12,114 research outputs found

    Biologically Inspired Monocular Vision Based Navigation and Mapping in GPS-Denied Environments

    Get PDF
    This paper presents an in-depth theoretical study of bio-vision inspired feature extraction and depth perception method integrated with vision-based simultaneous localization and mapping (SLAM). We incorporate the key functions of developed visual cortex in several advanced species, including humans, for depth perception and pattern recognition. Our navigation strategy assumes GPS-denied manmade environment consisting of orthogonal walls, corridors and doors. By exploiting the architectural features of the indoors, we introduce a method for gathering useful landmarks from a monocular camera for SLAM use, with absolute range information without using active ranging sensors. Experimental results show that the system is only limited by the capabilities of the camera and the availability of good corners. The proposed methods are experimentally validated by our self-contained MAV inside a conventional building

    Filling-in the Forms: Surface and Boundary Interactions in Visual Cortex

    Full text link
    Defense Advanced Research Projects Agency and the Office of Naval Research (NOOOI4-95-l-0409); Office of Naval Research (NOOO14-95-1-0657)

    Boundary, Brightness, and Depth Interactions During Preattentive Representation and Attentive Recognition of Figure and Ground

    Full text link
    This article applies a recent theory of 3-D biological vision, called FACADE Theory, to explain several percepts which Kanizsa pioneered. These include 3-D pop-out of an occluding form in front of an occluded form, leading to completion and recognition of the occluded form; 3-D transparent and opaque percepts of Kanizsa squares, with and without Varin wedges; and interactions between percepts of illusory contours, brightness, and depth in response to 2-D Kanizsa images. These explanations clarify how a partially occluded object representation can be completed for purposes of object recognition, without the completed part of the representation necessarily being seen. The theory traces these percepts to neural mechanisms that compensate for measurement uncertainty and complementarity at individual cortical processing stages by using parallel and hierarchical interactions among several cortical processing stages. These interactions are modelled by a Boundary Contour System (BCS) that generates emergent boundary segmentations and a complementary Feature Contour System (FCS) that fills-in surface representations of brightness, color, and depth. The BCS and FCS interact reciprocally with an Object Recognition System (ORS) that binds BCS boundary and FCS surface representations into attentive object representations. The BCS models the parvocellular LGN→Interblob→Interstripe→V4 cortical processing stream, the FCS models the parvocellular LGN→Blob→Thin Stripe→V4 cortical processing stream, and the ORS models inferotemporal cortex.Air Force Office of Scientific Research (F49620-92-J-0499); Defense Advanced Research Projects Agency (N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100

    Vision and Learning for Deliberative Monocular Cluttered Flight

    Full text link
    Cameras provide a rich source of information while being passive, cheap and lightweight for small and medium Unmanned Aerial Vehicles (UAVs). In this work we present the first implementation of receding horizon control, which is widely used in ground vehicles, with monocular vision as the only sensing mode for autonomous UAV flight in dense clutter. We make it feasible on UAVs via a number of contributions: novel coupling of perception and control via relevant and diverse, multiple interpretations of the scene around the robot, leveraging recent advances in machine learning to showcase anytime budgeted cost-sensitive feature selection, and fast non-linear regression for monocular depth prediction. We empirically demonstrate the efficacy of our novel pipeline via real world experiments of more than 2 kms through dense trees with a quadrotor built from off-the-shelf parts. Moreover our pipeline is designed to combine information from other modalities like stereo and lidar as well if available

    Neural Dynamics of 3-D Surface Perception: Figure-Ground Separation and Lightness Perception

    Full text link
    This article develops the FACADE theory of three-dimensional (3-D) vision to simulate data concerning how two-dimensional (2-D) pictures give rise to 3-D percepts of occluded and occluding surfaces. The theory suggests how geometrical and contrastive properties of an image can either cooperate or compete when forming the boundary and surface representations that subserve conscious visual percepts. Spatially long-range cooperation and short-range competition work together to separate boundaries of occluding ligures from their occluded neighbors, thereby providing sensitivity to T-junctions without the need to assume that T-junction "detectors" exist. Both boundary and surface representations of occluded objects may be amodaly completed, while the surface representations of unoccluded objects become visible through modal processes. Computer simulations include Bregman-Kanizsa figure-ground separation, Kanizsa stratification, and various lightness percepts, including the Munker-White, Benary cross, and checkerboard percepts.Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI 94-01659, IRI 97-20333); Office of Naval Research (N00014-92-J-1309, N00014-95-1-0657

    Cortical Dynamics of 3-D Surface Perception: Binocular and Half-Occluded Scenic Images

