112 research outputs found

    Measuring atmospheric scattering from digital images of urban scenery using temporal polarization-based vision

    Get PDF
    Suspended atmospheric particles (particulate matter) are a form of air pollution that visually degrades urban scenery and is hazardous to human health and the environment. Current environmental monitoring devices are limited in their capability of measuring average particulate matter (PM) over large areas. Quantifying the visual effects of haze in digital images of urban scenery and correlating these effects to PM levels is a vital step in more practically monitoring our environment. Current image haze extraction algorithms remove all the haze from the scene and hence produce unnatural scenes for the sole purpose of enhancing vision. We present two algorithms which bridge the gap between image haze extraction and environmental monitoring. We provide a means of measuring atmospheric scattering from images of urban scenery by incorporating temporal knowledge. In doing so, we also present a method of recovering an accurate depthmap of the scene and recovering the scene without the visual effects of haze. We compare our algorithm to three known haze removal methods from the perspective of measuring atmospheric scattering, measuring depth and dehazing. The algorithms are composed of an optimization over a model of haze formation in images and an optimization using the constraint of constant depth over a sequence of images taken over time. These algorithms not only measure atmospheric scattering, but also recover a more accurate depthmap and dehazed image. The measurements of atmospheric scattering this research produces, can be directly correlated to PM levels and therefore pave the way to monitoring the health of the environment by visual means. Accurate atmospheric sensing from digital images is a challenging and under-researched problem. This work provides an important step towards a more practical and accurate visual means of measuring PM from digital images

    Haze visibility enhancement: A Survey and quantitative benchmarking

    Get PDF
    This paper provides a comprehensive survey of methods dealing with visibility enhancement of images taken in hazy or foggy scenes. The survey begins with discussing the optical models of atmospheric scattering media and image formation. This is followed by a survey of existing methods, which are categorized into: multiple image methods, polarizing filter-based methods, methods with known depth, and single-image methods. We also provide a benchmark of a number of well-known single-image methods, based on a recent dataset provided by Fattal (2014) and our newly generated scattering media dataset that contains ground truth images for quantitative evaluation. To our knowledge, this is the first benchmark using numerical metrics to evaluate dehazing techniques. This benchmark allows us to objectively compare the results of existing methods and to better identify the strengths and limitations of each method.This study is supported by an Nvidia GPU Grant and a Canadian NSERC Discovery grant. R. T. Tan’s work in this research is supported by the National Research Foundation, Prime Ministers Office, Singapore under its International Research Centre in Singapore Funding Initiativ

    A Review of Remote Sensing Image Dehazing.

    Full text link
    Remote sensing (RS) is one of the data collection technologies that help explore more earth surface information. However, RS data captured by satellite are susceptible to particles suspended during the imaging process, especially for data with visible light band. To make up for such deficiency, numerous dehazing work and efforts have been made recently, whose strategy is to directly restore single hazy data without the need for using any extra information. In this paper, we first classify the current available algorithm into three categories, i.e., image enhancement, physical dehazing, and data-driven. The advantages and disadvantages of each type of algorithm are then summarized in detail. Finally, the evaluation indicators used to rank the recovery performance and the application scenario of the RS data haze removal technique are discussed, respectively. In addition, some common deficiencies of current available methods and future research focus are elaborated

    Computer vision applied to underwater robotics

    Get PDF
    • …
    corecore