiments is available online [140].
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Figure 4.4: Simulated energy levels of the robots tasked with performing persistent cover-
age (Fig. 4.3). The residual energy is kept above a minimum desired value using (4.32).
With the simulated energy dynamics, each robot experiences two charging cycles during
the course of the experiment.

that achieve the desired goal—in a decentralized fashion, in the case of multi-robot tasks.

The advantages of this approach include its flexibility of encoding a rich variety of tasks and

the ease of combining them with different types of constraints. We showed how this flex-

ibility can be used to enforce robot survivability and achieve long-term robot autonomy,

where robustness and resilience are indispensable properties that robots have to possess.

The effectiveness of the constraint-based approach is demonstrated through a series of ex-

periments using a team of ground mobile robots, culminating in a long-term environmental

monitoring application.

Starting from the prioritization technique presented in this chapter based on the constraint-

driven robot control, in the next chapter, a multi-robot multi-task allocation algorithm is

presented. In these settings, tasks are allocated by allowing different robots to prioritize

different tasks in a different way.
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CHAPTER 5

ENERGY-AWARE TASK ALLOCATION

In the previous chapter, a way of prioritizing tasks is presented, which is based on the dis-

tinction between safety-critical and non-safety-critical tasks. In the context of the constraint-

driven control framework developed in Chapter 4—where each task is encoded as a con-

straint within an optimization problem—safety critical are represented by constraints that

cannot be relaxed, whereas constraints corresponding to non-safety-critical tasks are re-

laxed by a slack variable.

In this chapter, we leverage the constraint-driven robot control framework to design a

way of prioritize a stack of tasks by enforcing constraints on the slack variables of the tasks.

This way, not only is it possible to differentiate between safety-critical and non-safety-

critical, but virtually a continuum of priorities can be established. Moreover, once multiple

tasks are to be executed by multiple robots, we propose an energy-aware framework for

allocating tasks to robots in an online fashion With a primary focus on long-duration auton-

omy applications, we opt for a survivability-focused approach. In this context, an allocation

is interpreted as a prioritization of a task over all others by each of the robots. Furthermore,

we present a novel model for robot specializations at performing tasks based on features

and capabilities of the robots. We leverage these descriptions in the optimization problem

to make robot operations resilient to situations where environmental conditions make cer-

tain features unsuitable to support a capability and when component failures on the robots

occur.

Multi-robot task allocation (MRTA) is an active research area in an era where the de-

ployment of multi-robot systems in dynamic and unknown environments is becoming more

and more common ([58, 59] and references therein). Many envisioned applications require

robots with limited energy resources to operate effectively for long periods of time, neces-
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sitating the development of survivability-focused energy-aware algorithms for task execu-

tion as well as allocation [4, 10]. Similarly, robot heterogeneity has received explicit focus

within the MRTA literature, as teams equipped with different types of sensors, actuators,

and communication devices can enable the execution of a wider range of tasks [61, 73, 71].

Heterogeneity contributes to another desirable property of a MRTA algorithms in the

context of long-duration autonomy, namely resilience, typically interpreted as the ability of

the allocation algorithm to react to component failures on the robots, varying environmental

conditions, and other non-idealities in the operating conditions [79]. It should be noted that,

in light of such a scenario, the multi-robot task allocation problem can be considered as

being inextricably linked to the execution of the tasks by the robots. This is especially

true when considering the deployment of survivability-focused multi-robot systems over

long time horizons, where evolving or newly detected environmental features will certainly

affect the effectiveness of the task execution.

This chapter presents a dynamic task allocation and execution framework for multi-

robot systems which explicitly accounts for the aforementioned survivability and hetero-

geneity considerations while being demonstrably resilient to robot failures and changes in

environmental conditions [12]. To encode heterogeneity, we propose a novel framework for

representing the compatibility of robots with tasks in terms of the capabilities required to

perform the tasks (e.g., flight or high speed) as well as the features available on the robots

(e.g., a specific type of sensors, actuators, or communication equipment) which support

these capabilities. We embed this representation within a constraint-based optimization

framework whose solution at each point in time yields (i) a dynamic allocation of tasks to

robots through a prioritization scheme, and (ii) control inputs to each robot which ensure

the execution of the tasks in accordance with the optimized priorities [10].

Existing task allocation techniques typically define both robots and tasks in terms of the

capabilities available on the robots and required to perform the tasks [71, 141]. In contrast,

our approach distinguishes between the features available on the robots and the capabilities
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that these features enable. We demonstrate that this explicit representation contributes to

the resilience of the proposed dynamic task allocation method, leveraging the fact that

multiple bundles of robot features can satisfy the same capability. Consequently, dynamic

readjustments of Robot-to-Feature and Feature-to-Capability mappings can enhance the

resilience of the system by capturing scenarios in which (i) environmental conditions make

a certain feature more suitable to support a capability, and (ii) component failures on robots

occur, affecting the available features. The pertinent question then becomes: how can we

design a survivability-focused dynamic allocation paradigm based on these descriptions

of heterogeneity (at the feature level as well as the capability level) with demonstrably

resilient operations?

Following preliminary work in [7], [10], and [11], we opt for a constraint-based ap-

proach in this chapter, which encodes the execution and prioritization of tasks as constraints

within an optimization problem. Such a formulation has demonstrated higher flexibility

and robustness in scenarios where the operating conditions of the robots are only partially

known or may change—events which are especially likely when considering long-duration

autonomy applications [142]. Similarly to (1.1), as energy considerations are paramount in

our framework, the execution of nt different tasks by a robot can be posed as the following

energy-minimization problem:

minimize
u

‖u‖2

subject to ctaskj(x, u) ≥ 0, ∀j ∈ {1, . . . , nt},
(5.1)

where x is the current state of the robot, u is the control effort expended by it, and the

inequality ctaskj(x, u) ≥ 0 denotes a constraint function which enforces the execution of

task j. The feasibility of such an optimization problem is ensured by the introduction of a
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slack variable δ ∈ Rnt:

minimize
u,δ

‖u‖2 + ‖δ‖2

subject to ctaskj(x, u) ≥ −δj, ∀j ∈ {1, . . . , nt},
(5.2)

where δ = [δ1, δ2, . . . , δnt ]
T is a vector with positive components representing the extent

to which the robot can violate the constraints corresponding to each of the tasks. Notice

that, compared to what has been presented in Chapter 4, in this formulation each task j is

relaxed by its slack variable δj .

The applicability of this framework for dynamic task allocation via prioritization is

enabled by the observation that relative constraints among the components of δ can allow

a robot to perform one task more effectively than others. For instance, if δm � δn, ∀n 6=

m, then the robot will execute task m with priority higher than all the other tasks: this

represents an allocation via prioritization. Such a prioritization can be then encoded via an

additional constraint Kδ ≤ 0 in (5.2), where the matrix K encodes the relative inequalities

among the slack variables.

Within the above described formulation, the allocation problem then consists of design-

ing the matrix K for each robot such that the heterogeneity of the robots—intended as their

different ability of performing different tasks—are appropriately accounted for. To this

end, we propose a modification of the minimum energy optimization problem presented

in (5.2) where priority matrices K are automatically generated. Moreover, by means of

an additional constraint, the optimization problem ensures that the minimum amount of

capabilities required for the successful execution of each task is met by the allocation.

This formulation yields a mixed-integer quadratic program (MIQP) which not only

generates the task allocation of the team (encoded via the prioritization matrices K) but

also the control inputs u which the robots can use to execute the tasks. Since MIQPs can

be computationally intensive to solve, we further present a mixed centralized/decentralized

computational architecture which allows a central coordinator to transmit the task priorities
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to each robot. The robots can then solve the simpler convex quadratic program described in

(5.2) (with the additional constraint Kδ ≤ 0) to generate their control inputs in real time.

We demonstrate that non-idealities such as environmental disturbances and/or compo-

nent failures on the robots can be effectively accounted for in our framework, enabling,

this way, resilient task allocation behaviors. It is informative to know how, also in nature,

such behaviors emerge from the concepts of survivability and heterogeneity. In fact, these

concepts play a central role in ecological studies as well, as highlighted by Bridle and van

Rensburg in [143]:

For some groups of organisms, we can now integrate genomic data with en-

vironmental and demographic data to test the extent to which ecological re-

silience depends on evolutionary adaptation. Such data will allow researchers

to estimate when and where biodiversity within a species has the power to res-

cue ecological communities from collapse due to climate change and habitat

loss.

Drawing an analogy with the task allocation framework we present in this chapter, the

features of the robots (genomic data) and the resulting heterogeneity (biodiversity) are

leveraged to introduce a degree of resilience (ecological resilience) into the framework,

which results in a natural adaptation of the multi-robot system to failures (collapse) due to

the dynamic environments in which it operates (climate change and habitat loss).

The remainder of the chapter is organized as follows. Section 5.1 introduces the prob-

lem formulation and places it within the context of existing literature. Section 5.1.1 de-

velops a novel framework for encoding robot heterogeneity. In Section 5.1.2, we present

the main constraint-based minimum energy task allocation paradigm, and demonstrate its

resilient capabilities in two distinct failure scenarios. Section 5.3 touches upon the per-

formance guarantees of the developed task allocation paradigm and highlights a mixed

centralized/decentralized framework to enable the task allocation and execution. In Sec-

tion 5.4, we present example use-case scenarios highlighting the resilient allocation and
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execution of multiple tasks.

5.1 Problem Formulation

Consider a team of nr heterogeneous robots which are deployed in an environment and

required to execute nt tasks. Each robot is endowed with a subset of nf available features

(such as camera, LIDAR, and wheels). These features allow the robots to exhibit a subset

of nc capabilities (such as flight and navigation). Certain capabilities can be achieved by

multiple combinations of feature bundles, whereas tasks require a given set of capabilities

in order to be executed. The successful execution of each task is conditioned upon a min-

imum number of robots with specific capabilities being allocated to it. In this chapter, we

consider extended set-based tasks [9], which include tasks whose execution can be encoded

as the minimization of a cost function.

Given the above problem setup, the framework presented in this chapter concerns itself

with (i) allocating tasks among the robots such that the minimum requirements for each

task are met, and (ii) executing the tasks by synthesizing an appropriate control input for the

robots. Both these objectives are met while minimizing the control effort expended by the

robots. Additionally, we show how the resulting task allocation and execution framework

exhibits resilience properties against varying environment conditions and failures on the

robots.

5.1.1 Encoding Robot Heterogeneity

The objective of this section is to develop a framework which generates a feasible mapping

between robots and their assigned tasks, while explicitly accounting for the heterogeneity

in the robots and the different capability requirements of the tasks. We define a novel no-

tion of feasibility based on a newly added feature layer in the description of the robots.

Intuitively, a feasible assignment needs to take into account the capabilities needed for the

tasks along with the features possessed by the robots. For example, assigning a ground ve-
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Table 5.1: Notation

Symbol Description Section
nr Number of robots 5.1
nt Number of tasks 5.1
nc Number of capabilities of all robots 5.1
nf Number of features of all robots 5.1

T ∈ {0, 1}nt×nc Capability-to-Task mapping 5.1.1
A ∈ {0, 1}nf×nr Robot-to-Feature mapping 5.1.1
Hk ∈ [0, 1]nck×nf Feature-to-Capability mapping 5.5
F ∈ Rnc×nr Robot-to-Capability mapping 5.1.1
Si ∈ Rnt×nt Specialization matrix of robot i 5.1.1

α ∈ {0, 1}nt×nr Matrix of task priorities 5.2
δi ∈ Rnt Task relaxation for robot i 5.1.3
δ ∈ Rntnr Vector of task relaxation parameters 5.2
xi ∈ Rnx State of robot i 5.1.2
ui ∈ Rnu Control input of robot i 5.1.2
x ∈ Rnxnr Ensemble state of nr robots 5.1.3
u ∈ Rnunr Ensemble control input of nr robots 5.1.2

hicle to an aerial-surveillance task would be considered an unfeasible assignment. Shown

in Fig. 5.1 is an example of the three mappings to be introduced in the next subsections.

Starting from the left, we begin by introducing the Capability-to-Task mapping (T ) which

contains the task specifications. In turn, each of those capabilities requires any one of vari-

ous feature-bundles to be exhibited. This is captured in the Feature-to-Capability mapping

(Hk) through the use of hypergraphs. In subsection 5.1.1, we define the Robot-to-Feature

mapping (A) which maps each robot to the set of features it possesses. Finally, we intro-

duce a way to obtain the Robot-to-Capability mapping (F ) which is directly used in the

task allocation and execution framework. See Table 5.1 for a summary of this notation, as

well as the one used throughout the chapter.

Capability-to-Task Mapping

We define the mapping from the set of tasks at hand to their respective capabilities as

T ∈ {0, 1}nt×nc , (5.3)
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Figure 5.1: Example of scenario including 2 tasks, 3 capabilities, 6 features and 4 robots
shown from left to right. The capabilities to features mapping is shown through the gold
and silver hyperedges. Note that not all of the hyperedges need to have the same cardinality.

where Ttk = 1 if and only if task t requires capability k, and nt and nc denote the numbers

of tasks and capabilities respectively. In Fig. 5.1, we present a graphical representation of

the assignment problem consisting of two tasks and three capabilities denoted by tt and ck,

respectively. The entries of the matrix T are represented by the edges of the mapping from

tasks to capabilities.

Robot-to-Feature Mapping

Each robot available for assignment possesses a variety of features. For example, an e-

puck’s features include an IMU and a CMOS camera [144]. Therefore, we define the

following binary mapping from robots to their respective features:

A ∈ {0, 1}nf×nr , (5.4)

where Aij = 1 if and only if robot j possesses feature i, and nr and nf denote the number

of robots and features, respectively. Now that we have defined both the Capability-to-

Task and Robot-to-Feature mappings, we have the required constructions to introduce the
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Feature-to-Capability mapping.

Feature-to-Capability Mapping

When considering heterogeneous multi-robot systems, it is important to note that two non-

identical robots may be able to support the same capability (i.e. robots possessing different

sensors and actuators can be interchangeable when it comes to supporting a specific ca-

pability). To model this effect, we use the notion of a bipartite hypergraph to define the

Feature-to-Capability mapping. A hypergraph is a graph whose edges are not restricted

to a cardinality of two. Each hyperedge associates a capability with one of the feature

bundles that can support it. The mapping between capabilities and features in the middle

of Fig. 5.1 is an example of a bipartite hypergraph. The top edge (colored golden) map-

ping c1 to f1 and f2 indicates that, together, these two features can support capability c1.

Mathematically, hyperedge k is represented by the following matrix:

Hk ∈ [0, 1]nck×nf , (5.5)

where k denotes the capability index,Hk,ij 6= 0 if and only if feature j belongs to the feature

bundle denoted by hyperedge i. nck and nf denote the number of hyperedges incident to

capability k and the number of features, respectively.

Mapping Robots to Capabilities

The MRTA algorithm presented in this chapter can be referred to as ST-MR-IA (Single-

Task robots, Multi-Robot tasks, Instantaneous Assignment) [58]: in fact, (i) through prior-

itization, each robot is assigned to a single task, (ii) the tasks can be executed by multiple

robots, in a coordinated or independent fashion, and (iii) the allocation of tasks to robots

is carried out at each time instant, without planning for future allocations. Previous ap-

proaches to solving ST-MR-IA MRTA problems assume knowledge of the direct mapping
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from capabilities to robots encoded by a matrix

F ∈ Rnc×nr (5.6)

where Fkj 6= 0 if and only if robot j can support capability k. Therefore, in this subsection,

we state the required condition under which robot j can indeed support capability k, and

derive the matrix F required by such algorithms based on this condition. Notice that the

framework only accounts for a finite number of capabilities and features relevant to the

required tasks, so the computation of F remains tractable.

As mentioned above, a capability k can be supported by a number of feature bundles.

Consequently, a robot must possess all the features in at least one of the bundles associated

with a capability in order to support it. Hence, we say robot i supports capability k if and

only if it possesses all the features within a hyperedge associated with capability k. For

example, in Fig. 5.1, robot r1 can support capability c1 since it possesses features f1 and

f2 included in the top hyperedge. On the other hand, robot r3 cannot support capability c3

since it only possesses features f4 and f5 but not f6. We define the feasibility vector Fk

capturing which robots can satisfy capability k as:

Fk = max(kron1(HkA)), (5.7)

where kron1 denotes the shifted Kronecker delta function

kron1(x) =


1 if x = 1

0 otherwise
(5.8)

applied element-wise. The function kron1 is introduced to eliminate cases where robots

have an incomplete portion of the features in a hyperedge. Moreover, the max operator is

intended column-wise, and serves to check whether a robot possesses all the features from
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at least one bundle. Note that using the max operator in the case of a robot satisfying a

capability through multiple hyperedges selects only one of those edges, which will become

relevant when we introduce weights in the next section.

Shifting our attention to the example from Fig. 5.1, we can compute the feasibility

vector F3 corresponding to c3:

H3A =
[
0 0 2/3 1

]
(5.9)

whose ij-th component is the proportion of features that robot j possesses belonging to

hyperedge i incident to capability k. Therefore, in this case, robot r3 possesses only 2/3

of the features in the only bundle associated with c3, and therefore cannot support that

capability. We thus obtain the following feasibility vector for c3:

F3 = max(f(H3A)) =
[
0 0 0 1

]
. (5.10)

As illustrated above, if Fk,j = 1, then robot j can support capability k. Therefore, by

concatenating all the vectors Fk, we obtain the desired linear mapping from capabilities to

robots:

F =
[
F T

1 F T
2 . . . F T

nc

]T
. (5.11)

As such, we can define a feasible assignment as one where all the capabilities required

by each task t are at least supported by a given number robots assigned to task t, i.e.

∑
i∈Rt

F−,i ≥ Tt,−, (5.12)

where the notation Tt,− and F−,i is used to denote the t-th row of T and the i-th column of

F . The inequality in (5.12) holds element-wise, and Rt denotes the set of robots assigned

to task t. Tt,k = n indicates that at least n of the robots assigned to task t need to exhibit

capability k.
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Specialization Matrix

To conclude the model of robot heterogeneity used within the task allocation framework

proposed in this chapter, we define the requirements for a robot to be considered as a

potential candidate for a task. As opposed to [10], where the specialization matrices were

assumed to be given, we leverage the above developed feature and capability models to

compute the specialization matrix of robot i as follows:

Si = diag(1nt − kron(TF−,i)) ∈ Rnt×nt , (5.13)

where, for m ∈ Rn, diag(m) = M ∈ Rn×n such that

Mij =


mi if i = j

0 otherwise,
(5.14)

1nt is a vector of dimension nt whose entries are all equal to 1, and kron(·) denotes the

Kronecker delta function (kron(0) = 1 and kron(n) = 0, ∀n 6= 0) applied element-wise.

In other words, the specialization of robot i towards task j, sij , is given by

sij =


1 if Tj,−F−,i > 0

0 otherwise,
(5.15)

i.e. sij = 1 if robot i exhibits at least one capability required by task j. The motivation

behind this choice is two-fold: robots are allowed to combine their capabilities to satisfy

a task, and there is no notion of priority between capabilities (i.e. exhibiting capability 1

is more or less crucial than exhibiting capability 2 and 3). The former indicates that if a

robot exhibits even a single capability relevant to the task, it may still be able to contribute,

whereas the latter indicates that there is no possible ordering of the candidates in terms of

specialization.
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Finally, as will be shown in Section 5.4, the specialization matrix can be adapted on-

the-fly. For example, in the case a robot loses a feature (e.g. its camera is malfunctioning),

by removing the edges between the robot and the feature, we can re-compute which capa-

bilities the malfunctioning robot can still exhibit.

5.1.2 Task Execution and Prioritization

This section develops a minimum energy task allocation framework, through prioritization

and execution, that explicitly accounts for the heterogeneity of the robots expressed in terms

of their capabilities, as well as specifications on the capabilities required to execute each

task. Moreover, we demonstrate how the proposed task allocation framework introduces a

degree of resilience, allowing the robots to react, for instance, to component failures and,

more generally, to unmodeled or unexpected environmental conditions.

As stated in Section 5.1, we consider a team of nr robots tasked with executing nt

different tasks in the environment. We model the dynamics of each robot i ∈ {1, . . . , nr}

with a control-affine dynamical system:

ẋi = f(xi) + g(xi)ui (5.16)

where f and g are locally Lipschitz continuous vector fields, xi ∈ X ⊆ Rnx is the state

of the robot, and ui ∈ U ⊆ Rnu is the input. Note that, in this chapter, we assume that

all robots obey the same dynamics given in (5.16), however, the entire formulation can be

extended in a straightforward fashion to the case where individual robots have different

dynamics. As done in [9] and in Chapter 4, we use Control Barrier Functions (CBFs)

(see [45] and references therein) to encode the set-based tasks that the robots are required

to execute. In the following, we briefly recall the definition and the main properties of CBFs

as will be used in this chapter to formulate the task prioritization and execution framework.

Definition 5.1 ([45]). Let C ⊂ D ⊂ Rn be the zero superlevel set of a continuously differ-
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entiable function h : D → R. Then h is a control barrier function (CBF) if there exists an

extended class K∞ function γ1 such that, for the control affine system ẋ = f(x) + g(x)u,

x ∈ Rnx , u ∈ Rnu , one has

sup
u∈U
{Lfh(x) + Lgh(x)u} ≥ −γ(h(x)). (5.17)

for all x ∈ D.

The notation Lfh(x) and Lgh(x) are used to denote the Lie derivative of h along the

vector fields f and g, respectively. Given this definition of CBFs, the following theorem

highlights how they can be used to ensure both set forward invariance and stability [116].

Theorem 5.2 ([45]). Let C ⊂ Rn be a set defined as the zero superlevel set of a con-

tinuously differentiable function h : D ⊂ Rn → R. If h is a control barrier func-

tion on D and ∂h
∂x

(x) 6= 0 for all x ∈ ∂C, then any Lipschitz continuous controller

u(x) ∈ {u ∈ U : Lfh(x) + Lgh(x)u + γ(h(x)) ≥ 0} for the system ẋ = f(x) + g(x)u,

x ∈ Rnx , u ∈ Rnu , renders the set C forward invariant. Additionally, the set C is asymptot-

ically stable in D.

The results of this theorem will be used in the remainder of this section to design a

control framework that allows a heterogeneous multi-robot system to prioritize and perform

a set of tasks that need to be executed.

5.1.3 Constraint-Driven Task Execution

The formulation adopted in this chapter in terms of extended set-based tasks [9] allows us

to encode a large variety of tasks: these are tasks characterized by a set, which is to be

rendered either forward invariant (usually referred to as safe in dynamical system theory

[45]), or asymptotically stable, or both. The results recalled above suggest the use of CBFs

1An extended class K∞ function is a continuous function γ : R → R that is strictly increasing and with
γ(0) = 0.
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to encode these kinds of tasks. Indeed, CBFs have been successfully used to encode a

variety of such tasks for different robotic platforms, ranging from coordinated control of

multi-robot systems [10] to multi-task prioritization for robotic manipulators [9]. In partic-

ular, in [9] the definition of extended set-based tasks, i.e. tasks which consist in the state x

approaching a set (stability) or remaining within a set (safety), is formalized.

As shown in Chapter 4 and in [7], among the extended set-based tasks, there is a

class of coordinated multi-robot tasks which are executed through the minimization of a

cost function, realized, for instance, by gradient-flow-like control laws [134]. In multi-

task multi-robot settings, this framework naturally allows robots to combine multiple con-

straints, each representing a task, into a single framework. For tasks encoded via CBFs

hm,m ∈ {1, . . . , nt}, the constraint-based optimization problem for robot i can be written

as,

minimize
ui,δi

‖ui‖2 + ‖δi‖2

subject to Lfhm(x) + Lghm(x)u ≥ −γ(hm(x))− δim

∀m ∈ {1 . . . nt},

(5.18)

where δi = [δi1, . . . , δint ]
T represents the slack variables corresponding to each task be-

ing executed by robot i. The tasks encoded by the CBFs hm(x) are not restricted to be

dependent only on the state of robot i, but rather on the ensemble state of the robots

x = [xT1 , . . . , x
T
nr ]

T , thus allowing the framework to encompass coordinated multi-robot

tasks.

With this framework in place, the slack variables δi present a natural way of encoding

task priorities for the individual robots. This will be the subject of the next section, where

the main task allocation framework is presented.
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5.2 Task Allocation Algorithm

In section 5.1.1, we presented a framework to model robot heterogeneity—exhibited in the

different suitability that each robot has for different tasks—starting from the lower level

concepts of robot features and capabilities. In this section, we leverage the expressiveness

of this model in order to render the task prioritization framework, presented in [10] and

improved in [11], resilient.

The optimization-based formulation extends the one in (5.18) as follows:

Task allocation optimization problem (MIQP) (5.19)

minimize
u,δ,α

nr∑
i=1

(
C‖Πiα−,i‖2 + ‖ui‖2 + l‖δi‖2

Si

)
(5.19a)

subject to Lfhm(x) + Lghm(x)ui ≥ −γ(hm(x))− δim (5.19b)

Θδi + Φα−,i ≤ Ψ (5.19c)

1
T
ntα−,i ≤ 1 (5.19d)

FαTm,− ≥ T Tm,− (5.19e)

nr,m,min ≤ 1
TαTm,− ≤ nr,m,max (5.19f)

‖δi‖∞ ≤ δmax (5.19g)

α ∈ {0, 1}nt×nr (5.19h)

∀i ∈ {1 . . . nr}, ∀m ∈ {1 . . . nt}, (5.19i)

where C, l ∈ R≥0 are parameters of the optimization, δmax signifies the maximum extent

to which each task constraint can be relaxed, and γ is a continuously differentiable class

K∞ function. The matrix Πi is a projection matrix defined in (5.23) to account for the

heterogeneous capabilities of the multi-robot system, as explained in detail later.

First of all, as done in Section 5.1.1, the symbols Xi,− and X−,j denote the i-th row and

the j-th column of the matrix X , respectively. The introduction of the matrix of task priori-
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ties α ∈ {0, 1}nt×nr in the optimization problem is what determines the prioritization (and,

therefore, the allocation) of the tasks for each robot. This is realized through the constraint

(5.19c), where the matrices Θ and Φ, and the vector Ψ, enforce constraints among different

components of the vectors of task relaxation parameters δi. As extensively discussed in

[10], the constraint

δin ≥ κ
(
δim − δmax(1− αim)

)
, n 6= m, (5.20)

that can be written as (5.19c), realizes the following two implications:

αim = 1 =⇒ δim ≤
1

κ
δin ∀n ∈ {1, . . . , nt} \ {m}, (5.21)

which implies that task m has highest priority for robot i, and

αim = 0 =⇒ δim ≤ δmax +
1

κ
δin ∀n ∈ {1, . . . , nt} \ {m}, (5.22)

which implies that task m does not have the highest priority for robot i. In fact, in light of

constraint (5.19g), no further constraints are enforced on δim, since δmax is the maximum

value |δim| is allowed to achieve. Notice further that, for the way it is used in (5.2), the

optimal value of δ will always be non-negative (see also analyses in [7, 10]).

The constraint (5.19d) is used to ensure that each robot has at most one task to be

executed with highest priority, making the task prioritization formulation effectively a task

allocation. Notice that, compared to our previous work [10], (5.19d) is here turned from

an equality into an inequality constraint. In [10], this constraint was used to ensure that

no feasible solution consisted in robots trading off task execution for energy saving. In

the presented, enhanced, formulation, this is not necessary anymore thanks to constraint

(5.19e)—whose meaning will be described in the following. Consequently, we can now

account for situations where no tasks are allocated to some of the robots, implementing, as

a matter of fact, the concept of autonomy-on-demand in the context of task allocation.
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The constraint (5.19e) is what allows us to specify the minimum capabilities required

for each task, expressed by the matrices T and F defined in Sections 5.1.1 and 5.1.1, respec-

tively. Moreover, the constraint (5.19f) allows us to enforce the minimum and maximum

number of robots required for each task, thus giving a lot of flexibility and versatility to be

utilized in many different application scenarios. In Section 5.4, experiments performed on

a real multi-robot system will showcase the use of these constraints.

As in our previous works [10] and [11], the cost of the optimization problem (5.19) is

composed of 3 terms. The last two terms in (5.19a) correspond to the control effort spent

by the robots and the magnitude of the relaxation parameters, respectively. The former is

amenable in long-duration autonomy applications: when the robots are required to remain

operational over sustained periods of time, minimizing the energy spent in performing a

task—which is proportional to control effort—is paramount. The latter, instead, ensures

that the tasks to which the robots have been assigned get indeed executed, thanks to con-

straint (5.19b). The norm of δi corresponding to robot i is weighted by the specialization

matrix of robot i, Si. This way, the relaxation variables corresponding to tasks that robot i

is not capable of performing (i.e. with a low value of the entry of the specialization matrix)

are weighted accordingly less.

Finally, the first term in (5.19a) is introduced to penalize bad allocations of tasks to

robots, as explained in the following. The matrix Πi is defined as follows:

Πi = Int − SiS†i , (5.23)

where Int is the nt × nt identity matrix, and S†i is the right Moore-Penrose inverse [145]

of the specialization matrix Si of robot i. It is easy to see that Πi is the projector onto the

orthogonal complement of the subspace of specializations possessed by robot i. Assume,

for example, that robot i has no specialization at all at performing task k (i.e. sik = 0)

and has a non-zero specialization sij of performing task j, j 6= k. Then, its specialization
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matrix Si will be given by:

Si = diag([si1, . . . , si k−1, 0, si k+1, . . . , sint ]), (5.24)

and

Πi = diag([0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
nt−k

]). (5.25)

Then, the projector Πi in the cost (5.19a) will contribute to a non-zero cost when the com-

ponents of αi corresponding to tasks that robot i has no specialization to perform are not

zero, i.e. when robot i has been assigned to a task that it is not able to perform—referred

above as a bad allocation.

Remark 5.3 (Centralized Mixed-Integer Quadratic Program). Notice that in (5.19) there

is a coupling between the robots through the cost as well as the constraints. This means

that the task allocation framework has to be solved in a centralized fashion. Moreover,

the matrix of task priorities α is integer. This renders (5.19) a mixed-integer quadratic

program (MIQP). A QP-relaxation approach, as well as ways of solving this framework in

a decentralized way, are discussed in [10]. In Section 5.3 of this chapter, we show how

the proposed MIQP can be solved in a mixed centralized/decentralized fashion, and we

analyze the performances compared to the centralized approach.

Remark 5.4 (Time-varying and sequential tasks). Expressing tasks by means of control

barrier functions, besides rendering the task execution and allocation particularly amenable

for online-optimization-based controllers, allows us to account for time-varying and se-

quential tasks, comprised by a sequence of sub-tasks, as well. In fact, the time-varying

extension of control barrier functions (see, e.g., [142]) can be leveraged to consider tasks

which have an explicit dependence on time. In the experimental section, we show how this

extension of the proposed task allocation and execution framework can be used to imple-

ment state-trajectory-tracking tasks.
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Moreover, thanks to the pointwise-in-time nature of the developed optimization pro-

gram, tasks can be removed and inserted in a continuous fashion, as demonstrated in [9].

