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Abstract. This paper describes an application of Bayesian programming to the control of an 
autonomous avatar in a multiplayer role-playing game (the example is based on World of 
Warcraft). We model a particular task, which consists of choosing what to do and to select which 
target in a situation where allies and foes are present. We explain the model in Bayesian 
programming and show how we could learn the conditional probabilities from data gathered 
during human-played sessions. 
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INTRODUCTION 
With more and more CPU cores and more and more immersive gameplays, AI is 

becoming a key feature of video games. Non-player characters (NPC) acting against 
the player as well as by his side are required to behave realistically and interestingly. 
We model a massively multiplayer online role-playing game (MMORPG) player 
through Bayesian programming (Lebeltel, 2004). We bet that this model can learn to 
play as a given player he could observe and that it will yield a realistic robot, 
customized to the instructing player. 

   A role playing game (RPG) consist in the incarnation by the human player of an 
avatar with a class (warrior, wizard, rogue, priest…) having different skills, spells, 
items, health points, stamina/energy/mana (magic energy) points. A MMORPG (e.g. 
World of Warcraft, AION or EVE Online) is a role-playing game in a persistent, 
multiplayer world. There are usually players-run factions fighting each other but we 
modeled a particular domain of multiplayer RPG called players versus environment 
(PVE). This is a cooperative task in which human players fight together against 
different NPC. And more specifically here, we modeled the "druid" class, which is 
complex because it can cast spells to deal damages or other negative effects as well as 
to heal allies or enhance their capacities (“buff” them). 

   This model deals only with a sub-task of a global AI for autonomous NPC. The 
problem that we try to solve with the presented model is: how do we choose which 
skill to use and on which target in a PVE battle? Possible targets are all our allies and 
foes. Possible skills are all that we know, we aim to get a distribution over target and 
skills and pick the most probable combination that is as yet possible to achieve 
(enough energy/mana, no cooldown). For that, we first choose what should be the 



target given all surrounding variables: is an ally near death that he should be healed, 
which foe should we focus our attacks on? Once we have the distribution over 
possible targets, we search the distribution on our skills, then we multiply by the one 
on targets. We put extra care in having the same input variables as a human player to 
keep consistent with our goal of modeling a human. However, some variables can be 
things that humans subconsciously interpolate from perceptions. 

   Approaches for handling NPC vary greatly and each has its advantages and 
drawbacks. Finite states machines (FSM), for instance used in Quake III and Warcraft 
III, lack a compact description, which causes analysis and control to be complex. 
Behavior trees (Isla, 2005), used in the Halo series and Left4Dead, address some of 
the analysis and design problems but are limited for collaborative behaviors without a 
“military” hierarchy. Killzone 2 (Champandard, 2009) ), in which robots (“bots”) are a 
central element of the gameplay, uses hierarchical task networks (HTN) along with 
behavior trees. Behavior multi-queues (Cutumisu, 2009) resolve the problems of 
having collaborative, real-time and parallel behaviors. However, all of these 
approaches (often completed by specialized scripts) can attain human like behavior 
only with great efforts of the programmers to provide an exhaustive behaviors set. 
With the current and forthcoming games, it is a problem because the players (and the 
NPC) are able to do a lot of different actions. We try and invert this problem by 
having a model that includes machine learning techniques so that it can learn from 
experience and the programmers won’t have to specify behaviors exhaustively. One of 
the smart applications of our model would be to leverage all the data that MMORPG 
servers collect from their players to automatically train NPC using Bayesian 
learning/techniques. As complexity of gaming worlds increases, we think that having a 
probabilistic approach increases robustness in the presence of incomplete information. 
Also, the “humanness” of a NPC is often considered as an important factor for the 
gameplay and the fun that the player will have, and perhaps even more in MMO in 
which a key point of the gameplay lies in interacting with humans (intelligent beings). 

BAYESIAN MODEL 

Bayesian Programming 

Probability theory (Jaynes, 2003) is used as an alternative to classical logic to lead 
inference and learning as it is the only framework for handling inference in the 
presence of incompleteness and uncertainty. Bayesian programming (Diard, 2000 and 
Lebeltel, 2004) is a probabilistic framework encompassing the expressivity of 
Bayesian networks. The basic approach to work with Bayesian programming is first to 
translate incompleteness of the perceptible information into uncertainty that can then 
be handled by probability theory. The dependency between variables is specified as 
conditional probability, e.g. 

