114,081 research outputs found

    Functional lower bounds for arithmetic circuits and connections to boolean circuit complexity

    Get PDF
    We say that a circuit CC over a field FF functionally computes an nn-variate polynomial PP if for every x∈{0,1}nx \in \{0,1\}^n we have that C(x)=P(x)C(x) = P(x). This is in contrast to syntactically computing PP, when C≡PC \equiv P as formal polynomials. In this paper, we study the question of proving lower bounds for homogeneous depth-33 and depth-44 arithmetic circuits for functional computation. We prove the following results : 1. Exponential lower bounds homogeneous depth-33 arithmetic circuits for a polynomial in VNPVNP. 2. Exponential lower bounds for homogeneous depth-44 arithmetic circuits with bounded individual degree for a polynomial in VNPVNP. Our main motivation for this line of research comes from our observation that strong enough functional lower bounds for even very special depth-44 arithmetic circuits for the Permanent imply a separation between #P{\#}P and ACCACC. Thus, improving the second result to get rid of the bounded individual degree condition could lead to substantial progress in boolean circuit complexity. Besides, it is known from a recent result of Kumar and Saptharishi [KS15] that over constant sized finite fields, strong enough average case functional lower bounds for homogeneous depth-44 circuits imply superpolynomial lower bounds for homogeneous depth-55 circuits. Our proofs are based on a family of new complexity measures called shifted evaluation dimension, and might be of independent interest

    Finding Optimal Flows Efficiently

    Full text link
    Among the models of quantum computation, the One-way Quantum Computer is one of the most promising proposals of physical realization, and opens new perspectives for parallelization by taking advantage of quantum entanglement. Since a one-way quantum computation is based on quantum measurement, which is a fundamentally nondeterministic evolution, a sufficient condition of global determinism has been introduced as the existence of a causal flow in a graph that underlies the computation. A O(n^3)-algorithm has been introduced for finding such a causal flow when the numbers of output and input vertices in the graph are equal, otherwise no polynomial time algorithm was known for deciding whether a graph has a causal flow or not. Our main contribution is to introduce a O(n^2)-algorithm for finding a causal flow, if any, whatever the numbers of input and output vertices are. This answers the open question stated by Danos and Kashefi and by de Beaudrap. Moreover, we prove that our algorithm produces an optimal flow (flow of minimal depth.) Whereas the existence of a causal flow is a sufficient condition for determinism, it is not a necessary condition. A weaker version of the causal flow, called gflow (generalized flow) has been introduced and has been proved to be a necessary and sufficient condition for a family of deterministic computations. Moreover the depth of the quantum computation is upper bounded by the depth of the gflow. However, the existence of a polynomial time algorithm that finds a gflow has been stated as an open question. In this paper we answer this positively with a polynomial time algorithm that outputs an optimal gflow of a given graph and thus finds an optimal correction strategy to the nondeterministic evolution due to measurements.Comment: 10 pages, 3 figure

    Depth-Bounded Quantum Cryptography with Applications to One-Time Memory and More

    Get PDF
    With the power of quantum information, we can achieve exciting and classically impossible cryptographic primitives. However, almost all quantum cryptography faces extreme difficulties with the near-term intermediate-scale quantum technology (NISQ technology); namely, the short lifespan of quantum states and limited sequential computation. At the same time, considering only limited quantum adversaries may still enable us to achieve never-before-possible tasks. In this work, we consider quantum cryptographic primitives against limited quantum adversaries - depth-bounded adversaries. We introduce a model for (depth-bounded) NISQ computers, which are classical circuits interleaved with shallow quantum circuits. Then, we show one-time memory can be achieved against any depth-bounded quantum adversaries introduced in the work, with their depth being any pre-fixed polynomial. Therefore we obtain applications like one-time programs and one-time proofs. Finally, we show our one-time memory has correctness even against constant-rate errors

    Jacobian hits circuits: Hitting-sets, lower bounds for depth-D occur-k formulas & depth-3 transcendence degree-k circuits

    Full text link
    We present a single, common tool to strictly subsume all known cases of polynomial time blackbox polynomial identity testing (PIT) that have been hitherto solved using diverse tools and techniques. In particular, we show that polynomial time hitting-set generators for identity testing of the two seemingly different and well studied models - depth-3 circuits with bounded top fanin, and constant-depth constant-read multilinear formulas - can be constructed using one common algebraic-geometry theme: Jacobian captures algebraic independence. By exploiting the Jacobian, we design the first efficient hitting-set generators for broad generalizations of the above-mentioned models, namely: (1) depth-3 (Sigma-Pi-Sigma) circuits with constant transcendence degree of the polynomials computed by the product gates (no bounded top fanin restriction), and (2) constant-depth constant-occur formulas (no multilinear restriction). Constant-occur of a variable, as we define it, is a much more general concept than constant-read. Also, earlier work on the latter model assumed that the formula is multilinear. Thus, our work goes further beyond the results obtained by Saxena & Seshadhri (STOC 2011), Saraf & Volkovich (STOC 2011), Anderson et al. (CCC 2011), Beecken et al. (ICALP 2011) and Grenet et al. (FSTTCS 2011), and brings them under one unifying technique. In addition, using the same Jacobian based approach, we prove exponential lower bounds for the immanant (which includes permanent and determinant) on the same depth-3 and depth-4 models for which we give efficient PIT algorithms. Our results reinforce the intimate connection between identity testing and lower bounds by exhibiting a concrete mathematical tool - the Jacobian - that is equally effective in solving both the problems on certain interesting and previously well-investigated (but not well understood) models of computation
    • …
    corecore