This allows for a flexible implementation of sequential tasks which require the completion

of a sub-task before another one can be started, as done in [146]. In the same way, the

features and the specialization of the robots towards different tasks can be modified dur-

ing the execution of the task. In the next subsection, we present an approach to leverage

time-varying specialization in order to adapt to disturbances or modeled phenomena in the

environment.

The following algorithm summarizes the application of the optimization-based alloca-

tion and execution framework to a multi-robot system with heterogeneous capabilities.

Algorithm 1 Task allocation and execution
Require:

Tasks hm, m ∈ {1, . . . , nt}
Mappings F , T
Parameters nr,m,min, nr,m,max, δmax, C, l

1: Evaluate Si, ∀i ∈ {1, . . . , nr} . (5.13)
2: while true do
3: Get robot state xi,∀i ∈ {1, . . . , nr}
4: Compute robot input ui,∀i ∈ {1, . . . , nr} . (5.19)
5: Send input ui,∀i ∈ {1, . . . , nr} to robots and execute
6: end while

We conclude this subsection by showcasing the execution of Algorithm 1 in an explana-

tory example featuring the use of the allocation constraints described so far.

Example 5.5. Consider 4 mobile robots moving in a 2-dimensional space, tasked with

performing 2 tasks. For clarity of exposition, in this example, we modeled each robot i as

single integrator ẋi = ui—so f and g in (5.16) are the zero and identity map, respectively—

and each task consists in going to a point of the state space. In Fig. 5.2, the robots are

depicted as gray triangles and labeled r1 to r4, whereas the locations corresponding to the

tasks are labeled t1 and t2. The features, capabilities, and task mappings have been set

as in Fig. 5.1, where the numerical quantities are given in Section 5.1.1. So, per (5.13),
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Figure 5.2: Task allocation and execution (Example 5.5). In Fig. 5.2a, 4 robots (gray
triangles) have to be allocated to 2 tasks and, as a result of the execution of (5.19), robots r2

and r4 are assigned to task t1 and t2, respectively, based on their specialization introduced in
Fig. 5.1. In Fig. 5.2b, the additional constraint that at least 2 robots are required to execute
task t1 is introduced (nr,1,min = 2), and robot r3 is picked together with r2 to perform t1.
The resulting trajectories of the robots are depicted as dashed lines.

robots r1, r2 and r3 are only specialized to perform task t1, while robot r4 is specialized to

perform both tasks.

For the scenario depicted in Fig. 5.2a, tasks t1 and t2 need to be executed and there is

no further constraint on the amount of capability or the number of robots required for a

task. As a result of the execution of Algorithm 1, the trajectories (red and yellow) show two

of the robots performing the two tasks. In particular, robot r4 is assigned to task t2, while

robot r2 has been allocated to task t1 (the only one it can perform). Robots r1 and r3 have

remained to their initial positions with no task assigned to them, as r2 and r4 were already

satisfying the task constraints in (5.19).

In the scenario depicted in Fig. 5.2b, instead, nr,1,min = 2, i.e. at least 2 robots are

required for the execution of task t1. Driven by the control inputs u2 and u3 calculated

according to Algorithm 1, robots r2 and r3 are assigned to task t1, while r4 is assigned to

t2 (as it is the only robot possessing the specialization for it), as can be seen in Fig. 5.2b.
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Figure 5.3: The multi-robot system interacting with the environment controlled in feedback
by the task allocation and execution optimization program (5.19).

5.2.1 Resilience of the Task Allocation Algorithm

In this subsection, we introduce two distinct methods that render the task allocation and

execution framework presented above resilient to environmental disturbances and robot

feature failures. To achieve this, we leverage the fact that the optimization problem pre-

sented in (5.19) is solved point-wise in time, and thus can be integrated along with online

updates to the specializations and capabilities of the robots to construct a feedback loop as

depicted in Fig. 5.3.

We begin by introducing an update law aimed at changing the specialization values of

the robots based on their measured versus expected progress at completing the tasks they

are allocated to. The latter allows the framework to account for exogenous disturbances

(i.e. disturbances that are not explicitly modeled or unknown). In the cases when the

disturbances are endogenous (e.g. sensor malfunction), we can directly account for them

by modifying the specific values in the mappings introduced in Section 5.1.1.

Exogenous Disturbances

In certain deployment scenarios, the specializations of robots towards the tasks might be

unknown prior to deployment of the team, or might vary due to changes in the environ-
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mental conditions. For the remainder of this chapter, we refer to all such disturbances that

cannot be modeled (i.e. cannot be accounted for in F ) as exogenous disturbances. In these

cases, we would like to update the specialization parameters sij on-the-fly to account for

such changes. As described in [11], this is achieved through updating the parameters sij at

each time step k based on the difference between the expected and actual effectiveness of

the task allocation and execution framework, where we assume that this difference mani-

fests itself in terms of variations in the dynamical model of the robot. At discretized time

intervals k∆t, k ∈ N, let x(k)
act denote the actual ensemble state of the multi-robot system

and (i)x
(k)
sim the ensemble state simulated by robot i assuming it itself obeyed its nominal dy-

namics with all the other robots being stationary. The simulated states can be then evaluated

as follows:

(i)x
(k)
sim,j =


x

(k−1)
act,i + ∆x

(k−1)
i ∆t if j = i

x
(k−1)
act,j if j 6= i,

(5.26)

where (i)x
(k)
sim,j denotes the j-th component of (i)x

(k)
sim, and ∆x

(k−1)
i is defined as

∆x
(k−1)
i = f

Ä
x

(k−1)
act,i

ä
+ g
Ä
x

(k−1)
act,i

ä
u

(k−1)
i , (5.27)

u
(k−1)
i being the input evaluated by solving (5.19) at time (k − 1)∆t. Using (i)x

(k)
sim, robot

i can measure its contribution towards the difference between the simulated and the actual

progress in the completion of task m at time step k as follows:

∆h
(k)
im = min

¶
0, him

Ä
x

(k)
act

ä
− him

Ä
(i)x

(k)
sim

ä©
, (5.28)

where him
Ä

(i)x
(k)
sim

ä
and him

Ä
x

(k)
act

ä
are the simulated and actual values of the CBF corre-

sponding to robot i and task m at time step k, respectively. Note that the min operator

in (5.28) is used to prevent ∆h
(k)
im from being positive. This situation may occur due to

the coordinated nature of multi-robot tasks, where robot i need not know the actions of its
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neighbors, which could result in an unpredictable positive variations of him.

We assume that the CBF corresponding to each task, hm, is decomposable into the

respective contributions of each robot i, him. This assumption holds for a large number of

coordinated control tasks such as multi-robot coverage control and formation control [134],

and allows each robot to assess its own effectiveness at executing a task by measuring

∆h
(k)
im . In fact, if ∆h

(k)
im < 0, robot i’s actual effectiveness at accomplishing task m is lower

than anticipated. Consequently, one can model the evolution of the specialization of robot

i at task m according to the following update law:

s
(k+1)
im = s

(k)
im + βα

(k)
im∆h

(k)
im , (5.29)

where β ∈ R>0 is a constant controlling the update rate. Note that the update only occurs

for tasks to which the robots are assigned since α(k)
im = 1 if and only if robot i is assigned

to task m at time step k. This update law renders the framework resilient to unknown envi-

ronmental disturbances by allowing the framework to account for the dynamical variations

in the environmental conditions through the updates of the specialization matrix accord-

ing to the performance of the robots. Although it is not presented in this chapter, in [11]

conditions under which the robot specialization lost because of the update law in (5.29)

can be recovered over time are shown. Algorithm 2 extends Algorithm 1 developed in the

previous section to account for exogenous disturbances.

The following example showcases the use of Algorithm 2 in a simplified scenario with

2 robots, 2 tasks, and an unmodeled, exogenous environmental disturbance.

Example 5.6. Consider the example depicted in Fig. 5.4. The 2 robots, r1 and r2 (shown as

gray triangles in Fig. 5.4b, and modeled as 2-dimensional single integrators as in Exam-

ple 5.5) are asked to execute 2 tasks t1 and t2. Their features and capabilities are depicted

in Fig. 5.4a: both robots are capable of performing both tasks. Nevertheless, robot r1 can-

not traverse the region of the state space shaded in cyan (unmodeled disturbance), making
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Figure 5.4: Resilience of the task allocation algorithm to exogenous disturbances (Exam-
ple 5.6). Robots r1 and r2 (gray triangles) have to execute tasks t1 and t2. They both
possess the capabilities to perform both tasks (as pictorially shown in Fig. 5.4a), but r1 is
not capable of traversing the circular cyan-shaded region (representing the exogenous dis-
turbance), rendering practically impossible for it to execute task t2. Based on (5.19), r1 is
initially assigned to t2 and r2 to t1. As r1 reaches the cyan zone, it is not able to proceed
forward. According to Algorithm 2, per (5.29), s12—the specialization of r1 to execute
t2, depicted in 5.4b as a function of time t—starts decreasing until it reaches 0. At this
point, the allocation evaluated by (5.19) automatically changes and robots r1 and r2 are
assigned to tasks t1 and t2, respectively, fulfilling, this way, the requirement that both tasks
need to be executed. The trajectories of the robots resulting by the allocation algorithm are
depicted as dashed lines in Fig. 5.4b.
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Algorithm 2 Task allocation and execution resilient to exogenous disturbance
Require:

Tasks hm, m ∈ {1, . . . , nt}
Mappings F , T
Parameters nr,m,min, nr,m,max, δmax, C, l

1: Evaluate Si, ∀i ∈ {1, . . . , nr} . (5.13)
2: while true do
3: Get robot state xi,∀i ∈ {1, . . . , nr}
4: Compute robot input ui,∀i ∈ {1, . . . , nr} . (5.19)
5: Send input ui, ∀i ∈ {1, . . . , nr} to robots to execute
6: for all i ∈ {1, . . . , nr} do
7: Evaluate simulated robot state (i)x

(k)
sim . (5.26)

8: for all m ∈ {1, . . . , nt} do
9: Evaluate ∆h

(k)
im . (5.28)

10: Evaluate s(k+1)
im . (5.29)

11: end for
12: end for
13: end while

the execution of task t2 impossible for it. By implementing the control obtained by solv-

ing (5.19), robot r1 is initially assigned to task t2, while r2 is assigned to t1, as confirmed

by the initial vertical segments of the dashed green and red trajectories of the robots. As

r1 reaches the circular cyan region, it is not able to advance anymore and the execution

of Algorithm 2 makes its specialization towards task t2—represented by s12—decrease ac-

cording to (5.29), as depicted in Fig. 5.4b. When s12 = 0, the allocation algorithm (5.19)

swaps the allocation of tasks as robot r1 is not able to execute task t2 to any extent anymore.

The final allocation satisfies the requirements that both tasks are executed.

Endogenous Disturbances

We now shift our focus to cases where the disturbances to the model are known to the

robots—a condition happening in case of, e.g., sensor malfunction. We refer to this class

of disturbances as endogenous disturbances for which we account for by directly altering

the mappings introduced in Section 5.1.1. Specifically, by leveraging the feature represen-

tation, we directly alter the intermediate mappings (i.e. Robot-to-Feature and Feature-to-
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Capability mappings) on the fly to reflect such changes. The latter is achieved through mod-

ifying the corresponding values in the mappings defined in Section 5.1.1 and re-computing

the Robot-to-Capability matrix F and the specialization matrices Si. Note that F is incor-

porated in the task allocation framework through the constraint (5.19f), which ensures that

the task allocation among the robots reflects the change in F . For example, in case of a

feature failure, the Robot-to-Feature mapping matrix A is altered to account for the failure.

Moreover, in case of known environmental disturbances, the feature bundle weights Wk is

altered for each capability. Following the example from Fig. 5.1, if feature f4 of robot r2

malfunctions, we reflect that by altering the original A matrix to

A =



1 0 0 0

1 0 0 0

1 1 0 0

0 1 1 1

0 0 1 1

0 0 0 1


, (5.30)

which is equivalent to removing the edge from robot r2 to feature f4 in the hypergraph from

Fig. 5.1.

The approach described in this section to cope with endogenous disturbances is sum-

marized in Algorithm 3. To conclude the section, we present a final example to showcase

the behavior resulting from the application of Algorithm 3.

Example 5.7. In this last examples, 2 robots, r1 and r2 are considered, which possess the

features depicted in Fig. 5.5a to execute 2 tasks, t1 and t2, thanks to the capabilities c1

and c2. The mappings from features to capabilities to tasks may represent the following

scenario. Two robots are endowed with wheels (feature f1) for mobility (capability c1), as

well as a camera (feature f2) and a communication module (feature f3) serving the ability

of live streaming (capability c2). Task t1 consists in visiting a location of the state space of
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Algorithm 3 Task allocation and execution resilient to endogenous disturbance
Require:

Tasks hm, m ∈ {1, . . . , nt}
Mappings F , T
Parameters nr,m,min, nr,m,max, δmax, C, l, β

1: Evaluate Si, ∀i ∈ {1, . . . , nr} . (5.13)
2: while true do
3: Get robot state xi, ∀i ∈ {1, . . . , nr}
4: Calculate robot input ui, ∀i ∈ {1, . . . , nr} . (5.19)
5: Send input ui, ∀i ∈ {1, . . . , nr} to robots to execute
6: Update matrix A
7: Re-evaluate matrices F and S . (5.7), (5.13)
8: end while

(a)
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Figure 5.5: Resilience of the task allocation algorithm to endogenous disturbances (Ex-
ample 5.7). The 2 robots r1 and r2 (gray triangles) are asked to perform tasks t1 and t2.
Initially, both robots are able to perform both tasks based on their possessed features shown
in Fig. 5.5a. Solving (5.19) initially assigns robot r1 to task t2 and r2 to t1. At a certain
time instant, A31 transitions from 1 to 0, corresponding to the condition that robot r1 loses
feature f3 (the dashed edge in Fig. 5.5a is lost). At this point, the constraint (5.19e) forces
the task allocation to swap so that r2, the only robots capable of providing capability c2 for
executing t2, is assigned to it. This way, the requirement that both tasks are executed by at
least one robot are satisfied. The trajectories of the robots are depicted as dashed lines in
Fig. 5.5b.
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the robots, while task t2 consists in visiting a location and live streaming a video feed. The

endogenous disturbance consists in robot r1 losing the communication functionality at a

certain time instant, compromising its ability of performing task t2, as it cannot live stream

video feed anymore. The dashed edge in Fig. 5.5a is lost, and the robot-to-feature mapping

matrix A is modified by setting A31 = 0.

Fig. 5.5b depicts the trajectories of the robots under the initial allocation of robot r1 to

task t2 and r2 to t1. AsA31 = 0, the matrix F changes according to (5.7). Consequently, the

constraint (5.19e) in the optimization problem (5.19) prevents robot r1 from being allocated

to task t2. Thus, the task allocation swaps in order to be able to perform both tasks, as

required.

5.3 Analysis and Implementation of the Task Prioritization and Execution Algo-

rithm

The definition of the optimization problem as in (5.19) gives rise to two main questions:

(i) whether, despite its pointwise-in-time nature, the allocation algorithm generates a stable

allocation of tasks among robots, and (ii) whether it can be solved in real time to allocate

tasks to robots and synthesize control inputs which allow robots to execute them. As far

as (i) is concerned, a stable allocation is the amenable condition under which, with time-

invariant parameters of the problem and no exogenous or endogenous disturbances, each

robot does not continuously switch between the tasks it executes, but rather is able to ac-

complish one of them. Regarding (ii), (5.19) is a mixed-integer quadratic program and, as

such, solving it in real time might be too computationally intensive.

To address these two issues, in Section 5.3.1 we present results on the convergence of

the task prioritization and execution algorithm introduced in the previous section. These

results guarantee that the allocation of tasks to a heterogeneous multi-robot system ob-

tained by executing Algorithm 1 will converge, allowing the robots to complete the tasks

that have been assigned to them. Moreover, in Section 5.3.2, we present a mixed central-
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ized/decentralized implementation of the developed task allocation algorithm which en-

ables its application in online settings.

5.3.1 Analysis of Convergence of the Task Prioritization and Execution Algorithm

In cases where the tasks that the robots are asked to execute are neither coordinated nor

time-varying (namely the CBF associated with them does not explicitly depend on the

time variable), the following Proposition shows that the application of the task allocation

algorithm (5.19) leads to a convergent behavior of the robots, whose states converge to a

stable equilibrium point.

Proposition 5.8. Consider nr robots modeled by the driftless dynamical system

ẋi = g(xi)ui, (5.31)

executing the control input u(k)
i at time k, where u(k) is obtained by solving the task allo-

cation algorithm (5.19) at time k in order to perform nt tasks. Assume that the tasks are

characterized by the functions h1, . . . , hnt which do not have an explicit dependence on

time. Assume further that the tasks are not coordinated, i.e.

hm(x) =
nr∑
i=1

hm,i(xi) ∀i ∈ {1, . . . , nt}, (5.32)

where ∥∥∥∥∥∂hm,i(xi)∂xi

T

(xi)

∥∥∥∥∥ = λ (hm,i(xi)) , (5.33)

λ being a class K function, and there exist a unique x?m,i—corresponding to the state at

which the task characterized by the function hm,i is completed—such that hm,i(x?m,i) = 0.

If all robots are capable of performing all tasks to a certain extent, i.e. the matrices Si, i ∈

{1, . . . , nr} are positive definite, then the sequences {u(k)}k∈N, {δ(k)}k∈N, and {α(k)}k∈N,

solutions of (5.19), converge as k →∞. In particular, u(k) → 0, δ(k) → 0.
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The application of the previous results is however restricted to a specific, but neverthe-

less quite rich, class of tasks. However, in situations where the assumptions of Proposi-

tion 5.8 are not satisfied, the following proposition provides us with sufficient conditions to

ensure the convergence of the flow of the dynamical system comprised of the multi-robot

system, characterized by its nonlinear dynamics, in feedback with the optimization prob-

lem embodying the task allocation algorithm (depicted in Fig. 5.3). The similarity between

the system in Fig. 5.3 and the Lure’s problem [147] suggests us to resort to techniques that

have been widely adopted in the stability analysis of such systems, with the aim of study-

ing the convergence of the task allocation algorithm we propose in this chapter. Indeed,

in the following proposition a quadratic Lyapunov function is proposed, and conditions to

establish the convergence of the task allocation algorithm are given in the form of a linear

matrix inequality (LMI) using the S-procedure [148, 149].

Proposition 5.9. If, for all integers k, there exist positive scalars τ1, τ2, τ3, τ4 such that

B
(k)
0 ≤ τ1B

(k)
1 + τ2B

(k)
2 + τ3B

(k)
3 + τ4B

(k)
4 , (5.34)
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where B(k)
0 , B(k)

1 , B(k)
2 , B(k)

3 , B(k)
4 , and c ∈ R>0 are given by

B
(k)
0 =



cI dγ
dh

dh
dx
g(x(k)) 0 0 dγ

dh
dh
dx
f(x(k))

dγ
dh

dh
dx
g(x(k))T 0 0 0 0

0 0 0 0 0

0 0 0 0 0

dγ
dh

dh
dx
f(x(k))T 0 0 0 0


,

B
(k)
1 =



0 0 −1
2
I 0 0

0 0 −1
2
Lgh(x(k))T 0 0

−1
2
I −1

2
Lgh(x(k)) −I 0 −1

2
Lfh(x(k))

0 0 0 0 0

0 −1
2
Lfh(x(k))T 0 0 0


,

B
(k)
2 =



0 0 0 0 0

0 0 0 0 0

0 0 0 1
2
Θ̄Φ̄ 0

0 0 1
2
Φ̄T Θ̄T Φ̄T Φ̄ 1

2
Φ̄Ψ̄

0 0 0 1
2
Ψ̄T Φ̄T 0


,

B
(k)
3 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 ATαAα
1
2
ATαbα

0 0 0 1
2
bTαAα 0


, B

(k)
4 =



0 0 0 0 0

0 0 0 0 0

0 0 ATδ Aδ 0 1
2
ATδ bδ

0 0 0 0 0

0 0 1
2
bTδ Aδ 0 0


,

(5.35)

in which 0’s represent zero matrices of appropriate sizes, then the sequences {u(k)}k∈N,

{δ(k)}k∈N, and {α(k)}k∈N, solutions of (5.19) at time step k, converge as k →∞.

Despite the flexibility determined by the variety of scenarios encompassed by the optimization-

based task allocation formulation presented in this section, its mixed-integer nature does
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Figure 5.6: A mixed centralized/decentralized architecture to implement the task allocation
and execution algorithm. Unlike the MIQP centralized formulation in (5.19), the allocation
is solved separately from the execution. The former is evaluated in a centralized fashion
based on the states collected from all the robots, and it typically happens at a slower rate
due to the computational complexity of mixed-integer programs. The latter is solved by
each robot in a decentralized way once the allocation (in terms of α−,i) is received by the
robots from the central computational unit.

not allow, in most cases, to scale its applicability to a large number of robots [150]. There-

fore, it is not always possible to solve the proposed task allocation optimization program

(5.19) in an online fashion under real-time constraints. Thus, in the following section, we

propose a mixed centralized/decentralized execution strategy which allows the computa-

tion of the task prioritization as well as the control inputs required by the robots to execute

the tasks to take place in online settings.

5.3.2 Mixed Centralized/Decentralized Implementation of the Task Prioritization and Execution

Algorithm

In order to allow the applicability of the proposed task prioritization and execution algo-

rithm to scenarios where a large number of robots have to execute a large number of tasks,

in the following we propose an alternative mixed centralized/decentralized formulation.
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We then analyze the performance in terms of task allocation and execution compared to the

MIQP developed in the previous section.

To this end, the optimization problem (5.19) is solved by a central computational unit

which communicates the evaluated matrix of task priorities α to the robots. Then, each

robot can solve the following convex quadratic program (QP) in order to compute the con-

trol input it requires to execute the task prioritized according to its prioritization vector

α−,i:

Task execution optimization problem (QP) (5.36)

minimize
ui,δi

‖ui‖2 + l‖δi‖2
Si

(5.36a)

subject to Lfhm(x) + Lghm(x)ui ≥ −γ(hm(x))− δim (5.36b)

Θδi + Φα−,i ≤ Ψ (5.36c)

‖δi‖∞ ≤ δmax (5.36d)

∀m ∈ {1 . . . nt}. (5.36e)

Figure 5.6 summarizes the described mixed centralized/decentralized architecture.

Notice that, if solving the centralized MIQP cannot be done at each time step, by fol-

lowing the mixed centralized/decentralized approach, each robot solves for its control input

ui using an outdated value of its prioritization vector α−,i, which is calculated by the central

unit using old values of the state xi of the robots. Depending on the time that the central

computational unit takes to solve the MIQP, the difference between the input ui solution of

(5.36) and the one that would have been obtained by solving (5.19) might be different. In

the following, we quantify the error that is introduced in the control input ui by adopting

the mixed centralized/decentralized approach, rather than solving the centralized MIQP at

each time step.
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For notational convenience, we introduce the following mappings. We denote by

ΓMIQP : Rnxnr → {0, 1}nt×nr : x 7→ α (5.37)

the natural projection of the solution map of (5.19), and by

ΓQP : Rnxnr × {0, 1}nt×nr → Rnunr : (x, α) 7→ u, (5.38)

the natural projection of the solution map of (5.36) for all the robots. Moreover, we let

Γ(·, ·) = ΓQP(·,ΓMIQP(·)), and denote by Γ̄MIQP the solution map of the QP relaxation

of (5.19) projected onto the subspace of allocation vectors α—where α ∈ [0, 1]nt×nr ⊂

Rnt×nr .

Assume that, at time k∆t, the central unit receives x(k) from the nr robots, and solves

the MIQP (5.19) obtaining α(k) = ΓMIQP
(
x(k)
)
. This computation is assumed to take

n steps 2, or n∆t seconds. At time (k + n)∆t, the central unit transmits the computed

allocation values α(k) to the robots, each of which solves (5.36), and the input to the robots

can be expressed as u(k+n) = ΓQP
(
x(k+n), α(k)

)
. This is assumed to take 1 step, or ∆t

seconds.

We are interested in quantifying the difference between the robot control inputs u(k+n)

evaluated by the robots with the old value α(k) and the control input û(k+n) that would be

evaluated with the current value α(k+n). This difference is given by

∥∥u(k+n) − û(k+n)
∥∥
∞ =

∥∥∥Γ
Ä
x(k+n), x(k)

ä
− Γ
Ä
x(k+n), x(k+n)

ä∥∥∥
∞

=
∥∥∥ΓQP

Ä
x(k+n),ΓMIQP

Ä
x(k)
ää
− ΓQP

Ä
x(k+n),ΓMIQP

Ä
x(k+n)

ää∥∥∥
∞
,

(5.39)
2If stopping criteria are not met, the algorithm times out after n∆t seconds.
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and the different contributions are explicitly broken down as follows:

∥∥u(k+n) − û(k+n)
∥∥
∞

=
∥∥∥ΓQP

Ä
x(k+n),ΓMIQP

Ä
x(k)
ää
− ΓQP

Ä
x(k+n),ΓMIQP

Ä
x(k+n)

ää∥∥∥
∞

≤
∥∥∥ΓQP

Ä
x(k+n),ΓMIQP

Ä
x(k)
ää
− ΓQP

Ä
x(k+n), Γ̄MIQP

Ä
x(k)
ää∥∥∥

∞

+
∥∥∥ΓQP

Ä
x(k+n), Γ̄MIQP

Ä
x(k)
ää
− ΓQP

Ä
x(k+n), Γ̄MIQP

Ä
x(k+n)

ää∥∥∥
∞

+
∥∥∥ΓQP

Ä
x(k+n),ΓMIQP

Ä
x(k+n)

ää
− ΓQP

Ä
x(k+n), Γ̄MIQP

Ä
x(k+n)

ää∥∥∥
∞

≤LQP

(∥∥∥Äx(k+n),ΓMIQP

Ä
x(k)
ää
−
Ä
x(k+n), Γ̄MIQP

Ä
x(k)
ää∥∥∥

∞

+
∥∥∥Äx(k+n), Γ̄MIQP

Ä
x(k)
ää
−
Ä
x(k+n), Γ̄MIQP

Ä
x(k+n)

ää∥∥∥
∞

+
∥∥∥Äx(k+n),ΓMIQP

Ä
x(k+n)

ää
−
Ä
x(k+n), Γ̄MIQP

Ä
x(k+n)

ää∥∥∥
∞

)
≤LQP

(
n2
tn

3
rm∆

(
A
Ä
x(k)
ä ∣∣∣B Äx(k)

ä)
+ LMIQP

∥∥∥Äx(k+n), x(k)
ä
−
Ä
x(k+n), x(k+n)

ä∥∥∥
∞

+ n2
tn

3
rm∆

(
A
Ä
x(k+n)

ä ∣∣∣B Äx(k+n)
ä))

≤LQP

(
n2
tn

3
rm∆

(
A
Ä
x(k)
ä ∣∣∣B Äx(k)

ä)
+ LMIQP

Ä∥∥x(k) − x(k+1)
∥∥
∞ +

∥∥x(k+1) − x(k+2)
∥∥
∞ + . . .+

∥∥x(k+n−1) − x(k+n)
∥∥
∞

ä
+ n2

tn
3
rm∆

(
A
Ä
x(k+n)

ä ∣∣∣B Äx(k+n)
ä))

≤LQPn
2
tn

3
rm
(

∆
(
A
Ä
x(k)
ä ∣∣∣B Äx(k)

ä)
+ ∆

(
A
Ä
x(k+n)

ä ∣∣∣B Äx(k+n)
ä))

︸ ︷︷ ︸
Effect of mixed-integer programming

+ LQPLMIQPLẋn∆t︸ ︷︷ ︸
Effect of computation time

,

(5.40)

using the sensitivity results in [151]. The notation ∆(A) in (5.40) denotes the maximum of

the absolute values of the determinants of the square submatrices of the matrix A. More-

over, A and B denote the matrix and the vector such that the inequality constraints in
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(5.19) can be written as

A


u

δ

α

 ≤ B, (5.41)

and, provided that the conditions of Theorem 5.2 in [152] hold, LMIQP, LQP, and Lẋ are

the Lipschitz constants of the mappings ΓMIQP, ΓQP, and the robot dynamics (5.16), respec-

tively.

As expected, the bound on
∥∥u(k+n) − û(k+n)

∥∥ in (5.40) is a monotonically increasing

function of the number of optimization variables, of the values LQP and LMIQP—which, in

turn, depend on the parameters of the optimization problem [152]—of Lẋ, and of n∆t,

i.e. the time required by the central computational unit to solve the MIQP. In particular,

the bound in (5.40) is comprised of two terms: the first one depends on the mixed-integer

nature of the allocation algorithm (5.19), while the second one is due to the computation

time that the central unit takes in order to solve the allocation optimization. The effect of

the mixed-integer programming is the most critical one, as it is proportional to n2
tn

3
r , and

vanishes only when the solution of the MIQP (5.19) is equal to that of its QP relaxation.

The term depending on the computational time, instead, vanishes if the MIQP can be solved

at each time step.

Remark 5.10 (Communication delays). Notice that the time to communicate the allocation

solution to all the robots, if not negligible, can be added to the quantity n∆t to account for

the effects of communication delays in the execution of the allocated tasks.

We conclude this section by summarizing the mixed centralized/decentralized imple-

mentation of the proposed task allocation optimization problem in Algorithm 4, which is

combined with Algorithms 2 and 3 to obtain an efficient implementation of the optimal

allocation and execution algorithm resilient to endogenous and exogenous disturbances.

This combination will be showcased in the next section, where the implementation of the

developed allocation and execution algorithm on a real multi-robot platform is presented.

115



Algorithm 4 Mixed centralized/decentralized implementation of task allocation and exe-
cution
Require:

Tasks hm, m ∈ {1, . . . , nt}
Mappings F , T
Parameters nr,m,min, nr,m,max, δmax, C, l

1: Evaluate Si, ∀i ∈ {1, . . . , nr} . (5.13)
2: procedure CENTRAL COMPUTATIONAL UNIT

3: while true do
4: Get robots’ state xi, ∀i ∈ {1, . . . , nr}
5: Calculate allocation α . (5.19)
6: Send allocation α−,i, ∀i ∈ {1, . . . , nr} to robots
7: Update matrices S and F if required . Algs. 2, 3
8: end while
9: end procedure

10: procedure ROBOT i
11: while true do
12: Receive allocation α−,i if ready
13: Calculate input ui and execute . (5.36)
14: end while
15: end procedure

5.4 Experimental Results

The resilient task prioritization and execution framework described in the previous sections

has been implemented on a team of mobile robots in the Robotarium [130], a remotely

accessible swarm robotics testbed. The scenario of the experiment is depicted in Fig. 5.7.

