3,348 research outputs found

    Semantic Cross-View Matching

    Full text link
    Matching cross-view images is challenging because the appearance and viewpoints are significantly different. While low-level features based on gradient orientations or filter responses can drastically vary with such changes in viewpoint, semantic information of images however shows an invariant characteristic in this respect. Consequently, semantically labeled regions can be used for performing cross-view matching. In this paper, we therefore explore this idea and propose an automatic method for detecting and representing the semantic information of an RGB image with the goal of performing cross-view matching with a (non-RGB) geographic information system (GIS). A segmented image forms the input to our system with segments assigned to semantic concepts such as traffic signs, lakes, roads, foliage, etc. We design a descriptor to robustly capture both, the presence of semantic concepts and the spatial layout of those segments. Pairwise distances between the descriptors extracted from the GIS map and the query image are then used to generate a shortlist of the most promising locations with similar semantic concepts in a consistent spatial layout. An experimental evaluation with challenging query images and a large urban area shows promising results

    Learning Mutual Modulation for Self-Supervised Cross-Modal Super-Resolution

    Full text link
    Self-supervised cross-modal super-resolution (SR) can overcome the difficulty of acquiring paired training data, but is challenging because only low-resolution (LR) source and high-resolution (HR) guide images from different modalities are available. Existing methods utilize pseudo or weak supervision in LR space and thus deliver results that are blurry or not faithful to the source modality. To address this issue, we present a mutual modulation SR (MMSR) model, which tackles the task by a mutual modulation strategy, including a source-to-guide modulation and a guide-to-source modulation. In these modulations, we develop cross-domain adaptive filters to fully exploit cross-modal spatial dependency and help induce the source to emulate the resolution of the guide and induce the guide to mimic the modality characteristics of the source. Moreover, we adopt a cycle consistency constraint to train MMSR in a fully self-supervised manner. Experiments on various tasks demonstrate the state-of-the-art performance of our MMSR.Comment: ECCV 202
    corecore