8,190 research outputs found

    Embedding Requirements within the Model Driven Architecture

    Get PDF
    The Model Driven Architecture (MDA) brings benefits to software development, among them the potential for connecting software models with the business domain. This paper focuses on the upstream or Computation Independent Model (CIM) phase of the MDA. Our contention is that, whilst there are many models and notations available within the CIM Phase, those that are currently popular and supported by the Object Management Group (OMG), may not be the most useful notations for business analysts nor sufficient to fully support software requirements and specification. Therefore, with specific emphasis on the value of the Business Process Modelling Notation (BPMN) for business analysts, this paper provides an example of a typical CIM approach before describing an approach which incorporates specific requirements techniques. A framework extension to the MDA is then introduced; which embeds requirements and specification within the CIM, thus further enhancing the utility of MDA by providing a more complete method for business analysis

    An analytical framework for a consensus-based global optimization method

    Full text link
    In this paper we provide an analytical framework for investigating the efficiency of a consensus-based model for tackling global optimization problems. This work justifies the optimization algorithm in the mean-field sense showing the convergence to the global minimizer for a large class of functions. Theoretical results on consensus estimates are then illustrated by numerical simulations where variants of the method including nonlinear diffusion are introduced

    Schwinger-Keldysh formalism II: Thermal equivariant cohomology

    Get PDF
    Causally ordered correlation functions of local operators in near-thermal quantum systems computed using the Schwinger-Keldysh formalism obey a set of Ward identities. These can be understood rather simply as the consequence of a topological (BRST) algebra, called the universal Schwinger-Keldysh superalgebra, as explained in our companion paper arXiv:1610.01940. In the present paper we provide a mathematical discussion of this topological algebra. In particular, we argue that the structures can be understood in the language of extended equivariant cohomology. To keep the discussion self-contained, we provide a basic review of the algebraic construction of equivariant cohomology and explain how it can be understood in familiar terms as a superspace gauge algebra. We demonstrate how the Schwinger-Keldysh construction can be succinctly encoded in terms a thermal equivariant cohomology algebra which naturally acts on the operator (super)-algebra of the quantum system. The main rationale behind this exploration is to extract symmetry statements which are robust under renormalization group flow and can hence be used to understand low-energy effective field theory of near-thermal physics. To illustrate the general principles, we focus on Langevin dynamics of a Brownian particle, rephrasing some known results in terms of thermal equivariant cohomology. As described elsewhere, the general framework enables construction of effective actions for dissipative hydrodynamics and could potentially illumine our understanding of black holes.Comment: 72 pages; v2: fixed typos. v3: minor clarifications and improvements to non-equilbirum work relations discussion. v4: typos fixed. published versio

    Search and Result Presentation in Scientific Workflow Repositories

    Get PDF
    We study the problem of searching a repository of complex hierarchical workflows whose component modules, both composite and atomic, have been annotated with keywords. Since keyword search does not use the graph structure of a workflow, we develop a model of workflows using context-free bag grammars. We then give efficient polynomial-time algorithms that, given a workflow and a keyword query, determine whether some execution of the workflow matches the query. Based on these algorithms we develop a search and ranking solution that efficiently retrieves the top-k grammars from a repository. Finally, we propose a novel result presentation method for grammars matching a keyword query, based on representative parse-trees. The effectiveness of our approach is validated through an extensive experimental evaluation
    • …
    corecore