A team of 5 mobile robots, each endowed with a simulated camera system, are deployed

in a 3.6×2.4 m rectangular domain and have to perform 2 tasks: task t1 consists of 1 robot

moving along a desired trajectory navigating the environment from a starting point (red

circle in Fig. 5.7) to a goal point (red cross in Fig. 5.7); to perform task t2, 3 robots need

to escort the robot executing task t1 by arranging themselves into a ring around it while

simultaneously monitoring a point of interest with their cameras (red star in Fig. 5.7). The

physical robots are differential drive robots. In the experiment, we model their motion as
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Figure 5.7: Experimental scenario. The robots need to perform 2 tasks: 1 robot has to
navigate in the environment to reach a goal point (red cross) following the dashed trajectory,
while 3 robots have to escort it by arranging themselves around it (on the green ring) while
simultaneously monitoring a point of interest (red star). The brown blob in the middle
of the rectangular environment represents a low-friction zone where the motion of ground
robots is impeded.

well as that of their cameras using the following single integrator dynamics:


ẋi,1 = u1

ẋi,2 = u2

ẋi,3 = u3,

(5.42)

where pi = [xi,1, xi,2]T ∈ R2 represents the position of robot i, and xi,3 ∈ [0, 2π] is the

orientation of its camera. u1, u2, u3 ∈ R are the velocity inputs to the robot and to the

camera.

Task t1 is realized by tracking a predefined trajectory, while task t2 is achieved by

implementing a weighted coverage control [32, 8] in order to arrange the robots on the

green ring in Fig. 5.7. The two tasks are encoded by the following two CBFs, respectively:

h1,i(x, t) = −‖pi − p̂(t)‖2 (5.43)

h2,i(x, t) = −‖pi −Gi(x)‖2 − ‖xi,3 − ∠(p∗ − pi)‖2, (5.44)
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Figure 5.8: Robots, features, capabilities and tasks mappings used for the experiment on
the Robotarium. The features are wheels to locomote on the ground (f1), propellers to
locomote in the air (f2), and a camera (f3). The resulting capabilities are locomotion (c1)
and monitoring of a point of interest (c2). Tasks consist of navigating the environment to
reach a goal point (t1), escorting the robot navigating the environment by arranging around
it and monitoring a point of interest (t2).

where p̂ : R≥0 → R2 is the desired trajectory (dashed line in Fig. 5.7), p∗ ∈ R2 is the

position of the point of interest to monitor (red star in Fig. 5.7), ∠(p∗−pi) denotes the angle

formed by the vector p∗ − pi with the horizontal coordinate axis, and Gi(x) is the centroid

of the Voronoi cell corresponding to robot i. In order to achieve the desired arrangement of

robots performing task t2 around the robot performing task t1, the centroids Gi have been

evaluated as follows:

Gi(x) =

∫
Vi piφ(pi)dpi∫
Vi φ(pi)dpi

∈ R2 (5.45)

where Vi is the Voronoi cell of robot i, φ(pi) is the function

φ(pi) = e−k(‖pi−p̂(t)‖2−r2)2 , (5.46)

with k ∈ R>0 and r being the radius of the green circle in Fig. 5.7 (see [32] for details on

coverage control). These two parameters have been set to k = 100 and r = 0.4.

Moreover, in order to be able to perform the prescribed tasks, the robots need certain

features which allow them to exhibit the capabilities required by the two tasks. The map-

pings employed for the experiments are depicted in the bipartite graph in Fig. 5.8. The
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available features are wheels to locomote on the ground (f1), set of propellers to fly (f2),

and a camera (f3). The capabilities required to perform the given tasks are mobility (c1) and

monitoring (c2). The former is supported by features f1 or f2, while the latter by f3. To per-

form task t1, only c2 is required, while both capabilities are required for t2. Finally, robots

r1 to r4 are each endowed with wheels and a camera, while r5 is able to fly—depicted in the

Robotarium experiment by projecting down the shape of a quadcopter at its location—and

possesses a camera.

Moreover, since 1 robot is required to be assigned to task t1 and 3 robots to t2 for all

times, the following parameters have been set for the experiment:

T =

1 0

3 3

 (5.47)

nr,1,min = nr,1,max = 1 (5.48)

nr,2,min = nr,2,max = 3. (5.49)

Furthermore, the remaining parameters of (5.19) have been set to: C = 106, l = 10−6,

γ : s 7→ 5s, κ = 106, δmax = 103.

The total duration of the experiment is 80 seconds. During this time span, the resilience

of the allocation algorithm to both endogenous and exogenous disturbances is tested. At

time t = 15 s, the feature f3 of robot r3 is lost (endogenous disturbance), depicted by the

dashed red edge on the hypergraph in Fig. 5.8. Moreover, in the middle of the environ-

ment, a region of low friction is present (brown blob in Fig. 5.7). This prevents the robots

endowed with wheels from moving (exogenous disturbance).

In Fig. 5.9, snapshots recorded during the course of the experiment are shown. The

robots start on the right of the rectangular environment (Fig. 5.9a). The task prioritization

and execution framework results in the following allocation: r4 is allocated to t1 and there-

fore has to navigate the environment to reach the red cross, while r1, r2 and r3 are assigned
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Figure 5.10: Trajectory of the value of the Lyapunov function (A.30) recorded over the
course of the Robotarium experiments. At the beginning of the experiment, it decreases
as the robots perform the assigned tasks. The endogenous and exogenous disturbances at
t = 15 s and t = 50 s, respectively, make the value of the Lyapunov function jump to
higher values, which are promptly decreased by the execution of the tasks by the robots,
owing to the stability guarantees given in Proposition 5.9.

to t3 and thus need to escort r4 during its mission. Using coverage control, they arrange

themselves around r4 and point their cameras—whose field of view is depicted through a

yellow beam projected down onto the Robotarium testbed—at the red star (Fig. 5.9b). At

t = 15 s, the camera of r3 breaks (Fig. 5.9c). Therefore, it cannot keep on executing t2.

The constraints (5.19e) and (5.19f) result in r3 swapping its allocation with r4 (Fig. 5.9d).

Around t = 50 s, one of the robots, specifically r4, encounters the low-friction zone, and,

as a result, its motion is impeded (Fig. 5.9e). The update law (5.29) makes the specializa-

tion of r4 towards task t2 drop (depicted as progress bars next to r4 in Fig. 5.9f). When the

specialization of r4 towards task t2 reaches 0, the task allocation driven by the cost in (5.19)

changes once again to adapt to the unexpected environmental conditions: r5 is recruited to

perform t2 while r4 is relieved of its duty (Fig. 5.9g). The last snapshot (Fig. 5.9h) shows

the robot team successfully accomplishing both tasks as desired: 1 robot has reached the

goal point (red cross) while being escorted at all times by 3 more robots.

Another way of appreciating the resilience of the task allocation algorithm consists in

observing the trajectory of the Lyapunov function (A.30) defined in Proposition 5.9, which

is depicted in Fig. 5.10. At the beginning of the experiment, the value of the Lyapunov
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Figure 5.11: Comparison between simulations of centralized (5.19) and mixed central-
ized/decentralized (consisting of (5.19) and (5.36)) implementations of the optimization-
based task allocation in terms of difference between robot inputs. Without the pres-
ence of endogenous or exogenous disturbances, the difference between the inputs û—
obtained employing a centralized approach—and u—synthesized using a mixed central-
ized/decentralized strategy—is close to 0. The difference peaks around the times of the
endogenous and exogenous disturbances: this phenomenon is due to the delay introduced
by the time required to solve the MIQP (5.19). The allocation changes 34 and 11 iterations
later in the case of endogenous and exogenous disturbances, respectively. This effect due
to the computation time is highlighted in (5.40).

function V decreases as the robots perform the assigned tasks. The endogenous disturbance

at t = 15 s makes the allocation swap: by means of the stability properties highlighted

in Proposition 5.9, the allocation algorithm makes the robots perform forward progress

towards the accomplishment of the tasks—which results in a decrease of the Lyapunov

function for t > 15 s. Towards the end of the experiment, a similar situation is observed

where the exogenous disturbance of one of the robots incapable of moving anymore results

in a change of the task allocation. Again, owing to the aforementioned stability properties,

the execution of the tasks makes the Lyapunov function decrease again towards 0 after a

jump due to the allocation swap.

To conclude, as observed in Section 5.3, the developed task prioritization and exe-

cution framework would not be realizable in realistic scenarios unless a mixed central-

ized/decentralized strategy is implemented. In the Robotarium experiment, two commu-

nicating processes have run in parallel: one responsible for solving the task allocation

optimization problem (5.19), and one with the objective of synthesizing the controller
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for the robots given the task allocation, using (5.36). To show the difference between

the implementation of a purely centralized allocation strategy versus a mixed central-

ized/decentralized one, both have been simulated and the results in terms of difference

between robot inputs are reported in Fig. 5.11. From the graph, it is clear that without

the effect of disturbance, the difference between the inputs û—obtained employing a cen-

tralized approach—and u—synthesized using a mixed centralized/decentralized strategy—

would be very close to 0. The peaks around the times of the endogenous and exogenous

disturbances are due to the fact that in the mixed centralized/decentralized case, there is a

delay of n times steps (the effect of computation time in (5.40)) in recomputing the task

allocation. In fact, solving the MIQP (5.19) takes on average 100 steps required to solve

the QP (5.36), using the MATLAB CVX library [153] and the Gurobi solver [154].

5.5 Conclusions

In this chapter, we presented an optimization-based task prioritization and execution frame-

work that achieves a resilient and energy-aware task allocation strategy for heterogeneous

multi-robot systems. The approach lies its foundations on a proposed decomposition of

the ability of the robots at performing tasks into features, capabilities and specialization

of the robots. Moreover, the approach builds up on the notion of set-based tasks, where

each task executed by the robots is characterized by a set encoded using a control barrier

function. These modeling choices allow us to prioritize tasks by considering the different

specialization that different robots have at performing different tasks, effectively realizing a

heterogeneous task allocation. Furthermore, the optimization-based and pointwise-in-time

nature of the task allocation algorithm contribute to foster its resilience properties.

We showed ways to achieve resilience with respect to endogenous disturbances (failure

of a robot caused by loss of features) as well as exogenous disturbances (caused by unmod-

eled phenomena in the environment) which leverage the reactive nature of the formulation.

Moreover, we demonstrated how the formulation allows us to specify both the number of
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robots and the amount of capabilities required to perform a certain task. This way, thanks to

the energy-awareness of the algorithm, robots which are not required to perform tasks are

not utilized. Nevertheless, they can potentially be recruited at any point in time, achieving,

this way, autonomy-on-demand in the context of task allocation. The effectiveness of the

proposed approach has been showcased through a mixed centralized/decentralized imple-

mentation of the developed task allocation strategy on a team of mobile robots, undergoing

both endogenous and exogenous disturbances.
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CHAPTER 6

COMMUNICATION-CONSTRAINED DISTRIBUTED ESTIMATION

In the previous chapters, the energy spent by the robots to execute the assigned tasks has

been supposed to be proportional to the control effort u. This assumption, as argued ex-

tensively in Chapter 3, is reasonable whenever the robots control input serve to actuate

electric motors or actuators, or any other type of mechanical device, where the power is

proportional to the instantaneous control effort (such as applied torque and absorbed cur-

rent). Nevertheless, there are applications in which mobility is not the primary, or main,

source of energy consumption. In scenarios where robots are deployed in the field to col-

lect data and provide an estimate of environmental fields (e.g. temperature, pressure, air

quality, or occupancy map), the power requirements for sensing and communication are

not negligible compared to the one for mobility.

With the goal of deploying multi-robot systems for long-term estimation applications,

in this chapter, we address the problem of distributed estimation of spatial fields using mo-

bile sensor networks with communication constraints [155]. These constraints consist of

a maximum communication bandwidth which limits the amount of data that can be ex-

changed between any two nodes of the network at each time instant. An algorithm to select

the most significant data to be transferred between neighboring sensor nodes is developed

starting from derived analytical error bounds. Moreover, the motion of the network nodes is

controlled using a coverage control algorithm with the objective of minimizing the estima-

tion uncertainty of each of the nodes. Finally, the results of the implementation of the de-

veloped communication constrained distributed estimation algorithm on a team of ground

mobile robots in the Robotarium are reported, and the algorithm performance is evaluated

both in terms of estimation accuracy of a simulated spatial field, and of the amount of data

transferred. In the remainder of the chapter, the term sensor network will be used in place
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of multi-robot system, as in the considered scenarios, the robots are mainly viewed as sens-

ing units or sensor nodes which move in the environment to collect data and communicate

with neighboring nodes.

Mobile wireless sensor networks (WSNs) are widely employed in applications of envi-

ronmental monitoring, which typically involve spatial field estimation tasks (see, e. g., the

survey in [156]). Generally, a mobile sensor network consists of a large number of sensor

nodes which, in their basic configuration, are equipped with computation, mobility, sens-

ing, and communication units. These units are responsible for performing the basic tasks

for which the sensor nodes are designed: move in the environment and explore it, collect

measurement data, process them and communicate them either to a central unit or to their

neighboring nodes.

One of the main obstructions to achieving long-term deployment of mobile wireless

sensor networks is energy management. While mobility is the main source of energy con-

sumption, in most applications, communication is significantly more energy-consuming

than computation, as recognized in [157]. Thus, in long-term distributed estimation tasks—

whereby each node is supposed to build an estimate of an environment field by means of

local interactions with its neighbors only—the energy employed for communication needs

to be explicitly taken into account. In this chapter, we address this issue through the fol-

lowing two contributions:

(i) the errors introduced by the approximations adopted in a distributed estimation frame-

work versus a centralized one are quantified;

(ii) the results of this analysis are leveraged to develop an algorithm to select the most

significant data that need to be transferred between neighboring sensor nodes in a

WSN.

The remainder of the chapter is organized as follows. In the next section, Gaussian pro-

cess regression is briefly introduced, as it will be used in Sections 6.2 and 6.3 to develop
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a communication constrained distributed Gaussian process regression (DGPR) algorithm.

In Section 6.4, the results of the implementation of the proposed distributed estimation

framework on a real multi-robot system are presented.

6.1 Gaussian Process Regression

In this chapter, we use Gaussian process regression as the basic framework for spatial

field estimation [158]. Gaussian processes are flexible and exhibit good generalization

properties thanks to the lack of any underlying model of the process to estimate. In this

section, we briefly recall the Gaussian process regression and introduce a way of rendering

the estimation process distributed, requiring each node of a WSN to transfer only a fixed

amount of data with its neighboring nodes.

From the definition given in [158], a Gaussian Process (GP) is a collection of random

variables, any finite number of which have a joint Gaussian distribution. Let D ⊆ Rd

be the input space of a scalar-valued function f : D → R. Then, f is a GP if, for any

index set J ⊂ N and x = {xi}i∈J , xi ∈ D ∀i ∈ J , one has that f(x) = {f(xi)}i∈J are

Gaussian distributed. A GP is completely specified by its mean function, µ : D → R, and

its covariance function, also called kernel function, k : D × D → R. The value µ(xi) is

the mean of f(xi), for xi ∈ D, whereas k(xi, xj) is the covariance between f(xi) and f(xj)

for xi, xj ∈ D. Adopting the same notation used for multivariate Gaussian distributions,

we can write f ∼ GP(µ, k), with which we mean that, for a given x = [x1, . . . , xn],

xi ∈ D ∀i, we have f(x) ∼ N (µ(x), k(x, x)). In order to give rise to a valid covariance

matrix k(x, x), the function k needs to be symmetric and positive definite.

Spatial field estimations using GP regression are performed using GPs as a prior prob-

ability distribution over functions describing the field that is to be estimated. Once the

measurements of f at the points x = [x1, . . . , xM ], f(x) = [f(x1), . . . , f(xM)], have been

performed, one can calculate the mean and the covariance of the posterior probability dis-

tribution of the value of the function f at a test point x? ∈ D, denoted by f(x?) | f(x).
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This calculation has to be performed by each node of a WSN and is carried out by using the

marginalization properties of multivariate Gaussian distributions, resulting in the following

expression (see, e. g., [158]):

f(x?) | f(x) ∼ N
(
k(x?, x)Tk(x, x)−1f(x),

k(x?, x?)− k(x?, x)Tk(x, x)−1k(x?, x)
)
.

(6.1)

6.1.1 Compactly Supported Kernel Functions and Distributed Gaussian Process Regression

The naive computation of the conditional probability (6.1) at inference time requiresO(M3)

operations, where M is the number of observations, in order to invert the covariance ma-

trix k(x, x) ([158]). For this reason, in practice, the exact implementation cannot handle

problems with more than a few thousands observations. To overcome this computational

limitation of GPR, a variety of solutions have been proposed such as [80, 81, 82, 83], as

discussed above (see [159] for a unifying framework for sparse approximations in Gaussian

regression models).

The approximation technique we consider in this chapter in the context of distributed

estimation consists in sparsifying the covariance matrix k(x, x) by making use of com-

pactly supported (CS) kernel functions. This way, GPR can be performed in a distributed

fashion. A distributed approach that leverages CS kernel functions to allow spatial estima-

tion using mobile sensor networks is introduced in [85]. In this work, the authors allow

the sensor nodes to transfer all the measurements they have collected to their neighbors. In

the next section, we present a way of selecting and communicating the data that are most

relevant to the neighbors of a sensor node to improve its estimation. Before that, we give a

brief overview of CS covariance functions that are used in GPR and introduce the specific

one that is used in this chapter.

In [160], the author provides sufficient conditions for positive definiteness of radial

basis functions with compact support. Using the derived conditions, a series of positive
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definite and CS radial functions, known as Wu’s polynomials, can be produced. In the

context of spatial estimation for interpolating large datasets, [161] show that tapering a

covariance matrix with an appropriate CS positive definite function can significantly re-

duce the computational burden while still leading to asymptotically optimal estimations.

The benefits introduced by CS covariance functions in terms of computational efficiency in

spatial prediction and data interpolation are recognized also in [162]. A constructive way

of obtaining CS kernels using functions known as mollifiers—smooth functions with com-

pact support—is presented in [163], where the objective is once again that of significantly

reducing the computational complexity inherent in GPR. Finally, the use of CS Radial

Basis Fucntion (RBF) kernels for computational improvements and memory reduction in

function estimation is investigated in [164].

Due to their universality—the property of approximating continuous functions on com-

pact sets with arbitrary accuracy ([165])—in this chapter we employ CS Gaussian RBF

kernels ([166]). These are obtained by mollifying the Gaussian RBF kernel

k : (x1, x2) ∈ D ×D 7→ e−
‖x1−x2‖2

σ2 ∈ R, (6.2)

where σ is a parameter of the function, by multiplying it by the following CS kernel:

kc : (x1, x2) ∈ D ×D 7→ max

ß
0,

Å
1− ‖x1 − x2‖

l

ãν™
∈ R. (6.3)

In (6.3), the parameters l and ν need to satisfy the conditions l > 0 and ν > (d + 1)/2,

where d is the dimensionality of the vectors xi, in order to ensure positive definiteness of

kc. The product of the kernels in (6.2) and (6.3),

k̂ : (x1, x2) ∈ D ×D 7→ k(x1, x2)kc(x1, x2) ∈ R, (6.4)

is a CS kernel function and l is a parameter known as the effective range. The meaning
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of the effective range can be understood observing that ‖xi − xj‖ ≥ l ⇒ k̂(xi, xj) =

0 ∀xi, xj ∈ D. In the context of WSNs, this implies that two measurements taken at the

points xi and xj are uncorrelated, namely they do not influence each other. Therefore,

measurement points outside the effective range are not required to perform inference using

DGPR. Thanks to this property, Gaussian process regression performed using CS kernel

functions lends itself to be employed in distributed estimation applications. At the same

time, however, the lack of infinite support of the kernel function determines an estimation

error when compared to a centralized approach. Quantifying and analyzing this error, with

the objective of classifying data to be exchanged between neighboring sensor nodes, is the

subject of next section.

6.2 Distributed Gaussian Process Regression Error Analysis

The sparsification of the covariance matrix of a GP obtained by using CS kernel functions

is exploited to formulate a distributed version of GPR in [85]. The algorithm proposed

by the authors relies on communication between neighboring sensors in order to exchange

collected measurements. If the estimation task takes place over long time horizons, or if

the mobile sensor networks employed to perform it have energy constraints, reducing the

communication burden is an important factor for the successful execution of the estimation

task. This is because, after mobility, communication is the most energy-consuming task in

many mobile sensing applications ([157]).

With the objective of deploying mobile sensor networks over long time horizons, in this

section, a way of ranking the data to be transferred is presented, which can be used to select

only the most significant data that will be transferred between neighboring sensor nodes.

In Section 6.2.1 we obtain bounds on the error that is introduced by approximating a kernel

function using a CS version of it, whereas in Section 6.2.2 the estimation difference due

to the fact that each node of the sensor network has a different subset of the measurement

data is estimated.
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To this end, consider a mobile sensor network with N sensors deployed in a 2D envi-

ronmentX ⊆ R2 in order to estimate an environment field f : D → R, withX ⊆ D ⊆ R2,

such as temperature, light intensity, and concentration of a chemical substance. We denote

by xi ∈ X the position of a sensor nodes and by yi ∈ R the observation made by the sensor

at position xi. Note that the subscript i does not refer to a specific sensor node; instead, xi

and xj denote just two different points inX where two measurements have been performed.

Moreover, we denote by k the Gaussian RBF kernel and by k(xi, xj) its value computed as

in (6.2). Similarly, k̂ indicates the CS version of k, whose value k̂(xi, xj) is computed as

in (6.4).

6.2.1 Approximation Using Compactly Supported Kernel Functions

Let {(xm, ym)}m∈{1,...,M} be the set of measurements collected by a mobile sensor of the

WSN: {ym}m∈{1,...,M} are the measured values at locations {xm}m∈{1,...,M}. We want to an-

alyze the effect of using a CS kernel function instead of a kernel with infinite support. Given

a point x? ∈ X and letting x = [x1, . . . , xM ] and y = [y1, . . . , yM ] = [f(x1), . . . , f(xM)],

we denote by y? and ŷ? the means of the conditional probabilities f(x?) | y obtained using

the kernel functions k and k̂, respectively.

We now aim at finding a relationship between the estimation difference |y? − ŷ?| and

the difference between the kernel functions. To this end, using (6.1), one can write: |y? −

ŷ?| =
∣∣∣k(x?, x)Tk(x, x)−1y − k̂(x?, x)T k̂(x, x)−1y

∣∣∣. For sake of notational compactness,

we use the following conventions: Kxx = k(x, x), Kx?x = k(x?, x), K̂xx = k̂(x, x),

K̂x?x = k̂(x?, x). Using the definitions of vector and matrix l2-norms, and the fact that

0 < k(x1, x2) ≤ 1 ∀x1, x2 ∈ D, one can show that |y? − ŷ?| ≤ 2 ‖K−1
xx ‖

∥∥∥K̂−1
xx

∥∥∥ ‖y‖M 3
2 δ,

where δ = supxi,xj∈D

∣∣∣k(xi, xj)− k̂(xi, xj)
∣∣∣.

If the measurements {(xm, ym)}m∈{1,...,M} are linearly independent, the positive definite

covariance matrix k(x, x) is non-singular ([167]), which, in this case, is equivalent to the

fact that its minimum eigenvalue λmin(k(x, x)) is strictly positive. Hence, using properties
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of symmetric and positive definite matrices, one obtains:

|y? − ŷ?| ≤ 2

λmin(Kxx)λmin(K̂xx)
‖y‖M 3

2 δ <∞. (6.5)

Thus |y? − ŷ?| → 0 as δ → 0. This means that the distributed estimation performed

by the mobile sensor nodes of a WSN using CS kernel functions is close to the centralized

estimation obtained by using a kernel function with infinite support as long as their effective

range is large. This concept is formalized in the following.

Since k and k̂ are radial basis functions, we can define the following two functions that

depend only on the quantity r = ‖xi − xj‖ ∀xi, xj ∈ D:

K(r) = e−
r2

σ2 , K̂(r) = e−
r2

σ2 max
{

0,
(

1− r

l

)ν}
. (6.6)

K belongs to the space of continuous functions vanishing at infinity

C0(R) =

ß
f ∈ C0(R) : lim

x→±∞
= 0

™
, (6.7)

whereas K̂ belongs to the space of compactly supported continuous

Cc(R) =
{
f ∈ C0(R) : f has compact support

}
. (6.8)

Cc(R) is a dense proper subspace of C0(R) with respect to the uniform norm ‖f‖u =

supx∈R |f(x)|, as shown in [168]. Therefore, ∀f ∈ C0(R) and ∀ε > 0, there exists a

sequence of functions {fn}n∈N ∈ Cc(R) and N > 0 such that, ∀n > N , ‖fn − f‖u < ε.

This means that any function f ∈ C0(R) can be approximated with arbitrary accuracy using

compactly supported functions fn ∈ Cc(R). The approximation of functions obtained by

using series of CS functions can be exploited in the context of DGPR as explained in the

following.
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Taking the sequence of compactly supported functions

K̂n(r) =
{
e−

r2

σ2 max
{

0,
(

1− r

n

)ν}}
n∈N

, (6.9)

we have that, as n → ∞, δ = ‖K̂n − K‖u → 0. Therefore, in order to minimize the

estimation error |y? − ŷ?| due to the use of CS kernel functions, the objective of the sensor

nodes of a WSN is that of maximizing the effective range l. Note that for a sensor node,

with M collected measurements denoted by {(xm, ym)}m∈{1,...,M}, the effective range l is

bounded by maxr,s∈{1,...,M} ‖xr − xs‖. In conclusion, for a spatial estimation task, this

result means that it is desirable to have measurement locations that are as far apart as

possible in space. This way, the effective range, which is a parameter of the CS kernel used

for the GPR, can be increased and, consequently, the estimation error will be reduced. The

following proposition summarizes what has been derived so far.

Proposition 6.1. Let GP1 be a GPR model that employs the infinitely supported Gaussian

RBF kernel function in (6.2). Define GP2 as the GPR model that uses as kernel function the

compactly supported version of (6.2), given by (6.4). Provided that the two models, GP1

and GP2, are built using the same dataset {(xm, ym)}m=1,...,M , the estimation difference

|y? − ŷ?| at a point x? is linearly bounded by ‖K̂n −K‖u, where K and K̂n are defined as

in (6.6) and (6.9), respectively.

The following Corollary shows how DGPR which employs CS kernels generalize to

full GPR when the effective range l of the kernel goes to infinity.

Corollary 6.2. Under the same conditions of Proposition 6.1, the estimation difference

|y? − ŷ?| → 0 as the effective range l→∞.

These results will be employed in Section 6.3 to develop an algorithm used by the

nodes of the sensor network in order to select the data that need to be transferred to the

neighboring nodes, given a maximum communication bandwidth.
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6.2.2 Approximation Using Different Sets of Data

The difference between a centralized and a distributed approach for spatial field estimations

can be interpreted in terms of different sets of measurements as follows. If all sensor nodes

transferred all the data they have collected to a central unit, the entire set of measurements

would be available to a single computational unit that would be able to perform a full GPR.

In a distributed framework, instead, each sensor node can be seen as a computational unit

that has available only a subset of the entire set of measurements.

Therefore, we quantify the error introduced by only having available a subset of the

measurement data. In order to do that, we proceed as follows. Using the same notation

adopted in the previous subsection, we let {(xm, ym)}m∈{1,...,M} be the measurement data

available to a sensor node. We assume that an additional measurement (xM+1, yM+1) be-

comes available, and we define x = [x1, . . . , xM+1], y = [y1, . . . , yM+1], x̃ = [x1, . . . , xM ]

and ỹ = [y1, . . . , yM ]. We aim at quantifying the difference |y? − ỹ?| between the es-

timations at a given point x? ∈ X obtained incorporating or not, respectively, the new

measurement. More specifically, we want to find an upper bound for |y? − ỹ?| with the

objective of transferring only those measurements that might lead to a significant change

in the estimation.

Adopting the same notational shortcuts introduced in the previous subsection, and de-

noting by χ the location xM+1, we can proceed as follows.

Formally1 defining

K̄−1
x̃x̃ =

K−1
x̃x̃ 0

0 0

 , (6.10)

one has that

|y? − ỹ?| ≤
∥∥KT

x?x

∥∥ ‖y‖∥∥K−1
xx − K̄−1

x̃x̃

∥∥︸ ︷︷ ︸
∆K

, (6.11)

1K̄−1x̃x̃ is not the inverse of any matrix.
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where the quantity ∆K can be further simplified as follows:

∥∥K−1
xx − K̄−1

x̃x̃

∥∥ =

∥∥∥∥∥∥∥
 X Y

YT Z


∥∥∥∥∥∥∥ ≤ max{‖X‖, ‖Z‖}+ ‖Y‖ (6.12)

where
X = K−1

x̃x̃Kx̃χ

(
Kχχ −KT

x̃χK
−1
x̃x̃Kx̃χ

)−1
KT
x̃χK

−1
x̃x̃

Y = −K−1
x̃x̃Kx̃χ

(
Kχχ −KT

x̃χK
−1
x̃x̃Kx̃χ

)−1

Z =
(
Kχχ −KT

x̃χK
−1
x̃x̃Kx̃χ

)−1
,

(6.13)

and their norms satisfy

‖X‖ ≤ ‖K−1
x̃x̃Kx̃χ‖2‖Z‖

‖Y‖ ≤ ‖K−1
x̃x̃Kx̃χ‖‖Z‖

‖Z‖ =
∣∣∣(Kχχ −KT

x̃χK
−1
x̃x̃Kx̃χ

)−1
∣∣∣ .

(6.14)

Then, using the Woodbury and the Shermann-Morrison formulas, the following upper

bound for ‖Z‖ can be obtained:

‖Z‖ ≤

∣∣∣ 1
Kχχ

∣∣∣+
Ä‖Kx̃χ‖

Kχχ

ä2 ‖K−1
x̃x̃ ‖

1−
Ä‖Kx̃χ‖

Kχχ
‖K−1

x̃x̃ ‖
ä2 . (6.15)

In the next section, expression (6.15) will be used in order to decide whether the datapoint

(xM+1, yM+1) should be transferred between neighboring sensor nodes or not.

The result obtained in this section is summarized by the following proposition.

Proposition 6.3. Let GP1 and GP2 be two GPR models built using the infinitely supported

Gaussian RBF kernel function (6.2). Let {(xm, ym)}m=1,...,M+1 be a set of measurement

data. Then, the estimation difference |y? − ỹ?| at a point x?, defined in (6.11), is bounded

by a monotone increasing function of ‖Kx̃χ‖.

Proof. From (6.11), |y? − ỹ?| ≤ α∆K, α ∈ R, α > 0. Moreover, from (6.12), ∆K ≤
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max{‖X‖, ‖Z‖} + ‖Y‖. As derived above, the functions that bound their norms are all

monotone increasing functions of ‖Kx̃χ‖. Hence, max{‖X‖, ‖Z‖} + ‖Y‖ is a monotone

increasing function of ‖Kx̃χ‖, from which the result follows.

The bound introduced in Proposition 6.3 allows us to estimate the difference |y? − ỹ?|

by using the scalar quantity ‖Kx̃χ‖, without the need of computing the estimate y? using

the entire data set x. This result, together with the one of Proposition 6.1, will be leveraged

in the next section to define two algorithms required to implement the communication

constrained DGPR proposed in this chapter.

