18,698 research outputs found

    Parity Reversing Involutions on Plane Trees and 2-Motzkin Paths

    Get PDF
    The problem of counting plane trees with nn edges and an even or an odd number of leaves was studied by Eu, Liu and Yeh, in connection with an identity on coloring nets due to Stanley. This identity was also obtained by Bonin, Shapiro and Simion in their study of Schr\"oder paths, and it was recently derived by Coker using the Lagrange inversion formula. An equivalent problem for partitions was independently studied by Klazar. We present three parity reversing involutions, one for unlabelled plane trees, the other for labelled plane trees and one for 2-Motzkin paths which are in one-to-one correspondence with Dyck paths.Comment: 8 pages, 4 figure

    A physicist's approach to number partitioning

    Get PDF
    The statistical physics approach to the number partioning problem, a classical NP-hard problem, is both simple and rewarding. Very basic notions and methods from statistical mechanics are enough to obtain analytical results for the phase boundary that separates the ``easy-to-solve'' from the ``hard-to-solve'' phase of the NPP as well as for the probability distributions of the optimal and sub-optimal solutions. In addition, it can be shown that solving a number partioning problem of size NN to some extent corresponds to locating the minimum in an unsorted list of \bigo{2^N} numbers. Considering this correspondence it is not surprising that known heuristics for the partitioning problem are not significantly better than simple random search.Comment: 35 pages, to appear in J. Theor. Comp. Science, typo corrected in eq.1

    Binary Decision Diagrams: from Tree Compaction to Sampling

    Full text link
    Any Boolean function corresponds with a complete full binary decision tree. This tree can in turn be represented in a maximally compact form as a direct acyclic graph where common subtrees are factored and shared, keeping only one copy of each unique subtree. This yields the celebrated and widely used structure called reduced ordered binary decision diagram (ROBDD). We propose to revisit the classical compaction process to give a new way of enumerating ROBDDs of a given size without considering fully expanded trees and the compaction step. Our method also provides an unranking procedure for the set of ROBDDs. As a by-product we get a random uniform and exhaustive sampler for ROBDDs for a given number of variables and size

    Multivariate Fuss-Catalan numbers

    Get PDF
    Catalan numbers C(n)=1n+1(2nn)C(n)=\frac{1}{n+1}{2n\choose n} enumerate binary trees and Dyck paths. The distribution of paths with respect to their number kk of factors is given by ballot numbers B(n,k)=nkn+k(n+kn)B(n,k)=\frac{n-k}{n+k}{n+k\choose n}. These integers are known to satisfy simple recurrence, which may be visualised in a ``Catalan triangle'', a lower-triangular two-dimensional array. It is surprising that the extension of this construction to 3 dimensions generates integers B3(n,k,l)B_3(n,k,l) that give a 2-parameter distribution of C3(n)=12n+1(3nn)C_3(n)=\frac 1 {2n+1} {3n\choose n}, which may be called order-3 Fuss-Catalan numbers, and enumerate ternary trees. The aim of this paper is a study of these integers B3(n,k,l)B_3(n,k,l). We obtain an explicit formula and a description in terms of trees and paths. Finally, we extend our construction to pp-dimensional arrays, and in this case we obtain a (p1)(p-1)-parameter distribution of Cp(n)=1(p1)n+1(pnn)C_p(n)=\frac 1 {(p-1)n+1} {pn\choose n}, the number of pp-ary trees

    Improved branch and bound method for control structure screening

    Get PDF
    The main aim of this paper is to present an improved algorithm of “Branch and Bound” method for control structure screening. The new algorithm uses a best- first search approach, which is more efficient than other algorithms based on depth-first search approaches. Detailed explanation of the algorithms is provided in this paper along with a case study on Tennessee–Eastman process to justify the theory of branch and bound method. The case study uses the Hankel singular value to screen control structure for stabilization. The branch and bound method provides a global ranking to all possible input and output combinations. Based on this ranking an efficient control structure with least complexity for stabilizing control is detected which leads to a decentralized proportional cont
    corecore