4,324 research outputs found

    Dependency in Cooperative Boolean Games

    Get PDF
    Cooperative boolean games are coalitional games with both goals and costs associated to actions, and dependence networks for boolean games are a kind of social networks representing how the actions of other agents have an influence on the achievement of an agent’s goal. In this paper, we introduce two new types of dependence networks, called the abstract dependence network and the refined dependence network. Moreover, we show that the notion of stability is complete with respect to the solution concept of the core in the case of cooperative boolean games with costly actions. We present a reduction, called Δ-reduction, to pass from a cooperative boolean game G to game G′ without loosing solutions

    Pure Nash Equilibria: Hard and Easy Games

    Full text link
    We investigate complexity issues related to pure Nash equilibria of strategic games. We show that, even in very restrictive settings, determining whether a game has a pure Nash Equilibrium is NP-hard, while deciding whether a game has a strong Nash equilibrium is SigmaP2-complete. We then study practically relevant restrictions that lower the complexity. In particular, we are interested in quantitative and qualitative restrictions of the way each players payoff depends on moves of other players. We say that a game has small neighborhood if the utility function for each player depends only on (the actions of) a logarithmically small number of other players. The dependency structure of a game G can be expressed by a graph DG(G) or by a hypergraph H(G). By relating Nash equilibrium problems to constraint satisfaction problems (CSPs), we show that if G has small neighborhood and if H(G) has bounded hypertree width (or if DG(G) has bounded treewidth), then finding pure Nash and Pareto equilibria is feasible in polynomial time. If the game is graphical, then these problems are LOGCFL-complete and thus in the class NC2 of highly parallelizable problems

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    Approximate Judgement Aggregation

    Get PDF
    In this paper we analyze judgement aggregation problems in which a group of agents independently votes on a set of complex propositions that has some interdependency constraint between them (e.g., transitivity when describing preferences). We consider the issue of judgement aggregation from the perspective of approximation. That is, we generalize the previous results by studying approximate judgement aggregation. We relax the main two constraints assumed in the current literature, Consistency and Independence and consider mechanisms that only approximately satisfy these constraints, that is, satisfy them up to a small portion of the inputs. The main question we raise is whether the relaxation of these notions significantly alters the class of satisfying aggregation mechanisms. The recent works for preference aggregation of Kalai, Mossel, and Keller fit into this framework. The main result of this paper is that, as in the case of preference aggregation, in the case of a subclass of a natural class of aggregation problems termed `truth-functional agendas', the set of satisfying aggregation mechanisms does not extend non-trivially when relaxing the constraints. Our proof techniques involve Boolean Fourier transform and analysis of voter influences for voting protocols. The question we raise for Approximate Aggregation can be stated in terms of Property Testing. For instance, as a corollary from our result we get a generalization of the classic result for property testing of linearity of Boolean functions.judgement aggregation, truth-functional agendas, computational social choice, computational judgement aggregation, approximate aggregation, inconsistency index, dependency index

    Hiding variables when decomposing specifications into GR(1) contracts

    Get PDF
    We propose a method for eliminating variables from component specifications during the decomposition of GR(1) properties into contracts. The variables that can be eliminated are identified by parameterizing the communication architecture to investigate the dependence of realizability on the availability of information. We prove that the selected variables can be hidden from other components, while still expressing the resulting specification as a game with full information with respect to the remaining variables. The values of other variables need not be known all the time, so we hide them for part of the time, thus reducing the amount of information that needs to be communicated between components. We improve on our previous results on algorithmic decomposition of GR(1) properties, and prove existence of decompositions in the full information case. We use semantic methods of computation based on binary decision diagrams. To recover the constructed specifications so that humans can read them, we implement exact symbolic minimal covering over the lattice of integer orthotopes, thus deriving minimal formulae in disjunctive normal form over integer variable intervals

    Bayesian Modeling of a Human MMORPG Player

    Get PDF
    This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.Comment: 30th international workshop on Bayesian Inference and Maximum Entropy, Chamonix : France (2010
    corecore