6.3 Communication Constrained Distributed Gaussian Process Regression

6.3.1 Maximization of the Effective Range

As stated in Corollary 6.2, in order to reduce the error due to the use of CS kernel functions,

the effective ranges of the sensor nodes have to be increased. From now on, we will need

to differentiate between two sensor nodes in a WSN, the receiver and the sender: we use

superscripts i and j to refer to the former and the latter, respectively.

Let {(x(i)
m , y

(i)
m )}m∈{1,...,M} be the M measurement data points stored by the receiver

node i. Because of the previous argument, when exchanging data with its neighbors, it is

desirable that a measurement data point (xM+1, yM+1) is received and incorporated if

max
m∈{1,...,M}

‖x(i)
m − xM+1‖ > li, (6.16)

li being the effective range of node i.

Let j ∈ Ni, where Ni ⊂ {1, . . . , N} is the index set of the neighbors of node i.

We require that the sender node j transfers a data point to node i only if (6.16) holds.

Therefore, node j has to know the locations {x(i)
m }m∈{1,...,M} of the measurement data points

of node i. In order for node i to communicate to node j the locations of its data points,

these can be compressed by computing the minimum volume ellipsoid that encloses all
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the data points {x(i)
m }m∈{1,...,M}. This can be done efficiently as shown, for instance, in

[169]. Moreover, [169] show that scaling the minimum area enclosing ellipse about its

center of a factor 1/d, d being the dimension of the measurement data points, results in

an ellipse that is completely inside the convex hull of the data points. In R2, denoting by

A
(i)
e ∈ R2×2 the matrix encoding length and directions of the axes of the minimum-area

ellipse corresponding to the measurement data points of sensor node i, and by c(i)
e ∈ R2 the

center of the ellipse, we define

x̄e = max
(x−c(i)e )TA

(i)
e (x−c(i)e )=1

‖x− xM+1‖, (6.17)

and

x̄ = max
x∈{x(i)m }m∈{1,...,M}

‖x− xM+1‖. (6.18)

Then, we can quantify the accuracy in the approximation of the measurement data points

by means of the minimum area enclosing ellipse as follows ([170]):

∣∣ ‖x̄e − xM+1‖ − ‖x̄− xM+1‖
∣∣ ≤ d− 1

d

»
λmax(A

(i)
e ), (6.19)

where λmax(A
(i)
e ) is the maximum eigenvalue of A(i)

e .

After receiving A(i)
e , c(i)

e and li from node i, node j can decide whether to transfer its

data to node i or not. Moreover, in case it needs to transfer data, given a maximum amount

of data that can be transferred, it can rank the data to be transferred according to the bound

(6.16) on the resulting li, as described in Algorithm 5.

6.3.2 Maximization of the Novelty of Measurement Data Points

In Section 6.2.2 a bound for |y? − ỹ?| has been derived. In the following, we briefly

recall the notion of feature space in the context of GPs, which will be used to formulate

an algorithm to select the measurement data that each sensor node has to transfer to its
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Algorithm 5 Selection of data to transfer — Part 1
Require: datasets Di, Dj of neighboring nodes i, j
Ensure: sorted measurement data of sensor j

procedure NODE i

[A
(i)
e , c

(i)
e ]← minimumAreaEnclosingEllipse(Di)

transfer [A
(i)
e , c

(i)
e ] to node j

end procedure
procedure NODE j

receive [A
(i)
e , c

(i)
e ] from node i

d = [ ]
for dj in Dj do

dmax ← maximumDistance
Ä
dj, [A

(i)
e , c

(i)
e ]
ä

d← append(dmax)
end for
sort(Dj) . according to d

end procedure

neighbors according to the bound (6.15).

So far, we presented what is known as the function-space view of a GP. In the feature-

space view of a GP, the function f to be estimated is expressed as f = φ(x)Tw, where

φ : D ⊆ Rd → D′ ⊆ Rn maps the inputs x to an n-dimensional, n ≤ ∞, inner product

space, the feature space. The variable w denotes a vector of weights to be estimated. In

this framework, one can show that the the covariance function can be expressed as the in-

ner product k(x1, x2) = 〈φ(x1), φ(x2)〉Rn in Rn ([158]). The matrix Kx̃χ = k(x̃, xM+1) in

(6.15) can be then expressed as Kx̃χ = 〈φ(x̃), φ(xM+1)〉Rn . Since, according to Proposi-

tion 6.3 the function on the right-hand side of (6.15) is a monotone increasing function of

‖Kx̃χ‖, using the Cauchy-Schwarz inequality leads to:

‖Z‖ ≤

∣∣∣ 1
Kχχ

∣∣∣+
‖K−1

x̃x̃ ‖
K2
χχ
‖φ(x̃)‖2‖φ(xM+1)‖2

1−
(
‖K−1

x̃x̃ ‖
Kχχ

)2

‖φ(x̃)‖2‖φ(xM+1)‖2

. (6.20)

Now, as in the case of different kernels described in Section 6.3.1, we want the sender

node j, neighbor of the receiver node i, to transfer only data that significantly influence the

prediction ỹ?. For this reason, node j would have to know the data points that node i has.
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However, as in the previous section, we do not want node i to transfer all its data points to

node j. In view of what has been derived in (6.20), if node i transfers the values ‖K̄−1
x̃x̃ ‖,

‖φ(x̃)‖2 ∈ R, node j can evaluate what are its measurement data points that can more

significantly influence the prediction ỹ?of node i, and transfer them only. Alternatively,

as before, if there is a maximum number of data points that can be transferred, node j

can rank its data according to the influence that they can have on the prediction ỹ?. The

ranking-based transferring strategy described in this section is summarized in Algorithm 6.

Algorithm 6 Selection of data to transfer — Part 2
Require: datasets Di, Dj of neighboring nodes i, j
Ensure: sorted measurement data of sensor j

procedure NODE i
transfer

[
‖φ(x̃)‖, ‖K−1

x̃x̃ ‖
]

to node j
end procedure
procedure NODE j

receive ‖φ(x̃)‖, ‖K−1
x̃x̃ ‖ from node i

d = [ ]
for dj in Dj do

b← evaluateBound(dj ,‖φ(x̃)‖, ‖K−1
x̃x̃ ‖) . (6.11), (6.12), (6.20)

d← append(b)
end for
sort(Dj) . according to d

end procedure

6.3.3 Information-Entropy-Based Sensor Motion Control

Following the approach in [85], we employ an area coverage control algorithm to move the

mobile sensors in the environment in which they are deployed. The approach presented by

[32] lends itself to accomplish this objective. The locational cost

Hi(xi) =

∫
X

‖xi − q‖2ϕi(q)dq (6.21)
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defined for each sensor node i, i = 1, . . . , N , can be minimized moving towards the

weighted centroid ρi of X (see [32]). As done in [85], the weighting function ϕi(q) is

set to

ϕi(q) = log det(k(q, q)− k(q, x(i))Tk(x(i), x(i))−1k(q, x(i))), (6.22)

where x(i) is the data collected by sensor node i. Assuming that it is possible to directly

control the velocity of each sensor node, ẋi, the decentralized motion control law

ẋi = γ(ρi − xi), i = 1, . . . , N (6.23)

γ > 0 being a control gain, minimizes the locational cost (6.21), and lets each node visit

regions of the environment where the variance of its estimation is higher. This allows it to

collect more data in those regions, which, in turn, has the effect of reducing the variance

of its estimation. In [85], this strategy is shown to minimize the information entropy of the

Gaussian random variable representing the spatial field f to estimate, conditioned on the

observations taken by each sensor node in the environment. The combination of motion and

communication strategies described in Sections 6.3.1 and 6.3.2 is described in Algorithm 7,

executed by each sensor node i.

Algorithm 7 Communication constrained DGPR
Require: nodes’ positions xi, datasets Di, control gain γ > 0, maximum number of data

points Nmax

Ensure: communication constrained DGPR
for i in {1, . . . , N} do

compute ρi . [32]
ẋi ← γ(ρi − xi)
move with velocity ẋi
for sensor node j neighbor of sensor node i do

Di ← sorted data . Algorithms 5 and 6
transfer first Nmax data points from Di to sensor node j

end for
end for

Algorithms 5, 6 and 7 allow a wireless sensor network to perform distributed estimation
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Figure 6.1: Surf plot of an example of environment field simulated over the Robotarium
testbed, which has to be estimated by the network of mobile sensors.

of a spatial field by exchanging only a limited amount of data between each other at each

point in time. This approach lends itself to be employed in long-term distributed estimation

applications, where communication requires a non-trivial amount of energy.

6.4 Experimental Results

The communication constrained DGPR algorithm developed in the previous section has

been deployed on a team of 16 ground mobile robots in the Robotarium ([130]), a re-

motely accessible swarm robotics testbed. Here, environment fields consisting in mixtures

of Gaussian surfaces (such as the one depicted in Fig. 6.1) have been simulated, together

with the sensor measurements collected by the robots. By varying the environment field

to estimate, as well as the initial positions of the robots in the environment, several exper-

iments have been performed. In the following, the results in terms of root mean square

(RMS) error are compared to a centralized estimation, in which all robots are able to com-

municate all collected data to a centralized computational unit.

Figure 6.2 shows how the RMS error changes over time during the course of one

of the experiments performed in the Robotarium. Setting the maximum communication

bandwidth—expressed in terms of maximum number of data points exchanged between

any two neighboring sensor nodes—6 different experiments have been performed for the

same environment field. The results show how increasing the communication bandwidth
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Figure 6.2: Plot of RMS error over time for one of the experiments performed in the Rob-
otarium. The different curves show how the RMS error decreases over time as the sen-
sor nodes exchange data between each other, as a function of the maximum number of
data points exchanged at each point in time by any two sensor nodes (see legend). The
blue curve at the bottom represents the centralized approach where data collected by all
robots are gathered by a central computational unit, which is able to perform full GPR. As
can be seen, the higher the communication bandwidth—in terms of number of data points
exchanged—the faster the decrease of the RMS error towards the centralized lower bound.

leads to a faster convergence of the estimation to the lower bound defined by the central-

ized GPR (blue line in Fig. 6.2). For slowly-varying environment fields that take place over

long time horizons, it is thus worthwhile saving energy by decreasing the maximum num-

ber of data points that can be communicated between neighbors, at the cost of decreasing

the speed of the estimation convergence.

In Fig. 6.3, the effective range li is depicted for 16 ground mobile robots employed in

one of the field estimation experiments. At iteration 120, the sensor nodes have collected

enough data so they can start exchanging them with the neighboring nodes. The graphs

show how Algorithms 5 and 6 are effective at selecting the data points to be exchanged in

order to increase li for each robot and consequently decrease the RMS estimation error.

Finally, Figures 6.4a to 6.4f show snapshots of the video of one of the experiments per-

formed in the Robotarium. The environment field to be estimated is overlaid in blue on the

testbed, whereas the estimation of the field performed by one of the sensor nodes is shown

in orange. Following Algorithm 7, the sensor nodes (ground mobile robots) move in the

environment and exchange data to increase their effective range (yellow circle). As can
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Figure 6.3: Effective range li of the 16 ground mobile robots recorded over the course of
one of the experiment conducted on the Robotarium. The sensor nodes start communicating
between each other once enough data has been collected (around 120 iterations). The
graphs show how the selection of exchanged data according to Algorithms 5 and 6 allows
the sensor nodes to quickly increase their effective range and correspondingly decrease the
RMS estimation error (cf. Fig. 6.1).

be seen, during the course of the experiment, the estimated field (orange) approaches the

ground truth (blue) as the node collects and exchanges data with its neighbors. This way,

an accurate estimate of the environment field is obtained using a distributed and communi-

cation constrained algorithm.

6.5 Conclusions

In this chapter, we proposed a solution to communication constrained distributed Gaussian

process regression. The main objective is that of enabling long-term deployment of mobile

wireless sensor networks for spatial field estimation. Since severe limitations on the battery

life of sensor nodes are caused by communication, we addressed the problem of estimating

spatial fields in a distributed manner while explicitly imposing communication constraints.

The proposed approach is based on the derivation of theoretical bounds on the estimation

error introduced by distributed algorithms. Given a maximum communication bandwidth,

we proposed an algorithm to select the most significant data to be transferred. The perfor-

mance of this algorithm have been demonstrated, both in terms of estimation accuracy and

amount of data transferred, on an team of mobile robots.
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Part II

Robot Design
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CHAPTER 7

THE SLOTHBOT

This chapter opens the second part of this thesis devoted to studying the deign principles

of robots envisioned for long-term deployment. In Part I, we referred to the persistent

operations of robots intended as the scenario in which robots are to remain functional for

time periods much longer than their battery life. In this Part II, we present two robot designs

conceived to enable and facilitate long-term operations.

In this chapter, we start by presenting the SlothBot, a solar-powered wire-traversing

robot envisioned for long-term environmental monitoring applications. The SlothBot is a

slow-paced and energy-efficient robot—hence its name—capable of moving on a mesh of

wires by switching between branching wires. Unlike ground mobile robots or aerial robots

employed in environmental monitoring applications, the use of wire-traversing robots al-

lows for longer-term deployment because of the significantly lower energy consumption.

Wire-traversing, coupled with the use of solar panels, facilitates the self-sustainability of

the SlothBot. Locomotion and wire-switching maneuvers are performed in a fail-safe fash-

ion, inasmuch the robot is always firmly attached to the wires, even when switching be-

tween branching wires. This is achieved by employing a two-body structure featuring an

actuated decoupling mechanism. In this chapter, we show the design and the motion control

of the SlothBot, together with the results of long-term monitoring experiments.

Wire-traversing robots are able to move along cables, wires, and similar infrastructure.

Due to their wire-traversing capability, these robots are suitable for applications in agri-

cultural robotics [22], environmental monitoring [21] or maintenance in hazardous places,

as in the case of power line inspection [17]. The latter has been the main catalyst for the

development of wire-traversing robots, see e.g. [18, 19, 20]. The geometric and mechani-

cal design of wire-traversing robots varies a lot among the existing mechanisms developed
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Figure 7.1: The SlothBot is a lightweight, solar-powered, minimally-actuated, wire-
traversing robot, capable of switching between branching wires and envisioned for long-
term environmental monitoring applications.

over the past 20 years, as discussed in [16]. Nevertheless, common features shared, to a

certain extent, among many of the architectures are: (i) simplicity of the system design and,

consequently, of the motion control; (ii) reduced localization errors and navigation com-

plexity; (iii) low energy requirements. These characteristics have allowed wire-traversing

robots to gain increasing interest in different applications domains.

The mechanical design of the SlothBot has been conceived to be simple and compact,

while at the same time allowing the robot to switch between branching wires and to re-

main safely attached to them even during the switching maneuvers. In order to reduce the

maintenance efforts and to minimize the risk of failures, robots targeting long-term appli-

cations should, in fact, be fail-safe and as simple as possible. We refer to long-term tasks

as tasks that occur over extended periods of time and, in particular, which require multiple

battery charges. In this sense, quadcopters, which are used for agriculture robotics applica-

tions, are not suitable for long-term tasks because of the high power they require to remain

operational, which forces them to visit charging stations (which could be locations where

batteries are recharged or swapped) [22].

We envision the deployment of the SlothBot for long-term environmental monitoring

tasks, required, for example, in agricultural robotics applications. In order to move in an
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point of
interest

slothbot
path

crossings

goal point

Figure 7.2: Example of monitoring applications in agricultural robotics using a wire-
traversing robot. Crosshatched areas represent different crops in a field. The robot (de-
picted in yellow) has to collect measurements at the point marked in green. It, therefore,
traverses the wires (on the red path), overcoming crossings, until it reaches the blue point,
closest to the green location.

agricultural field, the SlothBot has to be able to traverse a mesh of wires and, therefore,

to overcome crossingsure 7.2 represents an idealized agricultural field. The crosshatched

areas represent different crops in the field, while the thick black lines show a mesh of wires

that go across the field. The objective of the robot deployed in the field is that of monitoring

phenomena that take place over long time scales, such as crop growth. For this task to be

successfully completed, energy efficiency and fail safeness are required features, so that

maintenance and risk of failure are minimized. Moreover, as mentioned before, in order to

be able to move on the mesh of wires across the field, the robot has to traverse intersections

of wires. For this to be possible, the robot has to have the capability of switching between

different wire branches.

To summarize, the objectives that drove the design and development of the SlothBot

are:

• energy efficiency

• wire-switching capability

• fail-safeness.

Among the existing wire-traversing robotic platforms, the ones that fulfill all the listed
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wire

top lid

bottom gear

top gear

servo motors

tire

Figure 7.3: One of the two bodies of the SlothBot, with the nomenclature used in the
chapter. Part of the top lid has been made transparent to be able to fully see the top gear.

requirements exhibit complex designs that are, generally, less energy-efficient and not easy

to control, requiring careful motion planning.

The remainder of the section is organized as follows. Section 7.1 describes the multi-

body prototype of the SlothBot and, in particular, the locomotion principle, the wire-

switching mechanism, and the hardware architecture. Section 7.2 presents an improved

single-body design which has been deployed in the Atlanta Botanical Garden starting from

June 2020. Section 7.3 reports the results of long-term environmental monitoring experi-

ments performed with the multi-body and single-body SlothBot designs. Finally, the last

two sections of the chapter, Sections 7.4 and 7.5, propose motion control strategies that are

particularly suitable for controlling the SlothBot to move on a mesh of wires [171] and on

a single wire [172], respectively.

7.1 Multi-Body Mechanical Design

The SlothBot is composed of two bodies connected by an actuated hinge, as seen in Fig. 7.1.

Each body, depicted in Fig. 7.3, houses a driving motor connected to a rim on which a tire

is mounted. The use of wheels for locomotion is simple, energy-efficient and makes the

SlothBot safer when compared to brachiating robots. The switching maneuver is made
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top gears

bottom gears

tires

Figure 7.4: Kinematic scheme of the SlothBot highlighting its degrees of freedom. θff,
θfr, θrf, θrr are the angles of which the front and rear top gears of the front and rear body,
respectively, can rotate. These degrees of freedom are actuated by 4 servo motors. θh is
the relative angle between the two bodies of the SlothBot, and is also actuated by a servo
motor. ωf and ωr are the speeds of the 2 DC motors that move the SlothBot.

possible through four pairs of spur gears. Each pair is stacked vertically with the top gear

having a circumferential gap of 20◦. The four gears with such a gap will be referred to as

C-shaped gears throughout the section. The bottom gear is driven by a servo-motor and

allows orienting the C-shaped gear’s gap to three different positions. These positions are

top, left and right, which correspond to the robot going straight, turning right and turning

left, respectively. This novel wire-switching mechanism minimizes the required actuation

to only one servo-motor per gear pair, thus significantly increasing the simplicity and com-

pactness of the design. The fail-safeness of the SlothBot is guaranteed through the use of

the two bodies connected by a hinge: this consists of a rotational joint, whose axis lies in

the longitudinal plane of the robot, and it is actuated by a servo-motor. The servo-motor

ensures the alignment of the bodies with respect to the branches they are traversing. The

switching maneuver itself will be explained in more detail in Section 7.1.2. Figure 7.4

depicts the scheme of the robot highlighting its degrees of freedom. Relative to existing

designs that are capable of wire-switching, thanks to its locomotion principle and wire-

switching mechanism, the SlothBot is more energy- efficient as well as fail-safe.
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Figure 7.5: Diagram of forces acting on the SlothBot. The small triangles represent
hinge/cart supports. In the background the skeleton of the SlothBot is shown, highlighting
the contact points between its bodies and the wire. Td is the force generated by the motor
torque τ . Fi, i = 1, . . . , 4, are the reaction forces due to friction. N and R are the force
and the reaction due to the weight of robot and payload.

7.1.1 Locomotion Principle

The wire that the SlothBot has to traverse is compressed between the tires and the top lids

of both bodies. This lets the friction force remain high enough to allow the tires to move

the robot. Figure 7.5 depicts the forces involved in the dynamic equilibrium of the robot.

The triangular supports represent hinges/carts capable of reacting with the forces drawn in

the figure. The horizontal and vertical equilibrium equations reduce to:

4∑
i=1

Fi = 2Td, 2N = 4R, (7.1)

where Td is the force generated by the motor used for locomotion, Fi, i = 1, . . . , 4 are the

horizontal reaction forces exerted by the body due to friction, and N and R are the forces

and the reactions of the constraints, respectively, due to the weight of the robot and of the

payload. Starting from (7.1), we can calculate the motor torque required to carry a payload

of a given mass. Let m be the mass of the payload the robot has to move around. Examples

of payloads can be sensor modules or hard drives used to store collected measurements.

The minimum value of motor torque τ provided by each motor that is required to move the
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robot along the wire is given by:

τ = Tdr = 2Fr = 2µRr =
(m+M)g

2
µr, (7.2)

where r is the effective rolling radius of the tires [173], F = Td
2

(from (7.1) assuming

reaction forces equally distributed among the 4 support points), µ is the friction coefficient

between the wires and the robot body, R the normal reaction force exerted by the supports

(Fig. 7.5), M is the mass of the robot, and g is the acceleration due to gravity.

While moving on a mesh of wires, the SlothBot has to overcome wire crossings by

switching to different wire branches. The switching maneuver is the subject of the next

section.

7.1.2 Fail-Safe Wire Switching

Switching between different wires is required in all applications where the robot is con-

strained to move on a mesh of wires. As discussed in the Introduction, there have been

several solutions proposed to the wire-switching problem for wire-traversing robots. The

mechanism we propose in this section is robust against failures of the actuators and of the

actuators’ controller. More specifically, we designed the SlothBot in such a way that it

firmly remains on the wire in case the actuators fail during the wire switch, or in case the

motors are actuated at the wrong time. This is a key feature for robotic systems designed

for long-term monitoring tasks. In fact, as the probability of failures increases with time, a

way of at least mitigating unsafe consequences of these failures is required. The switching

method presented in this section fulfills this requirement.

Fig. 7.6a to Fig. 7.6d show the sequence of actions performed by the SlothBot to switch

to a different wire branch:

• Fig. 7.6a: Both bodies of the SlothBot are on the same wire, indicated by branch A,

the servo motors keep all the gaps of the C-shaped gears straight up, holding the top
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(a) Bodies 1 and 2 of the SlothBot are on branch A. (b) Servo motors of the front body move the top gears
(highlighted in red) to the left to disengage branch C.

(c) The rear body performs the same maneuver that
the front body performed in 7.6b.

(d) Both bodies of the SlothBot are on branch B.

Figure 7.6: Simulated wire-switching maneuver: the SlothBot switches from branch A to
branch B. The top lids, that ensure that the wire is in contact with the tires, have been
hidden to make the orientation of the top gears visible.
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(a) (b) (c)

Figure 7.7: The switching mechanism for the SlothBot. The red components of the robot
always remain above the wires, while the green components are confined to stay below
them. The C-shaped blue gear allows the red and green parts to be held together, while,
at the same time, allowing the wires to disengage from the robot during wire-switching
maneuvers.

lids on the wire while not allowing the wire to disengage. The objective is switching

from branch A to branch B. 3

• Fig. 7.6b: Body 1 is at the junction between the wires, its C-shaped gears are both

open allowing the branch C to disengage from it.

• Fig. 7.6c: Body 2 performs the same maneuver that Body 1 completed in Fig. 7.6b,

disengaging from branch C and moving onto branch B.

• Fig. 7.6d: Both bodies are on the same wire, and the SlothBot successfully switches

from branch A to branch B.

The described switching maneuver is made possible by the use of the C-shaped top

gears, with a circumferential gap of 20◦. In Fig. 7.7 the operation of these gears is shown

in more detail. In order to be able to switch between branching wires, the parts of the

robot that are above and below the wires, depicted in red and green, respectively, have to

be disconnectable. In fact, referring to the sequence in Figures 7.6a to 7.6d, the robot that

has to switch from branch A to branch B, has to cross over branch C. Thus, at some point

in time, opening a gap between the red and green parts is required. Nevertheless, in order

to keep the robot hung to the wires at any point in time, parts above and below the wires

have to remain connected.
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Figure 7.8: Example of turning one 4-way crossing into a sequence of four 3-way crossings.
This modification is required since the SlothBot is only able to traverse 3-way crossings.

In order to accomplish what has been described, an actuated decoupling mechanism

is proposed. This consists of a train of two spur gears per side per body of the SlothBot.

One gear is mounted on the servo motor (green gears in Fig. 7.7); the other one (blue gears

in Fig. 7.7) has a C-shape that allows the top lid to be held for any orientation of the gap

(i.e. for any value of the angles θff, θfr, θrf, θrr of Fig. 7.4). At the same time, the shape

of this gear allows wire branches to disengage from the left (Fig. 7.7a) and from the right

(Fig. 7.7c) of the robot. While the robot is driving straight on a wire, the C-shaped gears

are oriented as in Fig. 7.7b.

Because of the fail-safeness constraint on the switching maneuver, the SlothBot does

not have the ability of traversing crossings with more than 3 branching wires. However, this

is not a substantial limitation, since any crossing can be turned into a sequence of 3-way

crossings as shown in Fig. 7.8. Moreover, from Fig. 7.6 it is clear that the SlothBot cannot

traverse crossings when the turning angle is smaller than 90◦. However, this situation can

always be avoided by performing a two-step maneuver in which two obtuse-angle crossings

are overcome instead of one acute-angle crossing. Nevertheless, with the technique shown

in Fig. 7.8, all the resulting crossing angles can be made strictly larger than 90◦. Further-

more, the inability of the SlothBot to traverse crossings with more than 3 wire branches

allows the synthesis of a motion control law that will be particularly suitable for navigating

over meshes of wires, as will be explained further in Section 7.4.

7.1.3 Hardware Architecture

A prototype of the SlothBot has been realized using rapid prototyping technologies. All

the main components are 3D printed using standard PLA material. The printing time of
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Figure 7.9: Hardware architecture of the multi-body design of the SlothBot. The main pro-
cessing unit, ESP32, controls the DC motors, M1 and M2 through a motor controller, and
the servo motors, S1, S2, S3, S4, and S5, using PWM signals. The unit can communicate
with several sensors using the available I2C bus. Moreover, the ESP32 is Wi-Fi enabled,
thus allowing remote monitoring by handling requests of sensor data via a locally hosted
web server.

an entire SlothBot is about 30 hours using a commercial 3D printer. Assembly time is

30 minutes since all the other components are off-the-shelf. The realized prototype of

the SlothBot is 25.5 cm long, 11.2 cm high (13.5 cm with solar panels) and 6 cm wide

(31.2 cm with solar panes). The 2 motors are Micro Metal Gear motors, operating at 6V,

with 1000:1 reduction ratio, maximum speed of 32 rpm and maximum torque of 0.88 Nm,

which allow the SlothBot to move at a maximum speed of 5 cm/s. The servo motors used

to rotate the spur gears are standard 9-gram servo motors with an operating voltage of 5V

and a maximum torque of 0.16 Nm. The servo motor used to actuate the hinge between

the two bodies, required during the wire-switching maneuver, has a maximum torque of

1.52 Nm while operating at 5V. The robot is powered by a rechargeable 7.4V 1000 mAh

LiPo battery. Two solar panels (visible in Fig. 7.1), mounted on the sides of the SlothBot,

are used to recharge the battery when the light intensity is high enough. A maximum power

point transfer (MPPT) solar charging circuit is used to regulate the charging current based

on the solar cell characteristics. This way, the power efficiency, expressed as the ratio

between the power that is transfered to the battery and the power received from the sun, is

maximized at each time instant.
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Figure 7.9 shows the hardware architecture of the SlothBot. The main processing unit

onboard the SlothBot is the ESP32, an IoT-enabled microcontroller. The microchip directly

controls all the 5 servo motors, and, through a dedicated motor controller, the 2 DC motors

that drive the tires. The SlothBot is designed to carry sensors for environmental monitoring

applications. In Section 7.3 we show the results of a 1-day experiment during which the

SlothBot measured its environment’s temperature and luminosity. The ESP32 connects

to the sensors using the I2C protocol, usually available on sensor data acquisition boards.

Moreover, the microcontroller hosts a web server which handles requests of sensor data by

a client running on a desktop computer responsible for storing the collected measurements,

thus enabling remote environmental monitoring. See Appendix for list of components and

cost breakdown of the SlothBot prototype.

7.2 Single-Body Mechanical Design

In this section, a modified design of the SlothBot presented in the previous section is de-

scribed. The major difference is the fact that the multi-body structure has been substituted

by a single-body one where the wheels used for locomotion are mounted on top of the wire

where the robot moves. Figure 7.10 shows pictures of the computer-aided design (CAD)

model and the real robotic system. A sloth-like shell has been designed and realized using

additive manufacturing techniques for decorative purposes (see Fig. 7.12). In fact, in June

2020, this version of the SlothBot has been deployed in the Atlanta Botanical Garden, as

shown in Figures 7.11a to 7.11c.

As this SlothBot only moves on a single wire, the wire-switching mechanism presented

in the previous section is not required anymore. Consequently, the motors mounted to the

wheels arranged on top of the wires can be permanently connected to the power source

position below the wire for stability purposes. Except for the motors moving the wheels to

achieve locomotion with a similar principle to the one explained in the previous section, all

the electronic components are housed in a waterproof tube. The electronic board is depicted
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(a)

(b) (c)

Figure 7.10: Single-body design of the SlothBot. In Fig. 7.10a, the computer-aided design
(CAD) model is shown, with its physical realization being depicted in Fig. 7.10b. Fig-
ure 7.10c highlights the main components of this single-body SlothBot. The decorative
shell is being designed for the deployment of the SlothBot in the Atlanta Botanical Garden,
shown in Fig. 7.11 (see details in Figures 7.12a and 7.12b).
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(a)

(b)

(c)

Figure 7.11: The SlothBot deployed in the Atlanta Botanical Garden in June 2020.
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(a)

(b)

Figure 7.12: Details of the decorative shell that has been designed for the deployment of
the SlothBot in the Atlanta Botanical Garden. The eyes of the robot (visible in Fig. 7.12a)
consist of 2 RGB LEDs protected by a transparent acrylic dome, whose color and intensity
are independently controlled to relay information about the robot battery status.
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as a green plate in a transparent cylinder in Fig. 7.10, and it is positioned right below the

yellow plate where motors are mounted. The latter can be seen in Fig. 7.10 attached to the

blue wheels inside the transparent boxes on top of the yellow plate. Two solar panels are

mounted one on each side of the robot: one is used to power the entire electronic circuit,

while the other one serves as backup or to power additional application-specific circuitry

the robot can carry during deployment.

7.2.1 Hardware Architecture

The architecture of the single-body SlothBot, shown in Fig. 7.13 is significantly changed

compared to the one described in Fig. 7.9 related to the multi-body robot design. This al-

lows the robot to activate and deactivate its individual hardware modules separately. The

main computational unit consists of a Raspberry PI endowed with an external real time

clock (RTC). This feature allows the board to adapt its operation to different times of the

day and to different seasons. Moreover, the Raspberry PI has wireless connection capa-

bilities with which it is able to communicate with a base station. This is used, for ex-

ample, to log the data collected by the SlothBot, eliminating the need of carrying storage

media—which would unnecessarily increase the weight and the power consumption of the

robot—on board.