€ 

A⇒ B  can be written as P(B=true | A=true) = 1 . The 
structure of a Bayesian program is as follows: 
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Our model will now be explained according to this structure. Once the joint 
decomposition, which consists in the P(All Variables), is settled, one can ask 
questions to the Bayesian program that will be computed with the joint: 

€ 

P(Searched |Known) =
P(Searched∧ Free∧Known)

Free
∑

P(Known)  

€ 

which can be simplified by normalizing P(Searched |Known) =
1
Z

JointDistribution
Free
∑  

Description Of The Model 

Variables 

A very simple set of variables is as follows. We have the n characters as possible 
targets; each of them several bound variables. Health/Hit points (HP) are discretized in 
10 levels, from the lower to the higher. Distance (D) is discretized in 4 zones around 
the robot character: contact where it can attack with a contact weapon and then 3 
distances, the further one being “out of range even for the longest distance 
weapon/spell”. Ally (A) is a Boolean variable mentioning if character i is allied with 
the robot character. Delta hit points (ΔHP) is a 3-valued interpolated value from the 
previous few seconds of fight that informs about the ith character getting wounded or 
healed (or nothing). Imminent death (ID) is also an interpolated value that encodes 
HP, delta HP and incoming attacks/attackers. This is a Boolean variable saying if the 
ith character if going to die anytime soon. This is an example of what we consider that 
an experienced human player will infer automatically from the screen and 
notifications. Class (C), simplified over 4 values, gives the type of the ith character: a 
Tank can take a lot of damages and taunt enemies, a Contact damager can deal huge 
amounts of damage with contact weapons (rogue, barbarian…), Ranged stands for the 
class that deals damages from far away (hunters, mages…) and Healers are classes 
that can heal (in considerable amounts). The Resist variable is the combination of 
binary variables of resistance to certain types of (magical) damages into one variable. 
With 3 possible resistances we get 23=8 possible values. For instance “Ri=FireNat” 
means that the ith character resists fire and nature-based damages. Armor (physical 
damages) could have been included, and the variables could have been separated. The 
possible values of the skill variable are all the possible skills for the given character, 
and not only the available ones to cast at the moment to be able to have reusable 
probability tables (i.e. learnable tables). 

Target:   

€ 

T ∈{t1…tn} 
Hit points:   

€ 

HP1…HPn |HPi ∈ 0…9[ ]  
Distance:   

€ 

D1…Dn |Di ∈{Contact,Close,Far,VeryFar}  
Ally:   

€ 

A1…An | Ai ∈{ false,true} 
Derivative hit points:   

€ 

ΔHP1…ΔHPn |ΔHPi ∈{−,,+} 
Imminent death:   

€ 

ID1…IDn | IDi ∈{ false,true}  
Class:   

€ 

C1…Cn |Ci ∈{Tank,Contact,Ranged,Healer}  
Resists:   

€ 

R1…Rn |Ri ∈{Nothing,Fire,Ice,Nature,FireIce,IceNat,FireNat,All} 



Skill:   

€ 

S∈{Skill1…Skillm}  

Decomposition 

• Target selection: we want to compute the probability distribution on the variable 
Target (T), so we have to consider the joint distribution with all variables on which T 
is conditionally dependant : T t-1 (the previous value of T), and all the variables on each 
character (except for Resists). The probability of a given target depends on the 
previous one (it encodes the previous decision and so all previous states). HPi depends 
on whether that the ith character is an ally, on his class, and if he’s a target. Such a 
conditional probability table should be learned, but we can already foresee that a 
targeted ally with C=tank would have a high probability of having low HP because 
taking it for target means that we intend to heal him. Di is more probable to be far if 
Ai=false and T=i (our kind of druid attack with ranged spells). The probability of the 
ith character being an ally depends on if we target allies of foes more often. The 
probability that ΔHPi=negative is higher for Ai=false and Ci=healer and T=i and also 
for Ai=true and Ci=tank. As for Ai, the probability of IDi is driven by our soft 
evidence of targeting characters near death. The probability of Ci is driven by the 
distribution of foes and allies population, tuned with a soft evidence of which classes 
our druid human player will target more frequently. Each and every time, if T≠i, the 
probability of the left variable is given according to the uniform distribution. For the 
task of computing the distribution on Target, the joint distribution is simplified (by 
conditional independence of variables) as: 

