123,816 research outputs found

    Non-wellfounded trees in Homotopy Type Theory

    Full text link
    We prove a conjecture about the constructibility of coinductive types - in the principled form of indexed M-types - in Homotopy Type Theory. The conjecture says that in the presence of inductive types, coinductive types are derivable. Indeed, in this work, we construct coinductive types in a subsystem of Homotopy Type Theory; this subsystem is given by Intensional Martin-L\"of type theory with natural numbers and Voevodsky's Univalence Axiom. Our results are mechanized in the computer proof assistant Agda.Comment: 14 pages, to be published in proceedings of TLCA 2015; ancillary files contain Agda files with formalized proof

    A dependent nominal type theory

    Full text link
    Nominal abstract syntax is an approach to representing names and binding pioneered by Gabbay and Pitts. So far nominal techniques have mostly been studied using classical logic or model theory, not type theory. Nominal extensions to simple, dependent and ML-like polymorphic languages have been studied, but decidability and normalization results have only been established for simple nominal type theories. We present a LF-style dependent type theory extended with name-abstraction types, prove soundness and decidability of beta-eta-equivalence checking, discuss adequacy and canonical forms via an example, and discuss extensions such as dependently-typed recursion and induction principles

    A Semantic Hierarchy for Erasure Policies

    Get PDF
    We consider the problem of logical data erasure, contrasting with physical erasure in the same way that end-to-end information flow control contrasts with access control. We present a semantic hierarchy for erasure policies, using a possibilistic knowledge-based semantics to define policy satisfaction such that there is an intuitively clear upper bound on what information an erasure policy permits to be retained. Our hierarchy allows a rich class of erasure policies to be expressed, taking account of the power of the attacker, how much information may be retained, and under what conditions it may be retained. While our main aim is to specify erasure policies, the semantic framework allows quite general information-flow policies to be formulated for a variety of semantic notions of secrecy.Comment: 18 pages, ICISS 201

    Sets in homotopy type theory

    Get PDF
    Homotopy Type Theory may be seen as an internal language for the ∞\infty-category of weak ∞\infty-groupoids which in particular models the univalence axiom. Voevodsky proposes this language for weak ∞\infty-groupoids as a new foundation for mathematics called the Univalent Foundations of Mathematics. It includes the sets as weak ∞\infty-groupoids with contractible connected components, and thereby it includes (much of) the traditional set theoretical foundations as a special case. We thus wonder whether those `discrete' groupoids do in fact form a (predicative) topos. More generally, homotopy type theory is conjectured to be the internal language of `elementary' ∞\infty-toposes. We prove that sets in homotopy type theory form a ΠW\Pi W-pretopos. This is similar to the fact that the 00-truncation of an ∞\infty-topos is a topos. We show that both a subobject classifier and a 00-object classifier are available for the type theoretical universe of sets. However, both of these are large and moreover, the 00-object classifier for sets is a function between 11-types (i.e. groupoids) rather than between sets. Assuming an impredicative propositional resizing rule we may render the subobject classifier small and then we actually obtain a topos of sets

    Contextual equivalence in lambda-calculi extended with letrec and with a parametric polymorphic type system

    Get PDF
    This paper describes a method to treat contextual equivalence in polymorphically typed lambda-calculi, and also how to transfer equivalences from the untyped versions of lambda-calculi to their typed variant, where our specific calculus has letrec, recursive types and is nondeterministic. An addition of a type label to every subexpression is all that is needed, together with some natural constraints for the consistency of the type labels and well-scopedness of expressions. One result is that an elementary but typed notion of program transformation is obtained and that untyped contextual equivalences also hold in the typed calculus as long as the expressions are well-typed. In order to have a nice interaction between reduction and typing, some reduction rules have to be accompanied with a type modification by generalizing or instantiating types
    • …
    corecore