As the Raspberry PI requires about 500 mA of current to operate, a Teensy 3.2 is

mounted on the SlothBot as well. This microcontroller only needs 80 mA nominal cur-

rent to operate, and it is therefore responsible for the power management of the robot. It

communicates with the Raspberry PI through serial through which the latter can send re-

quests to be turned off and on to the former. Moreover, and equally importantly, the Teensy

interfaces directly with all sensors and actuators which are mounted on the SlothBot. These

are: 2 DC motors, 3 environmental sensors (measuring air properties, air quality, and light,

respectively), 2 ultrasonic sensors—used to avoid obstacles present on the wire on which

the SlothBot is moving—LEDs, and 2 power sensors—to monitor the power flowing in or
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out of the battery, as well as the one absorbed by the entire circuit.

The modular design can be subdivided into three groups, each characterized by its

power source, the 3 voltage regulators block in Fig. 7.13. Through these voltage regulators,

the Teensy can switch off entire sections of the circuit. In particular, the Raspberry PI, the

LEDs and the environmental sensors can be deactivated, significantly reducing the power

consumption of the SlothBot. The same holds for the motors, whose controller boards can

be activated only when there is the need for the SlothBot to move. Through the capabilities

described above, an intelligent power management logic can be devised in order to let the

SlothBot remain operational for truly long time periods.

7.2.2 Software Architecture

In order to let the SlothBot execute tasks (e.g. environmental monitoring) persistently, tech-

niques developed in Part I of this thesis can be leveraged, like, for example, the task persis-

tification framework described in Chapter 3. For the task persistification strategy to work, it

is assumed throughout Chapter 3 that a solution to the optimization problem guaranteeing

the persistent execution of tasks exists (i.e. the QP (3.51) is feasible). Nevertheless, there

are cases in which this is not the case. Consider, for example, the case of a solar-power

robot deployed in an environment characterized by unfortunate weather conditions, where

no light intensity is present to recharge its batteries. In the scenario, the survivability of

the solar-powered robot is compromised. For this reason, to manage the operation of the

SlothBot, we adopted a robot-programming paradigm called behavior-based programming

[174].

The hybrid automaton describing the behaviors of the SlothBot is shown in Fig. 7.14,

where each behavior (depicted as circles) is controlled by dedicated hardware and software

modules. The symbols tX are used to denote the times spent in state X , whereas ∆tX

represents the desired time interval to be spent by the SlothBot in state X . Moreover,

the values Adequate charge+ > Adequate charge− are used to avoid Zeno executions of
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Monitor Sleep

Shutdown/
Off

tMonitor > ∆tMonitor

AND

Adequate charge−

tMonitor > ∆tMonitor

AND

Low battery
Adequate charge+

tSleep > ∆tSleep

Figure 7.14: Hybrid automaton describing the behaviors of the SlothBot. Each behavior
(Monitor, Sleep, Shutdown/Off is managed by dedicated hardware and software modules.
In particular, the SlothBot starts in Monitor state. From here, based on time or sensor
readings, the Raspberry PI can send messages to the Teensy (see Fig. 7.13) in order to be
deactivated—by going to Sleep of Shutdown/Off mode—and reactivated based on a time
or sensor readings—in the case of the Sleep or Shutdown/Off modes, respectively.
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the automaton [175] when transitioning between the Monitor, Sleep, and Shutdown/Off

behaviors.

The transitions are based on time or sensors readings and are determined by high-level

logic software modules executed on the Raspberry PI and Teensy boards. Based on time

(∆tMonitor) or sensor readings (remaining energy in the battery), the former sends messages

through serial to the latter (see Fig. 7.13) to make the SlothBot transition into Sleep mode—

where Raspberry PI, environmental sensors and motors are shutdown until a pre-decided

amount of time, ∆tSleep, has elapsed—or to Shutdown/Off mode—where Raspberry PI,

environmental sensors and motors are shutdown until enough battery charge is measured.

7.3 Experimental Data

To show the effectiveness of the design of the SlothBot, we performed two long-term mon-

itoring experiments with the multi-body and the single-body designs, respectively, during

which we left the robots in the environment for 24 hours and 2 months, respectively. Note

that a battery life can keep the robot operational for about 12 hours (multi-body design)

and 2 days (single-body design), without any motors being activated. For this reason, these

classify as a long-term experiments.

Figure 3.11 in Chapter 3 shows the battery voltage and light intensity recorded over

the course of a 1-day long experiment performed using the multi-body SlothBot, while the

results of the deployment of the single-body SlothBot for a period of 2 months—during

which the picture in Fig. 7.10c has been taken—are reported in Fig. 7.15. The latter are in

terms of battery voltage and current flowing in and out of the battery. In the week April

13-20, for instance, the SlothBot underwent 3 charging cycles, noticeable because of the

negative current measured by the power sensor connected to the battery (see Fig. 7.13).

In the next two sections, motion control strategies for robots moving on a mesh of wires

and on a single wire, respectively, are developed. These control strategies lend themselves

to be employed to control the multi-body and single-body SlothBot, respectively, presented
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Figure 7.15: Battery voltage and current data measured by the power sensor connected to
the battery (see Fig. 7.13) during the course of a 2-month-period outdoor deployment of the
single-body SlothBot (see Fig. 7.10c). During the week April 13-20, one can see how the
SlothBot recharged its battery three times thanks to its solar panels. The voltage increases
towards the maximum nominal value of 3.7 V, with negative current values representing
currents flowing in the battery.

in this first part of the chapter.

7.4 Motion Control on Wire Meshes

In this and the following section, we present methods to allow wire-traversing robots to

spread across the environment where they are deployed, while being constrained to move on

a mesh of wires or on a single wire. Coverage control is used as an algorithm to implement

environmental monitoring by controlling the robots to arrange themselves optimally in the

environment. Nevertheless, the techniques to adapt coverage control to robots that move

on wires can be employed for other types of planning and control algorithms in presence

of such motion constraints.

In this section, we consider the coverage control problem for a team of wire-traversing

robots. The two-dimensional motion of robots moving in a planar environment has to

be projected to one-dimensional manifolds representing the wires. Starting from Lloyd’s

descent algorithm for coverage control, a solution that generates continuous motion of the

robots on the wires is proposed. This is realized by means of a Continuous Onto Wires
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(COW) map: the robots’ workspace is mapped onto the wires on which the motion of

the robots is constrained to be. A final projection step is introduced to ensure that the

configuration of the robots on the wires is a local minimizer of the constrained locational

cost. An algorithm for the continuous constrained coverage control problem is proposed

and it is tested both in simulation and on a team of mobile robots.

In Section 7.4.1, after a brief overview on the Lloyd’s algorithm for coverage control

for multi-robot systems, the definition of the constrained coverage control problem is in-

troduced and a solution to it is proposed. In Section 7.4.3 the main results of the section

are used to synthesize a motion controller for the robots on the wires in order to solve the

constrained coverage control problem. In Section 7.4.5, the results of the deployment of

the proposed algorithm on a team of mobile robots are reported.

7.4.1 Coverage on Wires

In this section we first introduce the notation that will be used throughout the chapter and

then derive the results on constrained coverage control. These will be used in Section 7.4.3

to derive the motion control law to be applied to a group of wire-traversing robots.

Locational Optimization

Let X ( R2 be a closed and convex polygon and ∂X its boundary. Let p1, . . . , pN ∈ R2

denote the locations ofN robots moving in the spaceX . We further assume that the motion

of the N robots can be modeled using the single integrator dynamics:

ṗi = ui, (7.3)

where ui ∈ R2 is the control input of robot i. Define

J (p1, . . . , pN) =
N∑
i=1

∫
Vi

‖x− pi‖2 dx (7.4)
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as the locational optimization function [32]. V(p1, . . . , pN) = {V1, . . . , VN} is called a

Voronoi partition of the polygon X , whose i-th Voronoi cell Vi corresponding to robot i is

defined as:

Vi = {x ∈ X : ‖x− pi‖ ≤ ‖x− pj‖ ∀j 6= i}. (7.5)

The integrand function in the expression of J (p1, . . . , pN) is an increasing function of the

Euclidean norm ‖·‖ and it describes the degradation of the sensing performances of the

robots.

The Lloyd’s descent algorithm is given by the following motion control law for robot i:

ui = kp(ρi − pi), (7.6)

where kp ∈ R+, and ρi ∈ R2 is the centroid of the Voronoi cell Vi. It is derived by solving

the following minimization problem using gradient descent:

min
p1,...,pN

J (p1, . . . , pN). (7.7)

In [32] the set of critical points of J (p1, . . . , pN) has been demonstrated to be the set of

centroidal Voronoi configurations on X where the location of each robot, pi, is the centroid

of the Voronoi cell Vi.

Constrained Locational Optimization

In order to describe the constrained motion of the robots on the wires, we define the fol-

lowing function that identifies the i-th wire:

gi : x ∈ X 7→ aTi x+ bi ∈ R, (7.8)
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Figure 7.16: Robots’ workspace X with the i-th wire defined by gi(x) = 0. The points pU
1

and pU
2 (gray circles) are the solution of the unconstrained locational optimization problem;

the points pC
1 and pC

2 belong to the set G, while pC?
1 and pC?

2 (gray squares) are solutions of
the minimization problem (7.11)

where ai ∈ R2 and bi ∈ R for i = 1, . . . , Nw, Nw being the number of wires present in the

environment. The wires are then identified as the set:

G = {x ∈ X : gi(x) = 0 for some i ∈ {1, . . . , Nw}} ∪ ∂X, (7.9)

where we assume that the boundary of X , denoted by ∂X , can also be traversed by the

robots. The wire-traversing constraint can be formalized as:

pi ∈ G ∀i ∈ {1, . . . , N}. (7.10)

Since the robots are constrained to move on wires, the problem we aim at solving is a

constrained version of (7.7). The integrand function in (7.4) is non-decreasing therefore, in

order to minimize (7.7), we want to minimize the distance from pi while remaining on the

wires. This can be done by solving the following minimization problem for each robot:

min
pC
i ∈G

∥∥pC
i − pU

i

∥∥ , (7.11)
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where pU
1 , . . . , p

U
N are solutions of (7.7). The superscripts U and C used in (7.11) distinguish

the positions of the unconstrained robots from those of the wire-constrained robots (see

Fig. 7.16).

The following theorem establishes the equivalence between the minimization problem

(7.7) with the wire-traversing constraints (7.10) and the minimization problem (7.11). We

say that two minimization problems are equivalent if they have a common local minimizer.

Theorem 7.1. Given the locational optimization function J (p1, . . . , pN) defined in (7.4),

the set G defined in (7.9) and pU
1 , . . . , p

U
N , solutions of (7.7), the following minimization

problems are equivalent:

minimize
p1,...,pN

J (p1, . . . , pN)

subject to p1, . . . , pN ∈ G
(7.12)

min
pC
i ∈G

∥∥pC
i − pU

i

∥∥ , i = 1, . . . , N. (7.13)

Remark 7.2. The equivalence established in Theorem 7.1 allows us to solve (7.13) instead

of (7.12). What this entails is that, instead of solving a constrained minimization prob-

lem, we can solve an unconstrained minimization problem and project its solution onto

the constraints’ set. Moreover, since we have the motion control law (7.6) that solves the

minimization problem (7.7), we can proceed by just projecting it onto the wires.

Remark 7.2 points out the advantages of solving an unconstrained optimization problem

followed by a projection of the solution onto the constraints set (as in (7.13)), over solving

a constrained minimization problem like (7.12). However, the set of constraints, G, is the

union of affine sets; in fact, each wire is defined as the set {x ∈ X : gi(x) = 0} = {x ∈

X : aTi x+ bi = 0}, i ∈ {1, . . . , Nw}. So, G is not convex. As such, the solution of (7.13)
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Figure 7.17: The areas shaded in red highlight regions where the operator that projects
points pU

i of the workspace X onto the closest wire is discontinuous. The wires are de-
picted as thick black lines, while the dash-dot lines represent the medial axis of the polygon
ABCDE formed by the wires. The gray circles are points of the blue trajectory that are
mapped to the gray squares onto G, the set of wires

requires optimization methods for non-convex problems. Even though the latter can be

also solved efficiently (see [121]), the main objective of the constrained coverage control

problem is that of generating a motion control law to be executed by the robots on the wires.

A solution to (7.13), i.e. an orthogonal projection onto the wires (as proposed in [99]), does

not fulfill this requirement. In Fig. 7.17 an example of a discontinuous projection on the

wires is shown. In particular, the set of discontinuity points coincides with the set of points

that have more than one closest point on the set G. It follows that the medial axes (or the

topological skeletons) of the polygons bounded by the wires, defined as the boundaries of

the Voronoi diagrams of the edges of the polygons, are the sets of discontinuity points for

the projected motion of the robots onto the wires.

7.4.2 From Projection to Mapping

In this section we describe a method to relax the conditions imposed by Theorem 7.1 in the

interest of producing a continuous motion of the points pi. This will be done by using a

Continuous Onto Wires (COW) mapping to the set G defining the constraints.
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Let

M : p ∈ X ( R2 7→ pM ∈ G ( R2 (7.14)

be the operator that maps the robot workspace X to the set of wires G, where pM does not

necessarily solve the program:

min
x∈G
‖x− p‖ . (7.15)

In order to find a suitable expression for such a mapping, elements from complex anal-

ysis will be required. For this reason they are recalled in the following.

First of all, let us define the following isomorphism between R2 and C:

I :

a
b

 ∈ R2 7→ a+ ιb ∈ C, (7.16)

where ι is the imaginary unit. Moreover, in the following we will use <(·) to denote the

operator that extracts the real part of a complex number. With abuse of notation, we denote

with ‹X = I(X) ( C the image of the robots’ workspace X through the isomorphism

(7.16). Let p̃1, . . . , p̃N ∈ ‹X ( C be the robots’ positions in the complex plane. Similarly,

we can define g̃i and G̃.

The following results will be used in the definition of a mapping (7.14).

Definition 7.3 (Conformal map [176]). Let X1 and X2 be two open subsets of C. A map

f : X1 → X2 is said to preserve angles if for every two differentiable curves γ1 : t ∈

[−ε, ε] ( R 7→ c ∈ C and γ2 : t ∈ [−ε, ε] ( R 7→ c ∈ C, where γ1(0) = γ2(0) = c?,

the angle formed by their tangents at c? is the same as the angle formed by the tangents

of the mapped curves f ◦ γ1 and f ◦ γ2 at f(c?). A conformal map from X1 to X2 is a

differentiable bijection that preserves angles.

With this definition, we can now state the following theorem.

Theorem 7.4 (Riemann mapping theorem [177]). LetX ( C be a simply connected region
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Pk

P1

P2

Figure 7.18: The polygonal tessellation induced by the wires consists of all closed and
convex polygons Pk as they results from the intersection of half planes

of the complex plane, and let x ∈ X . Then, there is a unique conformal map f : X → D,

where D is the unit disc, such that f(x) = 0 and f ′(x) = 0.

From this theorem the following corollary can be proven.

Corollary 7.5. Two simply connected regions of the complex plane, X1, X2 ( C, are

homeomorphic.

Fact 7.6. The wires defined by the set G̃ induce a polygonal tessellation of ‹X . The resulting

polygonal areas Pk are closed and convex as they come from the intersection of half planes

(see Fig. 7.18).

Using the result of Corollary 7.5, we can construct a mapping from each of the polygons

of the polygonal tessellation introduced in Fact 7.6 onto their boundaries, i.e. the wires.

This can be realized as follows.

Let Pk ⊆ ‹X ( C, k = 1, . . . , K be the K polygons resulting from the polygonal

tessellation defined by the wires G̃, and let Gk ∈ C, k = 1, . . . , K be their corresponding

centroids. Let lkj ( ‹X ( C, j = 1, . . . , J denote the J sides of the polygon Pk, and

p
(1)
kj ∈ C and p(2)

kj ∈ C the two endpoints of the side lkj . Note that G̃, the subset of the

complex plane isomorphic to G through (7.16), indicated with abuse of notation by I(G),

can be defined as:

G̃ = I(G) =
K⋃
k=1

J⋃
j=1

lkj. (7.17)
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Figure 7.19: Quantities used in the formulation of a COW map M̃

Let us define Tkj ( ‹X ( C as the triangle with vertices p(1)
kj , p(2)

kj and Gk. Fig. 7.19 shows

all the quantities that have been just introduced.

With these premises, let us define the mappings mkj as follows:

mkj =


Tkj ( ‹X ( C→ lkj ( ‹X ( C‹X \ Tkj ( ‹X ( C→ {0} ( C.

(7.18)

So, the mapping

M̃ : x ∈ ‹X ( C 7→
K∑
k=1

J∑
j=1

mkj(x) ∈ G̃ ( C (7.19)

transforms the robot workspace ‹X ( C to the set of wires G̃ ( C in the complex plane.

Remark 7.7. Let x ∈ C and p ∈ R2 such that I(p) = x. By the properties of the isomor-

phism (7.16) and by the definitions of the mappings (7.14) and (7.19), we characterize M

by the following equations:

M̃(x) = I
(
M
(
I−1(x)

))
M(p) = I−1

Ä
M̃ (I(p))

ä
.

(7.20)

Now the expression ofmkj is left to define. In order to do so, let us introduce a particular
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<

=

Figure 7.20: Schwar-Christoffel mapping between the upper-half plane H and the triangular
region Tkj of the complex plane. The prevertices w1 and w2 are mapped to the vertices of
the triangle p(1)

kj and p(2)
kj , respectively

conformal mapping.

Definition 7.8 (Schwarz-Christoffel mapping [178]). A Schwarz-Christoffel mapping is a

conformal mapping from the upper half-plane H = {x ∈ C : <(x) ≥ 0} (the canonical

domain) to a region P of the complex plane bounded by a polygon (the physical domain).

Its expression is given by:

f : x ∈ H 7→ x0 + c

∫ x

x0

J−1∏
j=1

(χ− wj)αj−1 dχ ∈ P, (7.21)

where x0, c ∈ C are two constants that translate, rotate and scale the polygon that bounds

P, J is the number of sides of the polygon, αj is the interior angle at the j-th vertex of the

polygon and wj ∈ R, j = 1, . . . , J − 1 are called the prevertices and have the property of

being mapped to the vertices of the polygon. In case of triangular domains, i.e. J = 3, the

prevertices can be arbitrarily set to any location on the real axis.

Definition 7.9. Let

fkj : H→ Tkj (7.22)

be the Schwarz-Christoffel mapping between the upper-half plane and the triangular region

Tkj defined above. The real axis is mapped to the boundary of Tkj and the prevertices w1

and w2 are mapped to p(1)
kj and p(2)

kj , respectively (see Fig. 7.20). Because of the fact that
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for triangular physical domains the prevertices can be arbitrarily chosen on the real axis,

we assume that their value does not depend on the indexes k and j.

The following theorem defines a COW map, i.e. a continuous and onto mapping, from

the robots’ workspace ‹X to the set G̃ defined in (7.17).

Theorem 7.10. Let fkj be the Schwarz-Christoffel mapping defined by (7.22), w1 and w2

the prevertices of the mapping fkj; let p(1)
kj , p(2)

kj andGk the vertices of the triangular bound-

ary of the region Tkj . The mapping M̃ defined in (7.19) wheremkj is given by the following

onto mapping:

mkj(x) =


p

(1)
kj if <

Ä
f−1
kj (x)

ä
≤ w1

fkj
Ä
<
Ä
f−1
kj (x)

ää
if w1 < <

Ä
f−1
kj (x)

ä
< w2

p
(2)
kj if <

Ä
f−1
kj (x)

ä
≥ w2,

(7.23)

defines a continuous mapping from the robots’ workspace ‹X \ Å K⋃
k=1

{Gk}
ã
( C to the set

G̃ ( C defined in (7.17).

Remark 7.11. Solving an optimization problem such as (A.41) performs a projection op-

eration in the physical domain P of a Schwarz-Christoffel mapping. The same result is

obtained in the canonical domain H by means of the operator <(·).

7.4.3 Motion Control

The COW map M̃ defined by Theorem 7.10 allows the direct derivation of a motion control

law to be executed by each of the robots on the wires. The resulting motion is continuous

and inherently takes into account the constraints defined by the wires.
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Mapped Gradient Descent

As the motion control law derived in this section are to be applied to all the robots without

distinction, the subscript i will be dropped from now on.

Note also that all the quantities used in the following are complex numbers, subsets

of the complex plane and complex-valued functions of complex variables. Due to the

isomorphism (7.16), the formulation in C and that in R2, even though formally different,

are substantially equivalent.

The COW mapping derived in Theorem 7.10 that transforms the domain ‹X into G̃ is

denoted by:

xM̃ = M̃(x), (7.24)

where M̃ is defined in (7.19). Differentiating (7.24), one obtains:

ẋM̃ =
∂M̃

∂x
ẋ =

∂M̃

∂x
kp(ρ̃− x), (7.25)

where ρ̃ = I(ρ) and ẋ = kp(ρ̃− x) comes from (7.6).

As far as the expression of ∂M̃
∂x

is concerned, starting from (7.19), it can be written as:

∂M̃

∂x
=

K∑
k=1

J∑
j=1

∂mkj

∂x
. (7.26)

It has to be noticed that, since the operator <(·) is not differentiable, ∂mkj
∂x

is not well-

defined. However, since we are interested in deriving a motion control law for the robots

on the wires, we actually need only the directional derivative of M̃ andmkj along the wires,

denoted by ∂G̃M̃ and ∂G̃mkj , respectively. Consequently, we need the directional derivative

of< only along the real axis. The latter is well-defined and it is identically equal to 1. Thus,
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we can write:

∂G̃mkj =


0 if <

Ä
f−1
kj (x)

ä
≤ w1

m′kj if w1 < <
Ä
f−1
kj (x)

ä
< w2

0 if <
Ä
f−1
kj (x)

ä
≥ w2

, (7.27)

where m′kj is given by

m′kj =

Å
∂fkj
∂x
◦ <
Ä
f−1
kj (x)

äãÅ∂<
∂x
◦ f−1

kj (x)

ã
∂f−1

kj

∂x
=

=

Å
∂fkj
∂x
◦ <
Ä
f−1
kj (x)

äãÄ
1 ◦ f−1

kj (x)
ä ∂f−1

kj

∂x

=

Å
∂fkj
∂x
◦ <
Ä
f−1
kj (x)

äã 1
∂fkj
∂x

,

(7.28)

where
∂fkj
∂x

=
2∏
i=1

(x− wi)αi−1, (7.29)

and all the quantities used here and specified in Definition 7.8 are specific for the triangular

region Tkj .

The theorem stated below follows directly from the derivation of (7.25).

Theorem 7.12. Let xi = I(pi), i ∈ {1, . . . , N} be the positions of N robots expressed as

points of the complex plane C. Let‹J (x1, . . . , xN) = I
(
J
(
I−1(x1), . . . , I−1(xN)

))
(7.30)

be the locational cost defined based on (7.4). The motion control law

ẋM̃ = ∂G̃M̃ ẋG̃, (7.31)

where the subscript G̃ indicates quantities mapped onto the wires, applied to robots whose

motion is constrained to be in the set G̃ = I(G) ( C defined in (7.17), solves the con-
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strained optimization problem:

minimize
x1,...,xN

‹J (x1, . . . , xN)

subject to M̃(xi) = xi ∀i ∈ {1, . . . , N}.
(7.32)

7.4.4 From Mapping to Projection

In Section 7.4.2, in order to derive a motion control law that ensures a continuous motion

of the robots on the wires, we relaxed the constraints imposed in the optimization problems

defined in Theorem 7.1. Now we propose an algorithm that restores those constraints and

ensures the best coverage quality that is achievable when the robots are constrained to move

on wires.

Let us start stating the following result.

Fact 7.13. Employing the Euclidean distance as a metric to measure the distance d(x, l)

between a point x and a segment l, required for the evaluation of Voronoi partitions, the

Voronoi cells determined by the edges of a convex polygon are convex polygons themselves.

This also means that the medial axis of a convex polygon consists of all straight lines.

This allows the definition of conformal mappings, similar to fkj introduced in (7.22),

between the upper-half plane H and the convex and polygonal Voronoi cells related to

polygon Pk.

With the objective of mapping the point x ∈ X to its closest wire, each triangular region

Tkj of polygon Pk is continuously deformed to its corresponding Voronoi cell

Vkj = {x ∈ Pk : d(x, lkj) ≤ d(x, lkj̄) ∀j̄ 6= j}, (7.33)

with which it shares the side lkj . See Fig. 7.21a to Fig. 7.21e.

The optimization problem (7.32) is solved using gradient descent that results in the

control law (7.25) applied to each robot. Let us define τf as the time instant at which the
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(a) (b)

(c) (d) (e)

Figure 7.21: Continuous deformation of the triangular regions Tkj in 7.21a to the corre-
sponding Voronoi cells Vkj in 7.21e

velocities given by kp(ρ̃− x) become sufficiently small for all the robots. For a given time

interval [τf , τf + τ ], let

Dkj : t ∈ [τf , τf + τ ] 7→ T
(t)
kj , (7.34)

with

Dkj(τf ) = T
(τf )

kj = Tkj (7.35)

Dkj(τf + τ) = T
(τf+τ)

kj = Vkj, (7.36)

be the deformation operator that transforms the region Tkj into the Voronoi cell Vkj during

the time interval [τf , τf + τ ].

Following the definition in (7.19), let us define the following COW map at time t ∈

[τf , τf + τ ]:

M̃ (t) : x ∈ ‹X ( C 7→
K∑
k=1

J∑
j=1

m
(t)
kj (x) ∈ G̃ ( C, (7.37)

where

m
(t)
kj =


T

(t)
kj ( ‹X ( C→ lkj ( ‹X ( C‹X \ T (t)

kj ( ‹X ( C→ {0} ( C.
(7.38)
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The velocity ẋM̃(t) is evaluated using (7.31) where M̃ (t) is used in place of M̃ .

Remark 7.14. By definition of Voronoi cell (7.33), once the transformation (7.34) is com-

pleted, i.e. t = τf + τ , the COW map M̃ (τf+τ) transforms each point x to a point belonging

to G̃ on the closest wire. Therefore, the robots can execute gradient descent on the wire on

which they are at time t ≥ τf + τ in order to get to the positions that minimize (7.30).

Algorithm 8 Continuous Constrained Coverage Control

Require: x (robot initial position), M̃ , M̃ (t), Dkj
Ensure: Continuous Constrained Coverage Control

while |kp(ρ̃− x)| ≥ ε do
ũ← compute ẋM̃

execute ũ
end while
for t = τf → τf + τ do

for all adjacent regions Tkj do
T

(t)
kj ← Dkj(t)
m

(t)
kj ← compute m(t)

kj

end for
M̃ (t) ←∑K

k=1

∑J
j=1m

(t)
kj (x)

ũ← compute ẋM̃(t)

end for
execute gradient descent on the current wire

Algorithm 8 outlines the motion control strategy executed by each robot on the wires.

The resulting behavior is depicted in Fig. 7.22a to Fig. 7.22d.

Based on the derivation of Algorithm 8, we can state the following theorem.

Theorem 7.15. Algorithm 8 solves the following constrained optimization problem:

minimize
x1,...,xN

‹J (x1, . . . , xN)

subject to x1, . . . , xN ∈ G̃.
(7.39)
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(a) t = 0 (b) t < τf

(c) t = τf (d) t ≥ τf + τ

Figure 7.22: Motion of the robots under coverage control constrained by the wires resulting
by the application of Algorithm 8. The thick lines are the wires that constrain the motion
of the colored robot. The gray robots move according to the control law derived from the
minimization of the locational cost (7.4). The colored area represent the Voronoi cells (7.5)
related to the gray robots. Each gray robot is linked to the corresponding colored robot on
the wires to which it is mapped
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7.4.5 Experimental Results of Simulated Robots on Wire Meshes

The algorithm to execute the continuous constrained coverage control described in Algo-

rithm 8 has been deployed on a swarm of ground mobile robots on the Robotarium, a

remotely accessible swarm robotics testbed [52], where the robots have been artificially

constrained to move on wires.

The algorithm has been implemented in MATLAB and submitted through the Robotar-

ium web interface1 in order to be executed on the real robots. Fig. 7.23a to Fig. 7.23e show

images taken from the video recorded during the experiments. An overhead projector visu-

alizes the wires on which the robots are constrained (thick gray lines). The virtual robots

projected on the testbed are linked to the real ones by means of the mappings M̃ and M̃ (t)

and they move in order to minimize the unconstrained locational cost (7.4). In Fig. 7.23a

the robots are initialized to random positions on the wires. In Fig. 7.23b and Fig. 7.23c

the robots execute the control law (7.31) moving on the wires until the velocities of the

projected robots are below a minimum threshold (Fig. 7.23d). At this point the deforma-

tion (7.34) is performed, and executing gradient descent on the wires on which the robots

are at time τf + τ brings them to the final positions that solve the constrained locational

optimization problem (7.39).

7.5 Motion Control on Single Wire

In the previous section, we presented a control strategy to allow robots moving on a mesh

of wires to spread optimally in the environment in which they are deployed in order to

monitor it. This method is suitable for the multi-body SlothBot presented in Section 7.1,

which is able to switch wire branches and therefore successfully locomote on a mesh of

wires.

In this section, we consider a constrained coverage control problem for a team of mobile

robots which are asked to provide sensor coverage over a two-dimensional domain, while
1http://www.robotarium.org/
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(a) Beginning of the experiment (t = 0 seconds) (b) t = 23 seconds

(c) t = 41 seconds (d) t = τf = 80 seconds

(e) t = 99 seconds

Figure 7.23: Algorithm 8 is deployed on a team of robots on the Robotarium. An overhead
projector is visualizing information related to the experiment: the thick lines are the wires
on which the real robots are constrained to move, the motion of the the projected robots is
determined by solving the minimization problem (7.7), the thin lines are the boundary of
the Voronoi cells (7.5). As in Fig. 7.22, the projected robots are linked with the robots on
the wire to which they are mapped
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being constrained to only move on a curve. This, in turn, is a motion control strategy

tailored to the single-body SlothBot design, described in Section 7.1, which only moves on

a single wire, without the possibility of switching wire branch.

This constrained coverage control problem is tackled by defining a modification to the

locational cost for unconstrained coverage control (7.4), which incorporates the constraints.

Moreover, a convex relaxation is proposed which allows us to efficiently minimize a convex

approximation of the cost using a decentralized strategy. The resulting algorithm is imple-

mented on a team of mobile robots whose motion is artificially constrained to a curve.

In this section, we introduce a coverage control algorithm that addresses the problem

of how to cover a closed and convex planar domain, D ⊂ R2, with a team of N agents

constrained to move on a smooth curve2. We consider the coverage objective of the team

with respect to the density function in the two-dimensional environment as in [32], but

reformulate the locational cost to include the constraint that confines the robots to move on

a one-dimensional manifold. A convex relaxation is then introduced such that the problem

can be solved efficiently in a decentralized fashion.

