10,024 research outputs found

    Extranoematic artifacts: neural systems in space and topology

    Get PDF
    During the past several decades, the evolution in architecture and engineering went through several stages of exploration of form. While the procedures of generating the form have varied from using physical analogous form-finding computation to engaging the form with simulated dynamic forces in digital environment, the self-generation and organization of form has always been the goal. this thesis further intend to contribute to self-organizational capacity in Architecture. The subject of investigation is the rationalizing of geometry from an unorganized point cloud by using learning neural networks. Furthermore, the focus is oriented upon aspects of efficient construction of generated topology. Neural network is connected with constraining properties, which adjust the members of the topology into predefined number of sizes while minimizing the error of deviation from the original form. The resulted algorithm is applied in several different scenarios of construction, highlighting the possibilities and versatility of this method

    ImageJ2: ImageJ for the next generation of scientific image data

    Full text link
    ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. Due to these new and emerging challenges in scientific imaging, ImageJ is at a critical development crossroads. We present ImageJ2, a total redesign of ImageJ offering a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. ImageJ2 provides a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs

    Compressed-domain transcoding of H.264/AVC and SVC video streams

    Get PDF
    corecore