    Full text link
    Previous models of stereopsis have concentrated on the task of binocularly matching left and right eye primitives uniquely. A disparity smoothness constraint is often invoked to limit the number of possible matches. These approaches neglect the fact that surface discontinuities are both abundant in natural everyday scenes, and provide a useful cue for scene segmentation. da Vinci stereopsis refers to the more general problem of dealing with surface discontinuities and their associated unmatched monocular regions within binocular scenes. This study develops a mathematical realization of a neural network theory of biological vision, called FACADE Theory, that shows how early cortical stereopsis processes are related to later cortical processes of 3-D surface representation. The mathematical model demonstrates through computer simulation how the visual cortex may generate 3-D boundary segmentations and use them to control filling-in of 3-D surface properties in response to visual scenes. Model mechanisms correctly match disparate binocular regions while filling-in monocular regions with the correct depth within a binocularly viewed scene. This achievement required introduction of a new multiscale binocular filter for stereo matching which clarifies how cortical complex cells match image contours of like contrast polarity, while pooling signals from opposite contrast polarities. Competitive interactions among filter cells suggest how false binocular matches and unmatched monocular cues, which contain eye-of-origin information, arc automatically handled across multiple spatial scales. This network also helps to explain data concerning context-sensitive binocular matching. Pooling of signals from even-symmetric and odd-symmctric simple cells at complex cells helps to eliminate spurious activity peaks in matchable signals. Later stages of cortical processing by the blob and interblob streams, including refined concepts of cooperative boundary grouping and reciprocal stream interactions between boundary and surface representations, arc modeled to provide a complete simulation of the da Vinci stereopsis percept.Office of Naval Research (N00014-95-I-0409, N00014-85-1-0657, N00014-92-J-4015, N00014-91-J-4100); Airforce Office of Scientific Research (90-0175); National Science Foundation (IRI-90-00530); The James S. McDonnell Foundation (94-40

    From Stereogram to Surface: How the Brain Sees the World in Depth

    Full text link
    When we look at a scene, how do we consciously see surfaces infused with lightness and color at the correct depths? Random Dot Stereograms (RDS) probe how binocular disparity between the two eyes can generate such conscious surface percepts. Dense RDS do so despite the fact that they include multiple false binocular matches. Sparse stereograms do so even across large contrast-free regions with no binocular matches. Stereograms that define occluding and occluded surfaces lead to surface percepts wherein partially occluded textured surfaces are completed behind occluding textured surfaces at a spatial scale much larger than that of the texture elements themselves. Earlier models suggest how the brain detects binocular disparity, but not how RDS generate conscious percepts of 3D surfaces. A neural model predicts how the layered circuits of visual cortex generate these 3D surface percepts using interactions between visual boundary and surface representations that obey complementary computational rules.Air Force Office of Scientific Research (F49620-01-1-0397); National Science Foundation (EIA-01-30851, SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Laminar Cortical Dynamics of 3D Surface Perception: Stratification, transparency, and Neon Color Spreading

    Get PDF
    How does the laminar organization of cortical circuitry in areas VI and V2 give rise to 3D percepts of stratification, transparency, and neon color spreading in response to 2D pictures and 3D scenes? Psychophysical experiments have shown that such 3D percepts are sensitive to whether contiguous image regions have the same relative contrast polarity (dark-light or lightdark), yet long-range perceptual grouping is known to pool over opposite contrast polarities. The ocularity of contiguous regions is also critical for neon color spreading: Having different ocularity despite the contrast relationship that favors neon spreading blocks the spread. In addition, half visible points in a stereogram can induce near-depth transparency if the contrast relationship favors transparency in the half visible areas. It thus seems critical to have the whole contrast relationship in a monocular configuration, since splitting it between two stereogram images cancels the effect. What adaptive functions of perceptual grouping enable it to both preserve sensitivity to monocular contrast and also to pool over opposite contrasts? Aspects of cortical development, grouping, attention, perceptual learning, stereopsis and 3D planar surface perception have previously been analyzed using a 3D LAMINART model of cortical areas VI, V2, and V4. The present work consistently extends this model to show how like-polarity competition between VI simple cells in layer 4 may be combined with other LAMINART grouping mechanisms, such as cooperative pooling of opposite polarities at layer 2/3 complex cells. The model also explains how the Metelli Rules can lead to transparent percepts, how bistable transparency percepts can arise in which either surface can be perceived as transparent, and how such a transparency reversal can be facilitated by an attention shift. The like-polarity inhibition prediction is consistent with lateral masking experiments in which two f1anking Gabor patches with the same contrast polarity as the target increase the target detection threshold when they approach the target. It is also consistent with LAMINART simulations of cortical development. Other model explanations and testable predictions will also be presented.Air Force Office of Naval Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Neural Models of Seeing and Thinking

    Full text link
    Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624
    • …
    corecore