In Section 7.5.2 we present the formulation of the coverage problem for planar robots

that are constrained to move on curves. A decentralized algorithm to minimize a locational

cost is proposed, which leverages a convex relaxation of the cost. Section 7.5.5 features

the application of the derived algorithm to a team of ground mobile robots tasked with

environment surveillance.

7.5.1 Constrained Locational Optimization

The employment of wire-traversing robots for environmental monitoring applications can

be advantageous in terms of motion planning and control as well as energy requirements. In

order to perform monitoring tasks while being constrained to move on wires, a constrained

locational optimization problem can be defined.

2X , used in the previous section to denote D, is utilized in this section to represent the ensemble state of
the robots constrained to move on a curve, as formally defined later
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In this section, we illustrate the problems that may arise while trying to minimize the

cost in (7.4) in the case of robots constrained to move on a curve defined in the domain D.

To this end, let

c : s ∈ I ⊂ R 7→ p ∈ D ⊂ R2 (7.40)

be an arc-length parameterized, simple, regular and C2(I◦) curve, i.e. a curve for which

dc
ds
6= 0 ∀s ∈ I , and twice continuously differentiable in the interior of the interval I . We

define the set

C = {c(s) : s ∈ I} ⊂ D ⊂ R2 (7.41)

as the set of points belonging to the curve. We will refer to c and C as the curve, making

the distinction clear when required. Thus, the constrained locational optimization problem

can be expressed as follows:

min
P
H(P )

s.t. pi ∈ C ∀i ∈ N ,
(7.42)

or,

min
S
Hc(S), (7.43)

where Hc(S) = (H ◦ c)(T ) =
∑

i∈N
∫
Vi ‖c(si) − q‖2φ(q) dq and S = {s1, . . . , sN} ⊂

I × . . .× I s.t. c(si) = pi ∀i ∈ N . Assuming the robots can move according to single inte-

grator dynamics on the curve, solving (7.43) using gradient descent leads to the following

decentralized control law:

ṡi = −∂Hc

∂si
(T ) = κ

dc

ds

T

(si) (ρi − c(si)) ∈ R, (7.44)

κ > 0 a proportional constant, where chain rule has been leveraged to express ∂Hc
∂si

in terms

of ∂H
∂pi

.
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Then, the evolution in time of the costHc is given by:

Ḣc =
∂Hc

∂si
ṡi = −κ

∣∣∣∣∂Hc

∂s

∣∣∣∣2
= −κ

∣∣∣∣∣dcdsT (si) (ρi − c(si))
∣∣∣∣∣
2

≤ 0.

(7.45)

The expression in (7.45) vanishes in one of the following cases:

(i) c(si) = ρi,

(ii)
dc

ds
(si) = 0, or

(iii) ρi − c(si) ⊥
dc

ds
(si).

In the first case, the position of robot i coincides with the centroid of its Voronoi cell Vi. The

second case, by the regularity assumption on the curve c, by definition, can never occur.

The third case, however, tells us that the speed of robot i on the curve is zero when the

curve is orthogonal to the line segment joining the position of robot i and the centroid of

its Voronoi cell. This condition, typical of the projected gradient descent algorithm (7.44),

highlights the problem suffered by the constrained locational cost optimization. Figure 7.24

schematically depicts an example of what has been discussed in this section.

In the next section, we derive an algorithm that overcomes this problem by solving a

convex approximation of the constrained optimization problem (7.43).

7.5.2 Constrained Coverage Control

The discussion in Section 7.5.1 shows that, due to the non-convexity of the cost and the

constraints, a gradient descent policy, albeit decentralized, can drive the robots to a station-

ary point corresponding to a high locational cost. In this section, we show that the non-

convexity of the problem is caused by the shape of the curve and that not all curves will
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pi ρi Vi
ṗi

pj ρj Vj
ṗj

pk ρk Vk
ṗk

C

D

Figure 7.24: Poor spatial allocation of the robots obtained by executing projected gradient
descent to minimize the locational cost (7.4). The robots at positions pi, pj and pk are
controlled to go to the centroids of the corresponding Voronoi cells, ρi, ρj and ρk. Since
the tangent to the curve is orthogonal to the velocity vector (depicted as colored arrows),
the robots have reached a local minimum of (7.43).

pi=

ï
xi
h̄

ò
X

Y

D

Cpj pk

qc=

ï
x
h̄

ò
q=

ï
x
y

òVi

ai biwi

h̄

h

O
Figure 7.25: Example of coverage on a straight line. The depicted quantities are used in
(7.47) to derive the one-dimensional locational cost equivalent to (7.4).

result in non-convex problems. Indeed, under certain circumstances, (7.43) can actually

be a convex problem. This gives insight on how to formulate the locational optimization

problem for robots constrained to move on generic curves, as will be shown in the next

section.

Motivation

Let us consider the scenario depicted in Fig. 7.25. The domain D is a rectangle and the

curve c is a straight line parallel to one of its sides. Assuming a constant density function
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φ(q) = 1 ∀q ∈ D, we can rewrite the cost (7.4) as follows:

H(P ) =
∑
i∈N

∫
Vi(P )

‖pi − q‖2 dq

=
∑
i∈N

∫
Vi(P )

‖pi − qc‖2 dq︸ ︷︷ ︸
1©

+
∑
i∈N

∫
Vi(P )

‖q − qc‖2 dq︸ ︷︷ ︸
2©

,
(7.46)

where pi = [xi, h̄]T , q = [x, y]T and qc = [x, h̄]T is the projection of q onto the curve C .

Solving the integrals 1© and 2©, yields:

1© =
∑
i∈N

∫ h

0

∫ bi

ai

|xi − x|2 dx dy = h
∑
i∈N

∫ bi

ai

|xi − x|2 dx

= hHc(X),

2© =
∑
i∈N

∫ h

0

∫ bi

ai

|y − h̄|2 dx dy =
∑
i∈N

wi

∫ h

0

|y − h̄|2 dy

=
∑
i∈N

wi

Ç(
h− h̄

)3

3
− h̄3

3

å
= C,

(7.47)

where ai and bi are the x coordinates of the vertical segments of the boundaries of the

Voronoi cell Vi induced by the positions of the robots, wi = |bi − ai|, h̄ is the y position

of the curve C (see Fig. 7.25), X = {x1, . . . , xN}, and C is a constant. Thus, H(P ) =

hHc(X) + C, and, therefore, minP H(P ) ∼ minX Hc(X), i.e. the two minimization

problems are equivalent in the following sense:


x∗1
h

 , . . . ,
x∗N
h


 = arg min

P
H(P )

⇔

{x∗1, . . . , x∗N} = arg min
X
Hc(X).

(7.48)

In [179], it is shown that in case the domainD is one-dimensional and the density func-
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s

n(s1)
n(s2)

pi,s

s1

s2

C

pi
pi,n

φ2(s2)

φ1(s2)

Figure 7.26: Reference system {s, n(s)} and other quantities used in the derivation of the
constrained locational costHc(P ).

tion φ is log-concave, conditions satisfied by Hc(X) (characterized by a constant density

function), the minimization of the locational cost (7.4) is a convex problem. Therefore,

gradient descent methods can be used to synthesize a decentralized control law that will

drive the robots to a configuration corresponding to the global minimum of (7.4).

In the following section, we will extend the construction introduced in this section to

curves that are not necessarily straight lines.

Formulation for Generic Curves

Similarly to what has been done in Section 7.5.2, in this section we introduce a system

of coordinates, using which we evaluate the integrals that show up in the locational cost

H(P ). Figure 7.26 depicts the domainD with a curve c, parameterized using the arc length

s ∈ Is ⊂ R. The system of coordinates {s, n(s)}, in which the points in the domain will

be expressed, consists of the curvilinear abscissa, s (analogous to x in Section 7.5.2), and

the normal to the curve at s, n(s) (analogous to y in Section 7.5.2). Figure 7.26 shows an

example of such coordinates for a generic point pi of the domain.

Proceeding as in Section 7.5.2, using the system of coordinates just defined, we can
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write:
H(P ) =

∑
i∈N

∫
Vi(P )

‖pi − q‖2 dq

≤
∑
i∈N

∫
Si

∫ φ2(s)

−φ1(s)

(
|pi,s − s|2 + |pi,n − n|2

)
ds dn

= Hc(P ),

(7.49)

where pi = [pi,s, pi,n]T , Si = {s ∈ Is : c(s) ∈ Vi} is a union of closed intervals, cor-

responding to the curve segments that lie in the Voronoi cell Vi, and the functions φ1 and

φ2, whose values at s2 are shown in Fig. 7.26, will be defined in the following. Hc(P ) in

(7.49) is entirely analogous to (7.47) and, as a matter of fact, its natural generalization to

non-straight curves.

Since the goal is that of minimizing the upper bound of H(P ) in (7.49), we make the

following assumption on the curve c in order to bound the same integral from below too,

and have a well-defined optimization problem.

Assumption 7.16. The curve c is such that:


k1 = max

u,v∈C

Äıuv2 − ‖u− v‖2
ä
<∞

k2 = max
u∈C
v∈D

(‖u− v‖2
c − ‖u− v‖2) <∞,

(7.50)

where ıuv denotes the arc length between the two points u and v on the curve, whereas

‖u − v‖2
c , ûvc

2
+ ‖v − vc‖2, vc being the point on the curve closest to v. The symbol

‖ · ‖c is an abuse of notation, since it does not define a norm (nor even a metric) as triangle

inequality does not hold.

Note that k2 ≥ k1 ∀u ∈ C , ∀v ∈ D.

Under Assumption 7.16, the following two inequalities hold:

Hc(P ) ≥ H(P ) + k1|D| and Hc(P ) ≤ H(P ) + k2|D|
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D

C

Figure 7.27: An example of deformation of the curve c in order to fulfill Assumption 7.17.
The actual curve is depicted in blue, while its deformation is shown in green. The thin
black lines are the Voronoi cells corresponding to the robots at the locations specified by
the red dots. The dashed lines are the tangents to the green curve at the intersection points
with the Voronoi cells’ boundary, to which they are orthogonal.

Therefore, we can write:

−∞ < Hc(P )− k2|D| ≤ H(P ) ≤ Hc(P )− k1|D| <∞, (7.51)

i.e. the costH(P ) is bounded from above and below, as desired.

Now, in order to rigorously define φ1 and φ2, we need to introduce an additional as-

sumption on the curve C .

Assumption 7.17. The curve C intersects the boundary of the domainD and of the Voronoi

cells Vi, i ∈ N at right angle, i.e. at the intersection points, the tangent to the curve is

orthogonal to the Voronoi cells’ boundary.

Remark 7.18. Any smooth curve c(s) can be continuously modified (e.g. using bump func-

tions [115]) in an arbitrarily small neighborhood of the intersection points, in order to

satisfy the condition stated in Assumption 7.17, while still remaining smooth. Figure 7.27

shows an example of such a modification. Moreover, note that this construction does not

need to happen on the physical curve on which the robots are constrained, since it is only

required to be able to calculate the control inputs to the robots.
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Under Assumption 7.17, the following Fact holds.

Fact 7.19. Let

Φ(t) =
{
p ∈ Vi | ‖p− c(t)‖ ≤ ‖p− c(s)‖∀s ∈ Is s.t. c(s) ∈ Vi

}
⊂ R2. (7.52)

Then, under Assumption 7.17, |Φ(t)| = 0. Moreover, Φ(t) is a segment of straight line

orthogonal to the curve C at c(t).

Fact 7.19 is required in order for φ1(s), φ2(s) and consequently the integrals in (7.49),

to be well-defined.

From Fact 7.19 it also follows that Φ(t) ⊂ span{n(t)}. Therefore, we can use the

following arc-length-parameterized line segment to describe the set Φ(t):

φt : l ∈ R 7→ c(t) + l n(t) ∈ R2. (7.53)

We are now ready to define φ1(s) and φ2(s) as follows:

φ1 : s ∈ Is ⊂ R 7→max
l

{
‖φs(l)− φs(0)‖ |

l ≤ 0, φs(l) ∈ Vi, i s.t. s ∈ Si
}
∈ R+

φ2 : s ∈ Is ⊂ R 7→max
l

{
‖φs(l)− φs(0)‖ |

l ≥ 0, φs(l) ∈ Vi, i s.t. s ∈ Si
}
∈ R+.

(7.54)

Since Φ(t) is a line segment in R2, |Φ(t)| = 0, the integrals in (7.49) have a geometric

meaning that is entirely analogous to that of (7.47) in Section 7.5.2.

Observing that pi,n = 0, we can simplify the expression of (7.49) as follows:

Hc(P ) =
∑
i∈N

∫
Si

∫ φ2(s)

−φ1(s)

(
|pi,s − s|2 + |pi,n − n|2

)
ds dn

=
∑
i∈N

∫
Si

(
|pi,s − s|2φ(s) + φ̄(s)

)
ds,

(7.55)
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where
φ(s) = φ1(s) + φ2(s)

φ̄(s) =
φ1(s)3 + φ2(s)3

3
.

(7.56)

As mentioned above, in case of one-dimensional domain and log-concave density func-

tion, the locational cost minimization is a convex problem [179]. The density functions

φ(s) and φ̄(s), however, depend on the domain D, on the position of the curve C in the

domain and, at each time instant, on the position of the robots along the curve, through the

boundaries of the Voronoi cells. Therefore, in general, φ(s) is not a log-concave function.

In the next Section, Proposition 7.22, will give the expression of a convex relaxation

of the one-dimensional coverage problem, given any, not necessarily log-concave, density

function. Using this, we will derive a decentralized algorithm that minimizes Hc(P ) in

(7.55).

7.5.3 Convex Relaxation of Constrained Coverage Control Formulation for Generic Curves

In order to formulate the sought convex relaxation problem, we start observing the follow-

ing.

Observation 7.20. If I ⊂ R is compact, {V1, . . . ,VN} is the Voronoi partition of I gener-

ated by the points P = {p1, . . . , pN} ∈ IN , then

H(P ) =
∑
i∈N

∫
Vi(P )

|pi − q|2φ(q) dq (7.57)

is measurable, hence square-integrable, on IN .

Let F = {f | f : R→ R+} be the space of functions that map real numbers to positive

real numbers. Then, let us define

F : F → L2(IN)

: θ 7→
∑
i∈N

∫
Vi(P )

|pi − q|2θ(q) dq
(7.58)
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as the mapping that associates to each function θ ∈ F the coverage cost with density func-

tion θ, that belongs to L2(IN) as shown in Observation 7.20. In (7.58), pi, q ∈ I ⊂ R, I

compact and {V1, . . . ,VN} is the Voronoi partition of I generated by P = {p1, . . . , pN} ∈

IN . Using this notation,H(P ) in (7.57) can be expressed as F (φ).

Now, letting

C = {f ∈ F | f is concave} ⊂ F (7.59)

be the set of concave functions that map from R to R+, we are ready to state the convex

relaxation problem as follows. The convex cost, obtained deriving a convex relaxation of

(7.55), is given by the solution to the following program:

min
θ∈C
θ>φ

‖F (θ)−F (φ)‖2
L2(IN ). (7.60)

We insist on θ being larger than φ since, this way, F (θ) ≥ F (φ) ∀P , and we preserve the

upper bound on the two-dimensional locational cost initially stated in (7.49).

The last notion we need in order to formulate the expression of a convex relaxation of

the one-dimensional coverage control problem is given in the following definition.

Definition 7.21 (Concave envelope). Let f : X → R be a real-valued function defined

over the non-empty convex set X ⊂ Rn. The function g : X → R is the concave envelope

of f over X , denoted by conc(f) if

(i) g is concave over X

(ii) g(x) ≥ f(x) ∀x ∈ X

(iii) g(x) ≤ h(x) ∀x ∈ X for any h concave s.t. h(x) ≥ f(x) ∀x ∈ X .

Proposition 7.22. The following is a convex relaxation of the problem of minimizing the

one-dimensional locational optimization (7.57):

min
P

F (conc(φ)). (7.61)
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With the result stated in Proposition 7.22, a decentralized algorithm that allows the

robots to minimize the cost defined in (7.55) is derived in the following section.

7.5.4 A Decentralized Algorithm for Constrained Coverage Control

Starting from (7.55), we can write:

Hc(P ) =
∑
i∈N

∫
Si

|pi,s − s|2φ(s) ds+
∑
i∈N

∫
Si

φ̄(s) ds

= F (P, φ) +G(P )

(7.62)

By Proposition 7.22, the problem of solving

min
P
Hc(P ) = min

P
(F (P, φ) +G(P )) (7.63)

can be relaxed into

min
P

(F (P, conc(φ)) +G(P, ψ)) , (7.64)

where

F (P, conc(φ)) =
∑
i∈N

∫
Si

|pi,s − s|2(conc(φ))(s) ds (7.65)

is convex, and

G(P, ψ) =
∑
i∈N

∫
Si

(
|pi,s − s|2ψ(s) + φ̄(s)

)
ds, (7.66)

with ψ(s) = φ(s)− (conc(φ))(s), is differentiable.

The following theorem provides with an algorithm for solving optimization problems

where the cost function is the sum of two terms: one convex (but not necessarily differen-

tiable) and the other differentiable (but not necessarily convex).

Theorem 7.23 (Theorem 3.1 in [180]). Consider the minimization problem:

min
x

h(x) = min
x

(f(x) + g(x)), (7.67)
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where f : Rn → (−∞,+∞] is a convex, but not necessarily differentiable, function and

g : Rn → (−∞,+∞] is a function which is continuously differentiable on an open set

containing the domain of f , but g need not be convex. Then, the following algorithm is

designed to generate critical points of h:

Step 1: Set k = 0 and initialize x(k) with x0.

Step 2: Solve the convex optimization problem

x̃(k) = arg min
x

Å
f(x) +

∂g

∂x

∣∣∣∣
x=x(k)

x

ã
. (7.68)

Step 3: Find

x(k+1) = x(k) + λ(k)d(k), (7.69)

with λ(k) > 0, such that

h
Ä
x(k+1)

ä
≤ h
Ä
x(k) + λ(k)d(k)

ä
, (7.70)

where

d(k) = x̃(k) − x(k). (7.71)

Step 4: Check for convergence:

‖d(k)‖ < ε, (7.72)

where ε is some prescribed positive number.

Step 5: k = k + 1

The functions F (P, conc(φ)) and G(P, ψ) in (7.64), satisfy the conditions of f(x) and

g(x) in Theorem 7.23. Therefore the previous algorithm can be used to find stationary

points ofHc(P ).
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The calculation of ∂G
∂P

is decentralized, hence the value of P̃ (k) can be obtained in a

decentralized fashion using (7.68). The same holds for Step 3. A more careful analysis

is required to understand whether the inequality (7.70) can be checked in a decentralized

way. Given the expressions of F (P, conc(φ)) and G(P, ψ) in (7.65) and (7.66), we can

write Hc(P ) =
∑

i∈N Hc,i(P ), therefore Hc(P ) ≥ Hc,i(P ) ≥ 0 ∀i ∈ N . Thus, if each

robot ensures thatHc,i

Ä
p

(k+1)
i

ä
≤ Hc,i

Ä
p

(k+1)
i + λ

(k)
i d

(k)
i

ä
, thenHc

(
P (k+1)

)
≤ Hc

(
P (k)

)
,

which means that condition (7.70) can be checked in a decentralized fashion.

Assumption 7.24. As it is the case of the unconstrained coverage control in (7.4), it is

assumed that the robots know the density function over their domain.

Algorithm 9 summarizes what has been derived in Sections 7.5.3 and 7.5.4, by de-

scribing the decentralized strategy adopted by the robots to perform constrained coverage

control.

Algorithm 9 Constrained Coverage Control
Require: ε > 0, γ > 0

1: initialize k = 0
2: initialize p(k)

i to robot i’s initial position
3: repeat
4: measure p(k)

j , j ∈ Ni
5: build Voronoi cell Vi
6: deform curve to be orthogonal to the boundary of Vi
7: calculate p(k+1)

i and d(k) . (7.68), (7.69), (7.71)
8: execute ui = γ

Ä
p

(k+1)
i − p(k)

i

ä
9: k ← k + 1

10: until ‖d(k)‖ < ε

7.5.5 Experimental Results of Simulated Robots on Single Wire

Algorithm 9 has been implemented and tested on a team of mobile robots on the Robotar-

ium, a remotely-accessible swarm-robotics testbed [130]. A team of 6 small-scale differ-

ential drive robots has been tasked with covering a 2.8m×2m rectangular area. The curve
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(a) The robots perform projected gradient descent end-
ing up in a position where the vector that joins their po-
sition to that of the centroid of their Voronoi cell (blue
vector) is orthogonal to the tangent to the curve (green
vector).

(b) Performing one-dimensional coverage control, the
domain that is considered in the coverage problem for-
mulation is the (one-dimensional) curve only. There-
fore, this does not take into account that the curve is in
a two-dimensiona environment.

(c) The application of Algorithm 9results in a spatial
allocation of the robots correposnding to a lower loca-
tional cost. This can be also seen in Fig. 7.29.

Figure 7.28: Snapshots of the experiments conducted on the Robotarium recorded using
an overhead camera. Figure 7.28a to 7.28c compare the spatial allocation of a team of 6
small-scale differential drive robots obtained using three different coverage control algo-
rithms. The Voronoi cells (black thin lines), together with their centroids (gray dots), are
superimposed on the three plots.
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on which the robots are constrained to move has been projected down onto the testbed us-

ing an overhead projector present in the Robotarium. Figure 7.28 shows the results of the

application of the proposed algorithm and compares them to those obtained adopting two

other strategies to perform two-dimensional sensor coverage while constraining the robots

to move on a curve. The black thin lines represent the boundary of the Voronoi cells com-

puted using, as generators, the position of the robots in the (two-dimensional) domain. The

centroids of these cells are shown in gray: the closer the robots are to the centroid of their

corresponding Voronoi cell, the smaller the locational cost is. In Fig. 7.28a the curve on

which the robots move is depicted in red, whereas in Figures 7.28b and 7.28c, it is painted

using a different color for each Voronoi cell (Si in the expression of Hc(P ) in (7.55)) on

the (one-dimensional) curve.

More in detail, Fig. 7.28a depicts the spatial allocation which the robots achieve by

running a projected gradient descent strategy. This has been implemented as follows: the

coverage control problem has been solved as if there were no constraints on the robots’ mo-

tion. Then, the input velocities, calculated by minimizing the locational cost using gradient

descent, are projected onto the curve. Figure 7.28a shows the final configuration whereby,

at each robot’s location, the tangent to the curve (depicted in light green) is orthogonal to

the unconstrained robot’s velocity (represented in dark green). This configuration high-

lights the issue of this naive solution to the constrained coverage control, which causes the

robots not to be able to move away from a very poor spatial distribution.

A second solution to the considered consists in performing sensor coverage of the curve

itself. With this, we mean that the robots are asked to cover a one-dimensional manifold,

i.e. the curve. Figure 7.28b shows the outcome of the implementation of this strategy. As

observed before, the resulting optimization problem is convex. However no information

about the two-dimensional surrounding environment is used to optimize the locations of

the robots. Therefore, although a global minimum of the one-dimensional locational cost

defined as in (7.57) can be reached using simple gradient descent, the shape and the position
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Figure 7.29: Comparisons of the location costH(P ) (7.4) obtained using projected gradient
descent, one-dimensional coverage and the proposed approach in Algorithm 9.

of the curve in the environment heavily influence the coverage quality.

Finally, Fig. 7.28c depicts the configuration that the robots achieve by running Algo-

rithm 9. The algorithm is decentralized as each robot can evaluate its control input only

based on local information. Moreover, as the derived cost is convex, it is guaranteed to

converge to the global minimum. Furthermore, as shown in Fig. 7.29, the achieved loca-

tional cost is smaller than the other methods, being higher only than the unconstrained case

(where no motion constraints where imposed to the robots which where completely free to

move in the environment), that has been included just as a reference. This result depends

on the particular expression of the curve c and on its position in the domain D. In the

case shown in Fig. 7.28, the curve was designed to highlight the problems that projected

gradient descent and one-dimensional coverage algorithms have. Nevertheless, in general,

both projected gradient descent and one-dimensional coverage suffer from the problems

discussed above, which make them undesirable for applications.

7.6 Conclusions

In this chapter, we presented two designs of the SlothBot: (i) a multi-body design that

allows the robot to traverse a mesh of wires by switching between different branches, and

(ii) a single-body design which has been deployed in the Atlanta Botanical Garden in June
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2020. Compared to the state-of-the-art designs, both the locomotion and, in particular, the

wire-switching maneuvers of the multi-body robotic platform are executed using a simpler

actuation mechanism, which, nevertheless, results in fail-safe executions, a characteristic

amenable for long-term operations.

Moreover, we presented two control algorithm suitable to control wire-traversing robots,

which are able to switch between wire branches or not, respectively. The algorithms are a

modification of the coverage control strategy to optimally distribute a multi-robot system in

an environment in order to monitor it. Nevertheless, the same approaches can be employed

in order to execute different types of tasks with robots which are constrained to move on

wires.

Starting from coverage control derived for robots moving in a planar environment, in the

case of robots which can switch wires, the resultant two-dimensional motion is mapped, in

a continuous fashion, onto one-dimensional manifolds which represent the set of wires. The

main contribution is the derivation of a continuous motion control law that is to be executed

by the robots on the wires in order to minimize the constrained locational cost. This is

realized by defining a Continuous Onto Wires (COW) map that continuously maps the robot

workspace onto the wires on which the robots are constrained to move. A final projection

step ensures that the locational cost subject to the motion constraints is minimized. The

motion that results by the application of the derived algorithm minimizes the constrained

locational cost, thus solving the constrained coverage control problem.

In the case of robots which cannot switch wires, like the single-body SlothBot design,

we proposed a modification to the locational cost defined for unconstrained coverage prob-

lems in order to take into account the constraint introduced by the curve on which the robots

move. Moreover, we developed a convex relaxation to efficiently, even though approxi-

mately, solve the constrained coverage control problem. The results of the implementation

of the devised control strategies on a team of mobile robots (artificially constrained to move

on wires) showed that the proposed approach outperforms naive projected gradient descent
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and one-dimensional coverage control.
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CHAPTER 8

THE BRUSHBOTS

The previous chapter described the SlothBot, a solar-power wire-traversing robot envi-

sioned for long-term environmental monitoring applications. That is an example of design

of a robotic platform which harvest solar energy, stores in its battery, and uses it for motion,

sensing, communication, and computation. This way, a higher-level planning logic as well

as lower-level controllers can be generated depending on sensor readings and pre-planned

algorithms. In this final chapter, we make a step forward and examine the design of robots

for long-duration autonomy from a different perspective. The analysis in this chapter is de-

voted to the study of the locomotion principles of a specific class of vibration-driven robots:

the brushbots. The advantage of this types of robots is that they can passively—i.e. with-

out the need of storing energy, computing and synthesizing control signals, as in the case

of the SlothBot, or other classical robotic platforms—leverage energy harvested from the

environment in order to locomote. In particular, as will be discussed in more detail at the

end of the chapter, this robot design lends itself to be miniaturized and used in long-term

monitoring applications (including environmental and structural health monitoring).

In the case of the SlothBot, the control design and the mechanical design were kept

separate, although always serving the same purpose, i.e. letting the SlothBot remain oper-

ational for as long time as possible. The mechanical design of the brushbot, on the other

hand, is more intimately connected to the control design. As a result, the former has to be

explicitly taken into account in the development of the latter. In this chapter, in a bottom-up

fashion, we start by deriving dynamic models of the brushes and we discuss the conditions

under which these models can be employed to describe the motion of brushbots. Then,

we present two designs of brushbots: a fully-actuated platform and a differential-drive-

like one. The former is employed to experimentally validate both the developed theoretical
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Figure 8.1: Examples of brushbots: metallic rods, brushes and toothbrushes are employed
to convert energy of vibrations into directed locomotion.

models and the devised motion control algorithms. Finally, a coordinated-control algorithm

is implemented on a swarm of differential-drive-like brushbots in order to demonstrate the

design simplicity and robustness that can be achieved employing a vibration-based loco-

motion strategy.

Many diverse robot locomotion modalities have been the subject of analyses and design

studies carried out so far (see, e. g., Part B of [181]). Some of these modalities are biolog-

ically inspired, as, for instance, in the case of batbots [182], brachiating robots [183], or

robotic bees [184]. Others, instead, are the result of attempts to enhance human capabili-

ties, the most remarkable example of which being the wheel [185].

The reasons driving the efforts to understand different robot locomotion strategies can

be summarized in the following ones:

(i) improving the efficiency and the quality of human life (which led to the invention of

the wheel)

(ii) developing general design principles for more complex robotic platforms (as, e.g., in

[186, 187])

(iii) understanding the underlying operating mechanisms (see, e.g., [188, 189]).

This chapter presents a theoretical and experimental study of a particular class of vibration-

driven robots: the brushbots (Fig. 8.1). The brushbot is a robot that employs elastic ele-
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ments, referred to as brushes, to convert the energy of a vibration source into directed

locomotion. The subset of the brushbots on which we focus our study is that of planar

robots moving on a smooth surface. The reasons for studying this kind of robot and loco-

motion mechanism include all the ones mentioned above. First, we will develop a model

for the brushbots and their locomotion strategy; second, we will provide the theoretical

foundations required to further analyze more complex systems (as, for instance, [105]);

and, finally, we will demonstrate that the results of this study can be leveraged in many

robotic applications, ranging from low-energy environment monitoring [190] to medical

robotics [191], in order to refine the system design, improve performance and optimize

execution.

In next section, we start by developing a dynamic model suitable for brushbots which

is experimentally validated using a fully-actuated brushbot, in Section 8.2, and a swarm of

differential-drive-like brushbots, in Section 8.3.

8.1 Modeling of Vibration-Based Locomotion

To understand the use of brushes for locomotion, let us start by developing a microscopic

dynamic model of the brushes themselves. The attempts at describing the brush dynamics

using different physical models have been multiple. Depending on the considered robot

design, the resulting developed models are fundamentally different. In this chapter, we

identify two regimes in which a brushbot can operate, and we analyze them in detail in

Sections 8.1.1 and 8.1.2. Section 8.1.3 discusses the range of parameters under which there

two regimes are valid by highlighting the factors which cause a brushbot to operate in one

regime rather than the other.

As in many types of locomotion, brushbots move by exploiting friction [192]. The

source of energy for the system is given by vibration motors: these can be in the form of

piezoelectric actuators as well as eccentric rotating mass motors. In the latter, a mass is

mounted with an eccentricity with respect to the axle of a DC motor; when rotating, the
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(a) Regime I: robots operating in this regime are char-
acterized by a high flexibility of the brushes. The
vibrations are modeled as alternating vertical forces
which deform the brushes during the stick phase and
pull the robot up during the slip phase. At this mo-
ment, the friction reduces proportionally to the reduc-
tion of normal force, allowing the brush to slide and
the robot to step forward.

(b) Regime II: light robots with stiff brushes can op-
erate in this regime. As the flexibility of the brushes
cannot be exploited, locomotion is achieved by the
sequence of two rigid body rotations happening in se-
quence. The first one in the stick phase and the second
in the slip phase, during which the brushbot experi-
ences a net displacement.

Figure 8.2: Two regimes of operation of the brushbot: locomotion is achieved by exploiting
vibrations in two different ways, depending on the physical characteristics of the robot.

mass produces a rotating centrifugal force which induces vibration in the robot body on

which the motor is mounted. This kind of vibration motors are the ones considered in this

chapter. The produced vibrations are transformed into net motion by alternating a stick

phase and a slip phase.

Fig. 8.2 shows the sequence of stick-slip phases for two regimes in which brushbots

can operate. Fig. 8.2a depicts regime I: on the left (stick phase), a schematic representation

of the brushbot moves from the position depicted in black to the one depicted in gray. This

is obtained by deforming the long flexible brush. On the right of the figure, the slip phase

is shown: here the brush slides on the ground until the robot reaches the position depicted

in gray. At this point, the robot has experienced a net displacement towards the right

compared to the initial position (dashed contour). During these two steps, the robot body

always remains parallel to the ground and the motion is achieved thanks to the deformation

of the brush.

In Fig. 8.2b, regime II is depicted. This regime is characterized by the fact that stiff

short brushes do not deform, but rather act as pivot points for the robot to rotate. During

the stick phase (on the left of the figure), the robot body rotates about a pivot point, whereas,

in the slip phase (on the right), the robot body rotates back to its initial orientation while
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Figure 8.3: A brushbot with plate-like brushes with the brushes reference frame ξξ⊥,1ξ⊥,2.
The resulting second area moment of the cross section of the bristles is higher about the
ξ⊥,2 axis than about ξ⊥,1. The higher the difference between the two second area moments,
the more realistic Assumption 8.3 is.

sliding towards the right. The two regimes can be more or less predominant depending

on the physical characteristics of the robot, as will be discussed in Section 8.1.3. In the

following two sections, we derive the dynamic models for brushbots operating in the two

described regimes.

8.1.1 Model for Regime I

The main factors that make brushbots operate in regime I rather than II are weight and brush

stiffness. Regime I is characterized by a lower brush stiffness (more deformable brushes)

and/or a heavier robot body. The following assumptions are used for the derivation of the

brush dynamic model in this regime.

Assumption 8.1. During operations in regime I, the brushes are always in contact with the

ground. The heavier robot body, in fact, does not allow the centrifugal force generated by

vibration motors to lift the robot from the ground.

Assumption 8.2. The body of the brushbot always remains parallel to the ground. This is

justified by the fact that the inertia of the body does not allow big rotations at the frequen-

cies at which the vibration motors are typically actuated.

Assumption 8.3. The deformation of the brushes is planar. Indeed, the inclination of the

brushes has the effect of reducing their equivalent stiffness in one direction. More precisely,
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(a) Model for the stick phase. (b) Model for the slip phase.

Figure 8.4: Beam model employed to analyze the dynamics of the brush during the stick
and slip phases. v represents the displacement of the beam in the direction orthogonal to
the beam axis ξ. Compare with the qualitative motion depicted in Fig. 8.2.

referring to Fig. 8.3, the fact that the brushes are rotated around axis ξ⊥,1 with respect to

the ground makes their equivalent stiffness in the plane ξξ⊥,2 smaller than the one in the

plane ξξ⊥,1. This will be theoretically derived later in this section.

We employ the Euler-Bernoulli beam model (see, e. g., [193]) to analyze the motion of

each brush. Figures 8.4a and 8.4b show the structural scheme used to model stick and slip

phases, respectively. During the stick phase, the constraints are a guide at the top (where

the brushes connect to the robot) and a hinge at the bottom (at the contact with the ground).

In the slip phase, a horizontal translational degree of freedom for the interaction with the

ground is added by using a roller support in place of the hinge. This allows the tip of the

brush in contact with the ground to slide.

The Euler-Bernoulli beam model allows us to evaluate the deformed shape of the brush,

209



as well as its equivalent stiffness, by solving the following boundary value problem:



EIv′′′′ = 0

EIv′′′|ξ=l = F cosα

EIv′′|ξ=l = 0

v′|ξ=0 = 0

v|ξ=0 = 0.

(8.1)

Here, v represents the displacement of the beam in the direction orthogonal to the beam

axis ξ, v′ is used to denote dv/dξ, F = mω2r sin(ωt) is the centrifugal force produced

by an eccentric rotating mass motor which rotates a mass m, at speed ω, mounted with

an eccentricity r with respect to the motor axle. E and I are the Young modulus and the

second area moment about ξ⊥,1 of the beam. l and α are the length and inclination of the

beam, respectively. The solution to (8.1) is given by

v(ξ) =
F cosα

6EI
ξ3 − Fl cosα

2EI
ξ2. (8.2)

So, the displacement v of the robot body at the tip of the brush can be evaluated as:

|v(l)| = Fl3 cosα

3EI
. (8.3)

During the slip phase (Fig. 8.4b), the robot body moves upwards, reducing the horizon-

tal force due to friction which acts on the brush tip. The net horizontal displacement can

be calculated as follows (see Fig. 8.5):

δ = P2P3 = P1P3 − P1P2 = l cos(α− ϑ)− l cosα

= l cos

Å
α− mω2rl2 cosα

3EI

ã
− l cosα,

(8.4)
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Figure 8.5: The net displacement of the brushbot, δ, is evaluated based on the angle ϑ
induced by the force F (see Fig. 8.4a) and the geometric characteristics of the brush.

where PiPj denotes the length of the segment joining points Pi and Pj , and the expression

for ϑ is obtained by observing that, under the small-angle approximation, |v(l)| = lϑ ().

Considering the fact that the robot experiences a displacement of δ per full rotation of the

motor, the ground speed of the robot, vr, can be obtained as follows:

vr =
δ

∆t
=

ω

2π

Å
l cos

Å
α− mω2rl2 cosα

3EI

ã
− l cosα

ã
, (8.5)

where ω is the angular velocity of the motor.

For the study of the oscillating brush dynamics, we use the lumped-parameter model

depicted in Fig. 8.6 with

kϑ =
3EI

l2 cosα
(8.6)

Iϑ =
Mbl

2

2
, (8.7)

being the stiffness and the inertia relating the force F and the angle ϑ, and Mb denotes the

mass of the brush.

Assumption 8.4. The inclination angle of the brushes α ∈ (0, π/2), i. e. the brush is
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Figure 8.6: Lumped-parameter model used to analyze the dynamics of the brushes: the
equivalent stiffness kϑ and inertia Iϑ, given in (8.6) and (8.7), determine the spring-mass-
like response of the brush angle ϑ as a result of the force F in Fig. 8.4a.

neither horizontal nor vertical.

Under this assumption, kϑ is well-defined.

Observation 8.5. The expression of kϑ in (8.6) indicates that equivalent stiffness of the

brushes increases with an increase of the angle α. In the limit case: kϑ →∞ as α→ π/2.

This reflects the fact that, if brushes are perpendicular to the ground, no net displacement

can be achieved. Moreover, by the insight gained using the Euler-Bernoulli model, we can

see that Assumption 8.3 becomes more realistic as the second area moment around ξ⊥,1,

which we denoted by I , becomes smaller with respect to the one around ξ⊥,2 (see Fig. 8.3).

In the analysis of the dynamic effects introduced by the inertia of the brushes, we start

by calculating the time that the brushes take, during the slip phase, to go back to the rest

position from the configuration reached at the end of the stick phase (see Fig. 8.2). Taking

into account their inertial effects, the brushes can be modeled as the following second-order

212



system: 
Iϑϑ̈+ kϑϑ = 0

ϑ(0) = ϑ̄

ϑ̇(0) = 0,

(8.8)

whose solution is given by ϑ(t) = ϑ̄ cos(ωnt), where

ωn =

 
kϑ
Iϑ

=

 
6EI

Mbl4 cosα
(8.9)

is the natural frequency of the brush. The time to go back to the rest position is the earliest

time at which ϑ(t) = 0, i. e. ωnt = κπ/2. So, the earliest time instant t̄ at which the

brushes come back to the undeformed configuration is given by:

t̄ = κ
π

2ωn

∣∣∣∣
κ=1

=
π

2

…
Mbl4 cosα

6EI
. (8.10)

Stiffer (larger EI), shorter (smaller l), less inclined (smaller α), lighter brushes (smaller

Mb) lead to a faster response to vibrations (smaller t̄).

While the vibration motor is rotating, the slip phase occurs if the friction between the

brush and the ground is not enough to prevent the brush from sliding. The transition from

the stick phase to the slip phase is triggered by a reduction of the force acting on the robot

and normal to the ground due to centrifugal acceleration of the unbalanced rotating mass.

Therefore, a quarter of period of revolution of the motor is the time the brushes have to

move forward during the slip phase. Thus, to maximize the net displacement of the robot,

we want to achieve a motor speed ω such that

t̄ =
1

4
T =

1

4

2π

ω
, (8.11)
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where T is the period of revolution of the motor. Solving (8.11) for ω yields:

π

2

…
Mbl4 cosα

6EI
=

π

2ω?
⇔ ω∗ =

 
6EI

Mbl4 cosα
= ωn. (8.12)

Thus, not surprisingly, if the motor speed matches the natural frequency of the brushes ωn,

the displacement of the robot is maximized. This can be also seen by considering the model

in (8.8) with a non-zero input force:

Iϑϑ̈+ kϑϑ = mω2r sin(ωt) cosα1, (8.13)

whose forced solution is given by

ϑ(t) =
mω2r sin(ωt) cosα

ω2
n − ω2

sin(ωt) = ϑ̂(ω) sin(ωt). (8.14)

According to the model (8.13), the amplitude of the brush oscillations, |ϑ̂(ω)| → ∞ as

ω → ωn. In practice, there are damping effects which will reduce the oscillation amplitude

to a finite value. However, notice also that the model derived in this section holds under

Assumpion 8.1. Therefore, it cannot be used to analyze the motion of the brushbot in case

ω is such that mω2r sin(ωt) > Mg, where Mg is the weight of the robot, M being its

mass. At this point, the robot starts transitioning towards regime II which will be explained

in the following section.

8.1.2 Model for Regime II

The model for the second regime in which brushbots can operate predicts the robot motion

under the following assumption.

Assumption 8.6. The robot body and the brushes are rigid bodies. This entails that brushes

are not deformable.

1Despite their expressions, Iϑϑ̈ and kϑϑ are not torques, but rather forces.
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Figure 8.7: Motion of the brushbot during the stick phase in regime II. The inclination
angle of the brushbot body, ϑr, accelerates about the point P under the effect of vibrations
and gravity, through the moments generated by the forces mω2r and Mg, respectively.

Similar to what has been discussed for regime I, also in this second regime we have the

alternation of stick and slip phases as shown in Fig. 8.2b. The difference with the previous

case lies in the fact that the effect of the deformation of the brushes is not significant and,

therefore, can be neglected. In order to model the motion of the brushbot, by Assump-

tion 8.6, we can write the following rigid body motion equations for a brushbot operating

in regime II:

IP ϑ̈r = mω2r sin(ωt)w −MgwG, (8.15)

where IP is the rotational inertia about point P shown in Fig. 8.7, where the quantities w,

wG and the gravitational force acting on the robot body are depicted. In order to simulate

the interaction with the ground, the constraint ϑr ≥ 0 has been enforced. At the point of

impact on the ground, we assume ϑ̇r = 0 and ϑ̈r = 0. Trajectories of angular position ϑr(t),

velocity ϑ̇r(t) and acceleration ϑ̈r(t), are shown in Fig. 8.8, together with the resulting

displacement x of the robot on the ground. The maximum absolute value of ϑr, which is

denoted by |ϑ̂r|, is the one which determines the displacement δ of the robot, given by:

δ = h sin |ϑ̂r|. (8.16)
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Figure 8.8: Simulation results of the sequence of stick-slip phases of regime II (as depicted
in Fig. 8.2b) obtained by solving (8.13). Trajectories of the angle ϑr, its first and second
time derivatives are reported. The robot position x, depicted in black, shows its ability to
locomote in regime II.

Observation 8.7. The rotation of the robot body is neglected for the development of an

analytical model for regime I, because the flexibility of the brushes prevails on the rigid

rotation of the robot body. Here, on the other hand, the brushes are assumed to be rigid,

therefore, the rotation angle of the robot body has the most significant effect. Nevertheless,

due to the inertia of the robot, the centrifugal force generated by the unbalanced mass of

the motors is not able to rotate the robot body by more than a few degrees. For this reason,

we can introduce a small-angle approximation in (8.16) and express the robot velocity as

a function of |ϑ̂r| as

vr =
δ

∆t
≈ ωh|ϑ̂r|

2π
. (8.17)

8.1.3 Range of Applicability of the Models

In [103] and [102], two vibration-driven robots which work in regime I and regime II,

respectively, are presented. The fundamental differences between these robots are related

to their weight and the brushes they employ to transform vibrations into motion. In the

following, we discuss the physical characteristics of brushbots which cause the models for

regimes I and II to be able to describe more or less accurately the robot motion.

(i) Rigidity of the brushes. Expressed in terms of EI in (8.1), the rigidity of the brushes

proportionally influences the equivalent stiffness (8.6) and therefore the natural fre-
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quency (8.9). A high rigidity, however, means also a small displacement v(l) in (8.3).

In practice this means that a stiffer robot moves very little per each revolution of the

motor, although it is able to vibrate more at faster frequencies, as indicated by (8.14).

For this reason, brushbots equipped with stiffer brushes are more likely to operate in

regime II.

(ii) Mass of the robot. The influence of the mass of the robot is recognizable in the effect

it has on the inertia IP used in (8.15) that the robot exhibits with respect to rigid

rotations around axes that lie in the plane in which the robot moves. Therefore, at a

constant power produced by the motors, robots operating in regime II typically have

smaller masses compared to the ones operating in regime I. This, in fact, results in

smaller inertias which allow the robots to quickly respond to alternating input forces.

In the case of robots operating in regime I, the flexibility of the brushes reduces the

response bandwidth, given by the natural frequency (8.9). Therefore, the motion due

to regime I dominates the one due to regime II.

(iii) Inclination of the brushes. By Assumption 8.4, the inclination of the brushes, α, is

never equal to π/2. In the limit case in which α = π/2, in fact, the dynamic model

(8.8) for regime I predicts zero net motion of the robot. When the brushes become

straight (α→ π/2), in fact, the brushbot starts operating mainly in regime II.

A factor that influences the brushbot motion is the position of multiple sets of brushes

and actuators, which will be explicitly considered in the next sections. The presence of

multiple brushes introduces constraints which are not taken into account in the model of

regimes I and II. In fact, the superposition of the effects that different sets of brushes have

due to their different orientations can result in drastically different behaviors depending on

the regime in which the robot operates. Consider a brushbot configuration where three sets

of brushes are oriented radially equally spaced along the circumference of the brushbot.

This leads to the practical impossibility of motion of such a brushbot operating in regime
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I, whereas can be exploited to achieve holonomic motion when operating in regime II.

In Sections 8.2 and 8.3, we show how to leverage the effects described above together

with the models developed in this section in order to design and control fully-actuated and

differential-drive brushbots. Moreover, in Section 8.2, we report experimental results to

show the validity of the proposed models in predicting the motion of brushbots.

8.2 Design and Control of Brushbots

In this section, we present the design and control of a fully-actuated brushbot which can

operate in regime I and II and can be used to validate the theoretical model developed in

Section 8.1. The design shown in Fig. 8.9 is fully-actuated insofar as we can control both

the velocity of the motors and the inclination of the metallic rods, which play the role of the

brushes. The actuation of the speed of the motors is obtained through a standard regulation

of the voltage supplied to the motors, whereas the inclination of the brushes is realized by

means of a three-degree-of-freedom Stewart platform [194]. The controllable degrees of

freedom of the platform are roll and pitch angles, encoded by the xy-components,A andB,

of the vector normal to the platform, and the vertical position of the center of the platform,

C. The inverse kinematics required to obtain the angular velocity of the servo motors, ωs,i,

as a function of the desired angular and linear velocity of the Stewart platform are given

by:

ωs,i =
1

d

Ä
−xiȦ− yiḂ − Ċ

ä
, (8.18)

where [xi, yi, zi]
T , i = 1, 2, 3 are the positions in space of three points of the Stewart plat-

form of which the third component, zi, can be actuated through the servo motors according

to the relation żi = ωs,id, d being the length of the servo motor cranks.

As mentioned above, the design of the brushbot presented in this section is able to

switch between operating regime I and II. In view of what has been discussed in point (iii) in

Section 8.1.3, the switch from regime I to regime II is achieved by constraining the metallic
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(a) (b)

(c) (d) (e)

Figure 8.9: The presented fully-actuated brushbot. In Fig. 8.9a, the exploded view of the
CAD model shows (from top to bottom): outer shell (light blue), PCB and battery support
(black), vibration motors (brown), servo motors (red), 3dof-Stewart platform links (green),
main body (yellow), brushes (purple), 3dof-Stewart platform (blue). Fig. 8.9b shows a
section view of the actuation of the brushes which, connected through prismatic joints to
the Stewart platform, can be oriented at different angles. Figures 8.9c to 8.9e showcase the
actuation mechanism on a 3D printed prototype of the robot.
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rods to remain vertical and by individually actuating the three vibration motors (shown in

Fig. 8.9a). This concept is illustrated in Fig. 8.9b, which shows a section view of the

brushbot: by pulling the Stewart platform up, the servo motors push the top hemispherical

tip of the metallic rods against the main body. This prevents them from inclining. The

actuation of the vibration motors, placed diametrically opposite with respect to each of the

metallic rods, realizes the motion of the brushbot as described in Fig. 8.7 in three different

sagittal planes of the robot.

A series of experiments have been conducted in order to validate the derived dynamic

model and to test a trajectory-tracking controller. The brushbot has been driven with dif-

ferent angles α and vibration motor speeds ω. The pose of the robot has been measured

using an infrared-camera-based motion-capture system, for which the brushbot has been

equipped with an identifying marker consisting of infrared-reflective balls (visible at the

top of Figures 8.9c to 8.9e). Fig. 8.10a shows the results of this series of experiments:

each dot represents a collected data point, whose colors encodes the inclination angle of

the brushes, while the curves are the predictions of the model in (8.5). The physical char-

acteristics of the brushbot required to predict its velocity have been calculated based on

known material properties or obtained from the components datasheets, and they are the

following: l = 0.01 m, mr = 10−4 kg m, E = 2.1 1011 N/m2, and I = 1/4π1.24 mm4.

The plot shows that the theoretical analysis described in Section 8.1 allowed us to develop

a model for the brushbot which is able to accurately predict its motion.

In order to test the trajectory tracking performances of the designed brushbot, the fol-

lowing point-tracking controller has been devised:



ω = k1‖pgoal − p‖A
B

 = k2R
T (ψ)(pgoal − p)

C = 0,

(8.19)
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Figure 8.10: Results of experiments conducted with the fully-actuated brushbot presented
in this section. In Fig. 8.10a, the predicted VS measured robot velocities are shown. The
measurement data are depicted as points whose color is function of the inclination angle α
(following the legend), whereas the curves show the dependence of the robot velocity on the
vibration motor velocities obtained for different inclination angle of the brushes. Fig. 8.10b
shows the results of trajectory tracking experiments: the reference trajectory (black dashed
line) has been given as input to the point-tracking controller (8.19). Two different curve
parameterizations have been tested, characterized by lower and higher speed (3.5 and 7
cm/s), and the tracking results are depicted as a blue and a red curve, respectively.
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where k1, k2 > 0, pgoal ∈ R2 is the point to track, p ∈ R2 is the position of the robot

in the plane, ψ its orientation, RT (ψ) ∈ SO(2) is the rotation matrix which transforms

vectors from the global reference system, in which p and ψ are measured, to the robot local

reference system (where ψ = 0). In the tracking experiment shown in Fig. 8.10b, a point

moving on the trajectory to track (black dashed line) is used as pgoal in (8.19) to obtain ω

and A,B,C. The latter are transformed into servo motors inputs according to (8.18) and,

together with ω, sent to the robot. The blue and red curves in Fig. 8.10b are the trajectories

followed by the brushbot while tracking the reference trajectory with low (3.5 cm/s) and

high (7 cm/s) speed, respectively. Tracking performance are very good at lower speeds,

but they start to deteriorate as the speed of the robot increases. This is due to the fact that

the derived model is not valid anymore and the robot starts transitioning from regime I to

regime II.

8.3 Brushbots in Swarm Robotics

Leveraging the knowledge gained in the analysis of the brush dynamics, as well as macro-

scopic effects resulting from the presence of multiple sets of brushes, this section presents

the design of a simple and robust brushbot. The time to build the brushbot that is presented

in this section is, in fact, less than three hours, which include 3D printing, soldering and

preparation of the brushes. The unit cost is kept below 30$, which can be significantly

reduced if the number of robots to produce increases. The design of simple, easy and

fast-to-build, robust brushbot makes it very appealing and suitable for swarm robotics ap-

plications, which deals with the coordination and interactions of a large number of robots.

Fig. 8.11 shows the schematic design of the brushbot presented in this section: it is a

differential-drive-like brushbot, which consists of two sets of brushes mounted parallel to

each other on two opposite sides of a rigid platform. Two motors (shown in Fig. 8.12) are

mounted on top of each of the brushes. This design embodies the interplay between regime

I and II described in Section 8.1 in a different way compared to the design in Section 8.2.
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Figure 8.11: Differential-drive-like brushbot: two sets of brushes are mounted on the oppo-
site sides of the robot body. Desired linear and angular velocities of the robot body can be
achieved by varying the speed of vibration motors mounted on top of each set of brushes.

(a) (b)

Figure 8.12: Differential-drive-like brushbot. In Fig. 8.12a, the exploded view of the CAD
model shows, from top to bottom: PCB and battery support (black), top body (orange),
vibration motors (brown), bottom body (orange), brushes (purple). Fig. 8.12b shows a 3D
printed prototype of the brushbot: infrared-reflective balls are mounted on top for tracking
its pose.
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The motion of the differential-drive brushbot can be described as follows:

• actuating the left motor produces a velocity given by (8.5), indicated as vL in Fig. 8.11,

at the left set of brushes (as described by regime I)

• at the same time, due to the actuation of the left motor, the robot pivots about the right

set of brushes, which induces a net angular velocity, ωr, of the robot (as predicted by

regime II)

The rigid body dynamics of the robot are then:

vL,R = vr − ωr × (PL,R −O) (8.20)

From (8.20), the expressions of linear and angular velocities of the differential-drive-like

brushbot can be obtained:

vr =
vL + vR

2
, ωr =

vR − vL
W

, (8.21)

where, with abuse of notation, all symbols have been used to denote the signed magnitudes

of the vector quantities used in (8.20), their directions being given in Fig. 8.11. The motor

speeds ωL,R to realize the linear speeds vL,R used in (8.21) can be calculated using (8.5).

Modeling the brushbot as a unicycle, one can use controllers such as the one developed

in [138] to implement complex swarm-robotics algorithms (see, e.g., [129]). The technique

consists in obtaining a linear system equivalent to the unicycle by considering a point p

positioned at distance d in front of the center of the robot, denoted by the coordinates x and

y in Fig. 8.13. The unicycle dynamics have been used already in (4.30) in Chapter 4. In the

following, we briefly summarize them, adopting the notation used to describe the dynamics
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Figure 8.13: Unicycle robot, depicted as a triangle, used to model the differential drive
brushbots. The state of the robot is given by its position, represented by the coordinates x
and y, and orientation, denoted by ψ. The point p at a distance d in front of the unicycle is
used to linearize the system in order to design simple motion control laws.

of the brushbots: 
ẋ = v cosψ

ẏ = v sinψ

ψ̇ = ω,

(8.22)

whereas the dynamics of the point p moving in front of a unicycle can be written as:

ṗ =

cosψ − sinψ

sinψ cosψ


︸ ︷︷ ︸

=:R(ψ)

1 0

0 d


︸ ︷︷ ︸

=:D(d)

v
ω

 . (8.23)

Therefore, once a controller for p is designed, the inputs v and ω to the unicycle can be

easily computed as v
ω

 = D−1(d)RT (ψ)ṗ, (8.24)

and the values of vL and vR can be compactly expressed as

vL
vR

 = D−1
W D−1(d)RT (ψ)ṗ, (8.25)
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where

DW =

 1
2

1
2

− 1
2W

1
2W

 . (8.26)

Notice, however, that based on (8.5), it is not possible to reverse the direction of the

speed on the ground generated by the combined action of vibration motors and brushes.

Therefore, the velocities vL and vR corresponding to v and ω calculated from (8.24) need

to be positive. The naive approach consisting of zeroing the values of vL and vR whenever

they are negative might lead to practical impossibility of moving under arbitrary desired ṗ.

To circumvent this issue, the idea is that of adaptively changing the value of d according to

the differential equation

ḋ = ud, (8.27)

where ud is an additional control input we can give to the system. With this modification,

the linearized dynamics (8.23) become:

ṗ = R(ψ)D(d)DW︸ ︷︷ ︸
=:B1(ψ,d)

vL
vR

+

cosψ

sinψ


︸ ︷︷ ︸

=:B2(ψ)

ud =
[
B1(ψ, d) B2(ψ)

]
︸ ︷︷ ︸

=:B


vL

vR

ud


︸ ︷︷ ︸

=:up

(8.28)

Although d is changing, we want to keep it, for as much as we can, through ud, to a

desired value d̄. Moreover, we would like to keep it positive and less than d̄. The stated

conditions lend themselves to be encoded using the following control Lyapunov function

Vd and control Barrier function hd:

Vd(d) = (d− d̄)2 (8.29)

hd(d) = d(d̄− d). (8.30)

At this point, we can define the following optimization problem incorporating the CLF and

226



CBF constraints in a holistic fashion (similarly to what has been done in [46]):

minimize
up,δ

∥∥∥Bup − ˆ̇p
∥∥∥2

+ δ2

subject to
∂Vd
∂d

ud ≤ −Vd(d) + δ

∂hd
∂d

ud ≥ −hd(d)

vL ≥ 0

vR ≥ 0

(8.31)

where ˆ̇p is the desired velocity of the point p. The optimization program (8.31) is a convex

quadratic program and, as such, can be solved very efficiently in order to evaluate the

values of the control inputs vL and vR. δ is a slack variable which allows us to prioritize the

safety constraint (enforced using hd) over the stability constraint (enforced through Vd), by

relaxing the latter.

The results of the application of the described controllers are shown in Fig. 8.14, where

the controller evaluated as in (8.24) (top figure) is compared with the controller obtained by

zeroing negative values of vL and vR (bottom left) and the controller v?L and v?R, solutions

of the optimization problem (8.31). In the latter case, the values of vL and vR are never

negative, but rather the value of l is changed in order to allow for the positivity constraint

on vL and vR to be enforced.

As an example of an algorithm deployed on a real swarm of brushbots, in the follow-

ing, we consider the coverage control algorithm developed in [32]. Fig. 8.15 shows 26

differential-drive-like brushbots on the Robotarium [130] running the coverage-control al-

gorithm in order to evenly spread out over the shown rectangular domain. The boundaries

of the Voronoi cells of the brushbots are depicted as grey lines.

Observation 8.8. As pointed out above, the advantages related to design simplicity and

ease of assembly of the brushbots presented in this section, lead to robustness properties

which are desirable for swarm robotics applications. In particular, the fact that the vibra-
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(a)

(b) (c)

Figure 8.14: Trajectories obtained by running a proportional controller for the point p in
Fig. 8.13 to reach the black dot. The orientation of the robot is denoted by the black arrow,
while the position of the point p is depicted by the red dot. Notice how, in Fig. 8.14a, the
trajectory makes the robot move backwards—resulting in negative values of vL and vR—
before moving forward towards the black dot. Figure 8.14b shows the trajectory obtained
by zeroing any negative value of vL and vR resulting from (8.24). Although this approach
works in the presented case, it is not guaranteed to work in all situations. Finally, Fig. 8.14c
is obtained by letting the robot execute the inputs vL and vR obtained by solving the QP
(8.31).
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Figure 8.15: A swarm of 26 differential-drive-like brushbots (like the one shown in
Fig. 8.12) performing coverage control [32]. The boundaries of the Voronoi cells corre-
sponding to each robot are shown in grey.

tion motors do not have to be directly coupled with the brushes lets us design the robots

in such a way that all the moving parts are contained in the convex hull of the robot main

body (as can be seen in Fig. 8.12). This allows brushbots to tolerate collisions, even of

significant magnitude, with other robots and obstacles present in the environment. In our

related work [105], we show how this advantage can be used to programmatically achieve

higher-level swarming behaviors, such as clustering and phase-separation.

8.4 Nanobrushbots

As mentioned at the beginning of the chapter, owing to its design simplicity, this class of

vibration-driven robots lends itself to be miniaturized. Relevant applications in which small

scale robots can be employed are ultra-low-energy long-term monitoring where vibration

of the environment can be exploited to locomote. These include, for instance, traffic mon-

itoring on suspended bridges or health monitoring of moving mechanical components. In

fact, as the size of the brushbots reduce, it is not possible anymore to endow the robots with

sensing, communication and computational modules. Nevertheless, the same mechanical

design can be employed to leverage the vibration of the environment in which the micro-
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Figure 8.16: A 5 mg micro-brushbot fabricated by two-photon lithography [195].

brushbots are deployed in order to locomote.

A first attempt at miniaturizing the brushbot has been in [195] (see Fig. 8.16). Starting

from this platform, we are interested in obtaining complex behavior without enduing the

robots with computation, communication, sensing or active locomotion modules. In [68],

we analyzed the effects of collisions among (macro-)brushbots on the formation of clusters

and, in general, regions characterized by different densities, and how vibrations affect this

phenomenon. In the context of structural health monitoring, these phenomena can be lever-

aged to localize structural imperfections which impede the motion of the micro-brushbots,

allowing an external observer, to localize microscopic features of the structure. In the same

way, swarms of micro-brushbots deployed on a suspended bridge may cluster when specific

patterns of vibration—corresponding to specific traffic patterns—arise.

To validate the theories developed in [68], we manufactured 500 micro-brushbots and

we deployed them on a circular vibrating platforms (see Fig. 8.16). The formation of

clusters has been observed, and the characterization of its dynamics as a function of the

vibration input has been carried out. The quantitative results show agreement with GPU-

enabled simulations, shown in Fig. 8.18.
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(a)

(b)

Figure 8.17: Cluster formation in a swarm of 500 micro-brushbots.
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8.5 Conclusions

In this chapter, we presented a theoretical and experimental study of the brushbots, a class

of vibration-driven robots. The use of brushes for locomotion has been investigated from

a theoretical point of view, leading to the development of improved dynamic models of

the brushes. Moreover, a series of experiments have been used to validate the derived

theoretical models and to characterize their range of applicability. Furthermore, the design

of two robotic platform is presented: a fully-actuated and a differential-drive-like brushbot.

In particular, a swarm of 26 differential-drive-like brushbots has been used to showcase

swarm-robotics applications in order to validate the modeling, design and control of this

kind of robots. Finally, a miniaturized version of the brushbot and its applications in ultra-

low-energy long-term monitoring scenarios is discussed.
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CHAPTER 9

CONCLUSIONS AND FUTURE DIRECTIONS

As robots move more and more from curated laboratories and industrial settings to less

structured, more dynamic and varied scenarios, new challenges arise. This is true all the

more so when robots have to deployed and remain operational over truly long time hori-

zons. Besides the obvious energetic problem, caused by the impossibility of carrying an

infinite amount of energy resources, the fragility of overly optimized mechanical designs

and control technologies leads to inevitable failure.

This thesis studies long-duration robot autonomy, a discipline that concerns itself with

the deployment of robotic systems over sustained amounts of time. And it does so by

analyzing it from two different, yet complementary, perspectives: control algorithms and

robot design. The two parts in which this thesis is subdivided are devoted to these two

aspects of long-duration robot autonomy, respectively.

In Part I, Chapter 3 defines the persistification of robotic tasks and describes an optimization-

based control technique which, based on robot, environment and energy models, allows

robotic systems to remain operational and persistently execute the tasks for which they have

been deployed. The idea behind the persistification of robotic tasks is that of constraining

the execution of tasks by the energy resources available at any time instant by the robots. In

Chapter 4, this constraint-centric view is further developed to define the constraint-driven

control paradigm. In these settings, robotic tasks are themselves expressed as constraints—

together with the energy constraints defined by the persistification of robotic tasks—within

a minimum-energy optimization-based control framework.

The constraint-driven control paradigm has been demonstrated to be effective in a num-

ber of different applications involving a variety of robotic platforms, ranging from multi-

robot systems and robotic manipulators. Building up on this paradigm, Chapter 5 is devoted
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to the development of an energy-aware task allocation framework for multi-robot systems.

Owing to demonstrated adaptability and resilience properties, the proposed formulation is

amenable for tasks that take place over long periods of time. The proposed task alloca-

tion algorithm is based on the idea that allocations of tasks among different robots can be

effectively realized by allowing different robots to differently prioritize a stack of tasks

they are required to execute. This way, both the allocation and the control input required

to executed the allocated task are generated by means of an optimization-based control

framework, where survivability constraints—which encode the task persistification—can

be considered holistically with the allocation of tasks.

In Chapter 6, we considered another aspect of energy-awareness in long-duration robot

autonomy, and developed a communication-constrained distributed estimation algorithm

to be employed by a multi-robot system deployed in an environment with the objective of

estimating an environmental phenomenon (such as temperature, light intensity, and occu-

pancy map of the environment). The motivation for studying distributed estimation pro-

cesses with communication constraints is that, after mobility, in this kind of applications,

communication can be a non-negligible energy sink. Therefore, an algorithm to limit the

amount of energy required by communication modules of autonomous mobile sensors is

devised.

Part II of this thesis is dedicated to the study of robot design principles amenable for

long-duration autonomy. In particular, the SlothBot and the brushbots are presented. The

former is a slow-paced solar-powered wire-traversing robot envisioned for long-term envi-

ronmental monitoring applications. In particular, in Chapter 7, two mechanical designs are

proposed for such a platform, which are capable of moving on a mesh of wires by fail-safely

switching between different branches of wires, and which move on a single wire, respec-

tively. Besides the mechanical structure, techniques to control these platforms to move on

a mesh of wires during environmental monitoring applications are presented. Chapter 8

concludes Part II and the main content of this thesis with the study of the interconnected
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mechanics, dynamics, and control of the brushbots, a class of vibration-driven robots which

can leverage vibrational energy of the environment in which they are deployed in order to

locomote and operate. Validation of the developed structural models are presented, and the

deployment of a swarm of brushbots is showcased both at macro- and a micro-scale.

To conclude, despite the fact that, in this thesis, the design of control algorithms and

of mechanical structures of robots have been discussed in two distinct parts, we firmly

believe that these should rather be considered as two intimately intertwined processes of

the creation and operation of robotic platforms. This idea characterizes research areas

such as morphological programming, where the mechanical design of a robot determines

and implements the desired control actions. The opposite, where control determines the

structure of a robot, has only started to be explored. Co-design principles, for instance,

dictate the tight coordination of mechanics and control during design phases. However,

their interplay during the operation of robotic systems is not fully understood yet. It is

embracing the described philosophy that future research will be carried out in order to

leverage the advantages of the synergy between mechanical intelligence and intelligent

control for the development of robots truly capable of being self-sustained and survive

under most (not necessarily all) conditions faced during their lives.
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APPENDIX A

PROOFS

Proof of Theorem 3.9. Given the properties of class K functions [196] and using the fact

that h1(x) has relative degree ρ, ḣρ(x) is given by the following expression:

ḣρ = Lρfh1(x) + LgL
ρ−1
f h1(x)u+

ρ−1∑
i=1

∑
C∈(ρ−1

i )

∏
j∈C

∂αj
∂hj

Lρ−if h1(x). (A.1)

Consequently, the choice of u ∈ Kρ(x) renders the set Cρ = {x ∈ Rn : hρ(x) ≥ 0} for-

ward invariant. By recursively applying (3.22) ρ − 1 times, C1 is proved to be forward

invariant.

Proof of Lemma 3.12, following the proof of Theorem 1 in [44]). If h is a time-varying CBF

onD×R+ and u ∈ K(x, t), from (3.25) and (3.26) we can derive the following differential

inequality:

ḣ(x, t) ≥ −α(h(x, t)). (A.2)

Now, consider the following boundary condition problem:


ζ̇ = −α(ζ)

ζ(t0) = h(x(t0), t0) > 0,

(A.3)

whose solution is given by ζ(t) = β(ζ(t0), t − t0), β being a class KL function (Lemma

4.4 in [147]). From (A.2), making use of the Comparison Lemma (Lemma 3.4 in [147]),

we have that:

h(x(t), t) ≥ β(ζ(t0), t− t0), ∀t ≥ t0. (A.4)

Hence, if h(x(t0), t0) > 0 and therefore x(t0) ∈ C(t), using the properties of class KL
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functions, (A.4) ensures that h(x(t), t) > 0 ∀t ≥ t0 and so x(t) ∈ C(t) ∀t ∈ [t0, t0 +

∆tmax(x0)]. Thus, C(t) is forward invariant.

Proof of Theorem 3.16. Given the properties of class K functions and using the fact that

h1(x) = −LfV (x) has relative degree ρ−1, the following expression of ḣρ can be derived:

ḣρ(x) = −LρfV (x)− LgLρ−1
f V (x)u+

ρ−2∑
i=1

∑
C∈(ρ−2

i )

∏
j∈C

∂αj
∂hj

(−Lρ−1−i
f V (x)). (A.5)

The choice of u ∈ K ′ρ(x) will render the set Cρ = {x ∈ Rn : hρ(x) ≥ 0} forward invariant.

Similarly to what has been done in Theorem 3.9, by the recursive application of (3.28), C1

is proven to be forward invariant. Then, by LaSalle’s Theorem (Theorem 4.4 in [147]), as

{x∗} is the largest invariant set in ∂C1, one has that x(t)→ x∗ as t→∞.

Proof of Theorem 3.19. By Theorem 3.18, the controller (3.38) results in the forward in-

variance, i.e., safety, of the set S. Therefore, we only need to confirm that, if the controller

(3.38) is safe, then uwill track the control signal k(x, t). To this end, consider the following

time-varying Lyapunov function:

V (u, x, t) =
1

2
‖u− k(x, t)‖2. (A.6)
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Its time derivative evaluates to:

V̇ =
∂V

∂u
u̇+

∂V

∂k
k̇

=
∂V

∂u
φk(x, u, t) +

∂V

∂k
Lfk(x, t) +

∂V

∂k

∂k

∂t

= (u− k(x, t))T
Å
φk(x, u, t)− Lfk(x, t)− ∂k

∂t

ã
= (u− k(x, t))T

(α
2

(k(x, t)− u)
)

= −α
2
‖u− k(x, t)‖2

= −αV (u, x, t)

(A.7)

where we used the assumption that the controller φk(x, u, t) is safe, that implies v∗ = 0.

Thus, V → 0 or, equivalently, u → k(x, t), i.e., the input u will track the control signal

k(x, t).

Proof of Proposition 3.26. Follows from the application of Theorem 3.9, Lemma 3.12 and

Theorem 3.16.

Proof of Theorem 4.1. Similar to Theorem 4.3 in [131].

Proof of Theorem 4.2, based on [116]). See [46] for the forward invariance. Let

V (x) =


−h(x) x ∈ Rn \ S

0 x ∈ S
(A.8)

be a control Lyapunov candidate function. Thus, V (x) > 0 for x ∈ Rn \ S and V (x) = 0

for x ∈ S. Moreover,

V̇ =
∂V

∂x
ẋ = LfV (x) + LgV (x)u =


−Lfh(x)− Lgh(x)u x ∈ Rn \ S

0 x ∈ S.
(A.9)

Furthermore, since h is continuously differentiable, V is continuously differentiable as
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well. Then, by hypothesis, V̇ = −Lfh(x) − Lgh(x)u ≤ α(h(x)) < 0 for x ∈ Rn \ S

and V̇ = 0 for x ∈ S. By Theorem 4.2, S is forward invariant. Moreover, S is closed,

since it is the inverse image of the closed set [0,∞) ⊆ R under the continuous map h.

Therefore, by Theorem 2.8 in [197], the system (4.1) is uniformly globally asymptotically

stable with respect to the set S. Thus, there exists a class KL function β [196] such that,

given any initial state x0, the solution x(t) satisfies d(x(t),S) ≤ β(d(x0,S), t), ∀t ≥ 0,

where d(y,S) , infz∈S ‖y − z‖. Hence, as t→∞, x(t)→∈ S.

Proof of Proposition 4.4. The KKT conditions for the problem in (4.15) are



−∂h
∂x
u∗ − α(h(x))− δ∗ ≤ 0

λ∗ ≥ 0

λ∗
Å
−∂h
∂x
u∗ − α(h(x))− δ∗

ã
= 02u∗

2δ∗

+ λ∗

−
∂h

∂x

T

−1

 = 0,

(A.10)

where u∗, δ∗ and λ∗ are primal and dual optimal points [121]. First of all, we note that, if

λ∗ = 0, then u∗ = 0 by the fourth equation in (A.10). Therefore, from the first equation

in (A.10), −α(h(x)) ≤ 0. This is equivalent to −α(−J(x)) ≤ 0 and, since J(x) ≥ 0, this

implies that J(x) = 0. In case λ∗ > 0, from the third and fourth equation in (A.10), one

has λ∗ = −2α(h(x))
(
1 + ‖∂h

∂x
‖2
)−1, and therefore, u∗ = −α(h(x))∂h

∂x

T (
1 + ‖∂h

∂x
‖2
)−1.

Since J(x) ≥ 0 ∀x ∈ Rn and J is continuously differentiable, one can show that J(x̄) =

0 ⇒ ∂J
∂x

∣∣
x=x̄

= 0. Thus, we can unify the two cases, λ∗ = 0 and λ∗ > 0, and write the

expression of the optimal u as follows:

u∗ =
α(−J(x))∂J

∂x

T

1 + ‖∂J
∂x
‖2

. (A.11)
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With this expression of the input u, the evolution in time of the cost J is given by

J̇ =
∂J

∂x
ẋ =

∂J

∂x
u∗ =

α(−J(x))‖∂J
∂x
‖2

1 + ‖∂J
∂x
‖2

. (A.12)

So,
∂J

∂x
6= 0⇒ J̇ < 0 and

∂J

∂x
= 0⇒ J̇ = 0. (A.13)

Hence, as t→∞, x(t)→ x∗, such that ∂J
∂x

(x∗) = 0.

Proof of Corollary 4.16. Proceeding similarly to the proof of Proposition 4.4, the solution

to (4.16) evaluates to

u∗ =
α(−J(x))∂J

∂x

T

‖∂J
∂x
‖2

, (A.14)

and, therefore, J̇ = α(−J(x)). Thus, J → 0 as t → ∞ [147]. Hence, as t → ∞,

x(t)→ x∗ such that ∂J
∂x

(x∗) = 0, and so J(x∗) = 0.

Proof of Proposition 4.6. Similarly to what has been done in Propositon 4.4, it can be

shown that

J̇ =
−c(J(x))γ‖∂J

∂x
‖2

1 + ‖∂J
∂x
‖2

. (A.15)

Thus, by Theorem 4.1, we conclude that

∂J

∂x
6= 0⇒ J → 0 in finite time, (A.16)

and
∂J

∂x
= 0⇒ J̇ = 0. (A.17)

Hence, x → x∗, with ∂J
∂x

(x∗) = 0, in finite time. Indeed, as shown in [146], h(x) such

that ḣ ≥ −c(h(x))γ is a finite-time convergence control barrier function for the system

characterized by single integrator dynamics, ẋ = u.

Proof of Proposition 4.7. Proposition 4.4 ensures that, by imposing the global constraint
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−∂J
∂x
u ≥ −α(−J(x)), constructed using the whole state vector x, the cost J is decreasing

towards a stationary point. We want to show that, by imposing only local constraints (i. e.,

such that robot i only needs information about its neighbors), the multi-robot system is

able to enforce the global constraint and, hence, to minimize the cost J in a decentralized

fashion.

We proceed by starting to sum up the constraints for each robot, obtaining:

N∑
i=1

Å
−∂Ji
∂xi

ui

ã
≥

N∑
i=1

(−α(−Ji(x))− δi)

≥− α
(
−

N∑
i=1

Ji(x)

)
− δ ≥ −α (−J(x))− δ,

(A.18)

where we used the superadditivity property of α, and we set δ =
∑N

i=1 δi. Moreover, since

the graph G, which encodes the neighboring relations between the robots, is undirected, we

have that ∂Ji
∂xi

= 1
2
∂J
∂xi

. Thus,

∂J

∂x
u ≥ −2α (−J(x))− 2δ = −α′ (−J(x))− δ′, (A.19)

where ∂J
∂x

=
î
∂J
∂x1
, . . . , ∂J

∂xN

ó
, u =

[
uT1 , . . . , u

T
N

]T , and α′ an extended class K function.

Hence, by Proposition 4.4, x will converge to a stationary point of J .

Finally, we note that a class K function α(x) = cxγ , defined for x < 0 is convex, and

hence superadditive, for x < 0. Applying Proposition 4.6, the statement holds.

Proof of Proposition 5.8. Solving (5.19) at time k yields u(k), δ(k), and α(k). At time k+ 1,

by Proposition 3 in [10] where α = α(k) and Jm(x) = −hm(x), if α(k+1) = α(k) and

δ(k+1) = δ(k), then ‖u(k+1)‖ < ‖u(k)‖ is obtained using (5.33). Let

V (α, u, δ) =
nr∑
i=1

(
C‖Πiα−,i‖2 + ‖ui‖2 + l‖δi‖2

Si

)
, (A.20)

be a candidate Lyapunov function for the multi-robot system controlled via the solutions of
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the optimization problem (5.19) (see scheme in Fig. 5.3). Notice that V is equal to the cost

(5.19a) and it is positive definite since Si is positive definite for all i by assumption. Then,

one has:
V (k+1) = V (α(k+1), u(k+1), δ(k+1))

≤ V (α(k), u(k+1), δ(k))

< V (α(k), u(k), δ(k)) = V (k).

(A.21)

Therefore, V (k) → 0 as k →∞. Thus, u(k) → 0 as k →∞, and x(k)
i → x?m,i for some m,

by the driftless assumption on the robot model (5.31).

Proof of Proposition 5.9. For notational convenience, we let the ᾱ =
[
αT−,1 . . . αT−,nr

]T
∈

{0, 1}ntnr be the vector composed of the stacked columns of α, and

Φ̄ = 1nr ⊗ Φ (A.22)

Θ̄ = 1nr ⊗Θ (A.23)

Ψ̄ = 1nr ⊗Ψ, (A.24)

⊗ denoting the Kronecker product. From (5.20) and with the notation introduced above,

one has that

Φ̄ᾱ ≥ 0, (A.25)

where the symbol ≥ is always intended component-wise. Then, as δ ∈ R≥0 (see discus-

sions in [7] and [10]), the constraints (5.19b) and (5.19c) in (5.19) can be re-written as

follows:

δ(k)TLfh(x(k)) + δTLgh(x(k))u(k) ≥ −δ(k)Tγ(h(x(k)))− δ(k)T δ(k) (A.26)

ᾱT Φ̄T Θ̄δ̄(k) + ᾱT Φ̄T Φ̄ᾱ(k) ≤ ᾱT Φ̄T Ψ̄. (A.27)
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Similarly, the constraints (5.19d) to (5.19g), can be re-written as

ᾱ(k)TATαAαᾱ
(k) ≤ ᾱ(k)TATαbα (A.28)

δ(k)TATδ Aδδ
(k) ≤ δ(k)TATδ bδ. (A.29)

Then, define the following candidate Lyapunov function:

V (x) = γ(h(x))Tγ(h(x)), (A.30)

where h(x) = [h1(x), . . . , hnt(x)]T and γ(h(x)) is intended as a component-wise applica-

tion of the extended classK∞ function to the vector h(x). We want the following condition

on its time derivative to be satisfied at every time step k

V̇ (x(k), u(k)) = 2γ(h(x(k)))T
dγ

dh

dh

dx
f(x(k)) + 2γ(h(x(k)))T

dγ

dh

dh

dx
g(x(k))u(k)

≤ −cV (x(k)),

(A.31)

with c ∈ R>0.

Defining ϕ(k) = [γ(h(x(k))), u(k), δ(k), ᾱ(k), 1]T , the inequalities (A.31), (A.26), (A.27),

(A.28), (A.29) can be compactly written as follows, respectively:

ϕ(k)TB
(k)
0 ϕ(k) ≤ 0 (A.32)

ϕ(k)TB
(k)
1 ϕ(k) ≤ 0 (A.33)

ϕ(k)TB
(k)
2 ϕ(k) ≤ 0 (A.34)

ϕ(k)TB
(k)
3 ϕ(k) ≤ 0 (A.35)

ϕ(k)TB
(k)
4 ϕ(k) ≤ 0, (A.36)

where B0, B1, B2, B3, and B4 are defined in (5.35).

Thus, applying the S-procedure [121], the linear matrix inequality (5.34) in the vari-
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ables τ1, τ2, τ3, τ4 is obtained. If a solution to (5.34) exists for all k, then (A.31) is satisfied

for all k, and therefore V (x(k)) → 0. Consequently x(k) converges as k → ∞, and so do

the sequences {u(k)}k∈N, {δ(k)}k∈N, and {α(k)}k∈N, solution of (5.19), parameterized by

x(k).

Proof of Theorem 7.1. Let us start proving that (7.12)⇒ (7.13), with which we mean that

a solution to (7.12) is also a solution of (7.13).

Let C(pi) =
∏Nw

j=1(aTj pi + bj). This way we can describe the wire-traversing constraints as

follows:

pi ∈ G ⇔ C(pi) = 0, pi ∈ X. (A.37)

Writing the Lagrangian for the constrained minimization problem (7.12), one obtains:

L(p1, . . . , pN , λ) = J(p1, . . . , pN) +
N∑
i=1

λiC(pi), (A.38)

where λ = [λ1, . . . , λN ]T is the Lagrange multiplier. Let p?1, . . . , p
?
N be a local minimizer

of (7.12). The following necessary condition has to be satisfied ([121]):

∂L

∂pi
(p?i ) =

∂J

∂pi
(p?i ) + λi

Nw∑
k=1

aTk

Nw∏
j=1
j 6=k

(aTj p
?
i + bj) = 0

∀i = {1, . . . , N}.

(A.39)

Assume that robot i is on wire k̄: as a result aT
k̄
p?i + bk̄ = 0. So, (A.39) reduces to:

∂L

∂pi
(p?i ) =

∂J

∂pi
(p?i ) + λia

T
k̄

Nw∏
j=1
j 6=k̄

(aTj p
?
i + bj) = 0

∀i = {1, . . . , N}.

(A.40)

From [129] we know that ∂J
∂pi

(p?i ) ‖ (ρi − p?i ), where ‖ is the parallel symbol. Since
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λi
∏Nw

j=1
j 6=k̄

(aTj p
?
i + bj) ∈ R is a scalar, we have that (ρi− p?i ) ‖ ak̄. So, (ρi− p?i ) is orthogonal

to the wire k̄ and, therefore, p?i minimizes the distance from ρi. From [129], we know that

ρi, i = 1, . . . , N are solutions of (7.7). Hence, p?i is a local minimizer of (7.13).

We now prove that (7.13) ⇒ (7.12), i.e. a local minimizer of (7.13) is also a local

minimizer of (7.12). The constraints on (7.13) are equivalent to pU
i = ρi ∀i ∈ {1, . . . , N},

as shown in [32]. Substituting this expression of pU
i in (7.13), one obtains the following

unconstrained minimization problem:

min
pC
i ∈G

∥∥pC
i − ρi

∥∥ , (A.41)

whose solution pC?
i is the closest point to ρi that is on the wires defined by G. This means

that
(
pC?
i − ρi

)
‖ ak for some k ∈ {1, . . . , Nw}. Since also ∂J

∂pi

(
pC?
i

)
‖
(
pC?
i − ρi

)
, ∃λi ∈

R
∣∣∣ ∂L∂pi (pC?

i

)
= 0 . Hence, a solution of (7.13) is also a local minimizer of (7.12).

Proof of Theorem 7.10. By the Definition 7.3 of conformal map, f−1 exists and it is con-

tinuous as it is the map f itself. As the operator <(·) is continuous and the composi-

tion of continuous functions is continuous, one has that mkj is continuous for the verti-

cal strip of the complex plane defined by w1 < < (f−1(x)) < w2. For < (f−1(x)) ≤

w1 and < (f−1(x)) ≥ w2, mkj is constant and so continuous. For < (f−1(x)) = w1,

f (< (f−1(x))) = f (w1) = p
(1)
kj by Definition 7.9 of fkj . Hence mkj is continuous on the

vertical line of the complex plane defined by < (f−1(x)) = w1. A similar argument holds

for when < (f−1(x)) = w2. Hence, the mapping M̃ is continuous over each triangular

domain.

Now the continuity of mkj across adjacent domains Tkj1 and Tkj2 or Tk1jn and Tk2jm is

left (see Fig. A.1). Let us define lkj12 to be the common segment of the two adjacent

regions Tkj1 , Tkj2 ( Pk (see Fig. A.1a). For x ∈ lkj12 one has that <
Ä
f−1
kj1

(x)
ä
≥ w2

and <
Ä
f−1
kj2

(x)
ä
≤ w1. Therefore, in the former case x is mapped to p(2)

kj1
, whilst in the

latter case x is mapped to p(1)
kj2

. The two points coincide, hence M̃ is continuous on lkj12 .
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Tkj1Tkj2

p
(1)
kj1

p
(1)
kj2

= p
(2)
kj1

p
(2)
kj2

lkj12

(a)

p
(1)
k1jn

= p
(2)
k2jmTk1jn

Tk2jmp
(2)
k1jn

= p
(1)
k2jm

lk12

(b)

Figure A.1: Adjacent triangular regions over whose common edges the continuity of the
function M̃ has to be shown

Let us now define lk12 the common segment of the two adjacent regions Tk1jn ( Pk1 and

Tk2jm ( Pk2 , that is also the only common segment between the two polygons Pk1 and

Pk2 (see Fig. A.1b). By Definition 7.9, for x ∈ lk12 one has <
Ä
f−1
k1jn

(x)
ä

= f−1
k1jn

(x) and

<
Ä
f−1
k2jm

(x)
ä

= f−1
k2jm

(x). Since w1 < <
Ä
f−1
k1jn

(x)
ä
< w2 and w1 < <

Ä
f−1
k2jm

(x)
ä
< w2,

we can write:

mk1jn(x) = fk1jn
Ä
<
Ä
f−1
k1jn

(x)
ää

=fk1jn
Ä
f−1
k1jn

(x)
ä

= x (A.42)

mk2jm(x)=fk2jm
Ä
<
Ä
f−1
k2jm

(x)
ää

=fk2jm
Ä
f−1
k2jm

(x)
ä

= x. (A.43)

So mk1jn(x) = mk2jm(x) ∀x ∈ lk12 . Hence, M̃ is continuous on lk12 .

Proof of Proposition 7.22. Expanding the L2 norm in (7.60), one has:

‖F (θ)−F (φ)‖2
L2(IN )

=

∫
IN
|F (θ)−F (φ)|2

=

∫
IN

∣∣∣∣∣∑
i∈N

∫
Vi(P )

|pi − q|2 (θ(q)− φ(q))︸ ︷︷ ︸
∗©

dq

∣∣∣∣∣
2

.

(A.44)

As the term ∗© in (A.44) is positive, the minimum of ‖F(θ) − F(φ)‖2
L2(IN ) is achieved

when the difference θ(q) − φ(q) is minimized. As θ has to be concave and θ > φ, by

248



Definition 7.21, θ that minimizes (A.44) is the concave envelope of φ.
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APPENDIX B

HARDWARE SPECIFICATIONS
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[92] A. Pagnano, M. Höpf, and R. Teti, “A roadmap for automated power line inspec-
tion. maintenance and repair,” Procedia Cirp, vol. 12, pp. 234–239, 2013.

[93] P. Debenest, M. Guarnieri, K. Takita, E. F. Fukushima, S. Hirose, K. Tamura, A.
Kimura, H. Kubokawa, N. Iwama, and F. Shiga, “Expliner - Robot for inspection
of transmission lines,” in International Conference on Robotics and Automation,
May 2008, pp. 3978–3984.

[94] X.-D. Yu, L.-Y. Duan, and Q. Tian, “Highway traffic information extraction from
Skycam MPEG video,” in International Conference on Intelligent Transportation
Systems, IEEE, 2002, pp. 37–42.

[95] R. R. Thompson and M. S. Blackstone, Three-dimensional moving camera assem-
bly with an informational cover housing, US Patent 6,873,355, Mar. 2005.

[96] B. L. Jordan, M. A. Batalin, and W. J. Kaiser, “NIMS RD: A rapidly deployable
cable based robot,” in International Conference on Robotics and Automation, IEEE,
2007, pp. 144–150.

[97] M. F. Campos, G. A. Pereira, S. R. Vale, A. Q. Bracarense, G. A. Pinheiro, and
M. P. Oliveira, “A robot for installation and removal of aircraft warning spheres on
aerial power transmission lines,” Transactions on Power Delivery, vol. 18, no. 4,
pp. 1581–1582, 2003.

[98] S. M. LaValle, Planning algorithms. Cambridge University Press, 2006.

[99] S. Carpin, “Distributed coverage while not being covered,” in International Con-
ference on Intelligent Robots and Systems, IEEE/RSJ, 2012, pp. 842–848.

[100] A. Breitenmoser, M. Schwager, J.-C. Metzger, R. Siegwart, and D. Rus, “Voronoi
coverage of non-convex environments with a group of networked robots,” in Inter-
national Conference on Robotics and Automation, IEEE, 2010, pp. 4982–4989.

[101] J.-M. Breguet and R. Clavel, “Stick and slip actuators: Design, control, perfor-
mances and applications,” in International Symposium on Micromechatronics and
Human Science, IEEE, 1998, pp. 89–95.

[102] P. Vartholomeos and E. Papadopoulos, “Analysis, design and control of a planar
micro-robot driven by two centripetal-force actuators,” in International Conference
on Robotics and Automation, IEEE, 2006, pp. 649–654.

265



[103] L Giomi, N Hawley-Weld, and L Mahadevan, “Swarming, swirling and stasis in
sequestered bristle-bots,” Proceedings of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences, vol. 469, no. 2151, p. 20 120 637, 2013.

[104] J. Klingner, A. Kanakia, N. Farrow, D. Reishus, and N. Correll, “A stick-slip om-
nidirectional powertrain for low-cost swarm robotics: Mechanism, calibration, and
control,” in International Conference on Intelligent Robots and Systems, IEEE/RSJ,
2014, pp. 846–851.

[105] S. Mayya, G. Notomista, D. Shell, S. Hutchinson, and M. Egerstedt, “Non-uniform
robot densities in vibration driven swarms using phase separation theory,” in Inter-
national Conference on Intelligent Robots and Systems, IEEE/RSJ, 2019, pp. 4106–
4112.

[106] G. Notomista, S. F. Ruf, and M. Egerstedt, “Persistification of robotic tasks using
control barrier functions,” Robotics and Automation Letters, vol. 3, no. 2, pp. 758–
763, 2018.

[107] S. Piller, M. Perrin, and A. Jossen, “Methods for state-of-charge determination and
their applications,” Journal of Power Sources, vol. 96, no. 1, pp. 113–120, 2001.
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[127] G. Mathew and I. Mezić, “Metrics for ergodicity and design of ergodic dynam-
ics for multi-agent systems,” Physica D: Nonlinear Phenomena, vol. 240, no. 4,
pp. 432–442, 2011.

[128] A. Okabe and A. Suzuki, “Locational optimization problems solved through Voronoi
diagrams,” European Journal of Operational Research, vol. 98, no. 3, pp. 445–456,
1997.

[129] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks.
Princeton University Press, 2010.

[130] S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote, and M. Egerst-
edt, “The Robotarium: Globally impactful opportunities, challenges, and lessons
learned in remote-access, distributed control of multirobot systems,” Control Sys-
tems Magazine, vol. 40, no. 1, pp. 26–44, 2020.

[131] S. P. Bhat and D. S. Bernstein, “Finite-time stability of continuous autonomous
systems,” SIAM Journal on Control and Optimization, vol. 38, no. 3, pp. 751–766,
2000.

[132] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed newton method for network
utility maximization - I: Algorithm,” Transactions on Automatic Control, vol. 58,
no. 9, pp. 2162–2175, 2013.

[133] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization
and statistical learning via the alternating direction method of multipliers,” Machine
Learning, vol. 3, no. 1, pp. 1–122, 2010.

[134] J. Cortés and M. Egerstedt, “Coordinated control of multi-robot systems: A survey,”
SICE Journal of Control, Measurement, and System Integration, vol. 10, no. 6,
pp. 495–503, 2017.

[135] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in
SIGGRAPH computer graphics, ACM, vol. 21, 1987, pp. 25–34.

[136] M. Egerstedt and X. Hu, “Formation constrained multi-agent control,” Transactions
on Robotics and Automation, vol. 17, no. 6, pp. 947–951, 2001.

[137] S. Lloyd, “Least squares quantization in pcm,” Transactions on Information The-
ory, vol. 28, no. 2, pp. 129–137, 1982.

[138] R. Olfati-Saber, “Near-identity diffeomorphisms and exponential ε-tracking and
ε-stabilization of first-order nonholonomic SE(2) vehicles,” in American Control
Conference, IEEE, vol. 6, 2002, pp. 4690–4695.

268



[139] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for collisions-
free multirobot systems,” Transactions on Robotics, vol. 33, no. 3, pp. 661–674,
2017.

[140] G. Notomista. (2018). Notomista, Egerstedt - Constraint Driven Coordinated Con-
trol of Multi Robot Systems, Youtube.
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