€ 

P(T ∧T t−1∧HP1:n ∧D1:n ∧ A1:n ∧ΔHP1:n ∧ ID1:n ∧C1:n ) =  

€ 

P(T t−1).P(T |T t−1). {P(HPi | Ai ∧Ci ∧T).P(Di | Ai ∧T).P(Ai |T).
i=1

n

∏

P(ΔHPi | Ai ∧Ci ∧T).P(IDi |T).P(Ci | Ai ∧T)}
  (1) 

 
• Skill selection: As previously for targets, we are interested in the conditional 

probabilities of each character’s state variables given other state variables and given T 
and S. If T=i, S=big_heal, Ci=tank and Ai=true, the probability that HPi=0 or 1 (very 
low) is very high. Some skills have optimal ranges to be used at and so P(Di) will be 
affected. Ai=true will have a probability of 1.0 of S=any_heal as will Ai=false have a 
probability of 1.0 is S=any_damage. The probability of ΔHPi=negative  will top when 
S=heal for an ally. That of Ri=nature for S=nature_damage will be very low. The 
probability of IDi will be high for T=i and S=big_heal or S=big_damage (depending 
on where i is an ally or not). For the task of computing the distribution on Skill we 
use: 

€ 

P(S∧T ∧HP1:n ∧D1:n ∧ A1:n ∧ ΔHP1:n ∧ ID1:n ∧C1:n ∧ R1:n ) =

€ 

P(S).P(T). {P(HPi | Ai ∧Ci ∧ S∧T).P(Di | Ai ∧ S∧T).P(Ai | S∧T).
i=1

n

∏

P(ΔHPi | Ai ∧ S∧T).P(Ri |Ci ∧ S∧T).P(IDi | S∧T).P(Ci | Ai ∧ S∧T)}
  (2) 



Parametric forms 

€ 

P(T t−1) Unknown and so we chose it uniform. 

€ 

P(T |T t−1) Table, specified with a “prior” to prevent switching targets too often or 
simply learned. Uniform if there is no previous target. 

€ 

P(S)  Unknown and so uniform, it could be a prior on Skills (not uniform). 

€ 

P(Left _Value |Right _Values)  All others are learnable tables.  

Identification 

If there were only perceived variables, learning the right conditional probability 
tables would just be counting and averaging. However, some variables encode 
combinations of perceptions and passed states. We could learn such parameters 
through the EM algorithm but we propose something simpler for the moment as our 
“not directly observed variables” are not complex to compute, we compute them from 
perceptions as the same time as we learn. In the following Results part, we did not 
apply learning but instead manually specified the probability tables. 

Questions 

In any case, we ask our model: 

€ 

P(S∧T | hp1:n ∧ d1:n ∧ a1:n ∧ Δhp1:n ∧ id1:n ∧ c1:n ∧ r1:n ) , which means that we want to 
know the distribution on S and T knowing all the state variables. We then choose to do 
the highest scoring combination of 

€ 

S∧T  that is available (skills may have cooldowns 
or cost more mana/energy that we have available).  

Using (Bayes rule) P(S,T)=P(S|T).P(T), to decompose this question, we can ask: 

€ 

P(T | hp1:n ∧ d1:n ∧ a1:n ∧ Δhp1:n ∧ id1:n ∧ c1:n ) 
which means that we want to know the distribution on T knowing all the relevant state 
variables, followed by (with the newly computed distribution on T) 

€ 

P(S |T ∧ hp1:n ∧ d1:n ∧ a1:n ∧ Δhp1:n ∧ id1:n ∧ c1:n ∧ r1:n )  
in which we use this distribution T to compute the distribution on S with: 

  

€ 

P(S = skill1 |…) = P(
T

∑ S = skill1 |T ∧…).P(T)( )  

We here choose to sum over all possible values of T. Note that we did not ask:  
  

€ 

P(S |T = most _ probable∧ hp1:n ∧…)  but computed instead: 

€ 

P(S |T ∧ hp1:n ∧ d1:n ∧ a1:n ∧ Δhp1:n ∧ id1:n ∧ c1:n ∧ r1:n )
T
∑  

This computation has a high complexity (particularly when the sum has many terms, 
i.e. with a lot of targets), so we could choose not to do the sum and use and instantiate 
“most probable values”, for instance of Target. Any such choice would lose 
information. There are possibly good combinations of S and T for a value of T that is 
not the most probable one. This downside may be so hard that we may want to reduce 
the complexity of computation by simplifying our model or its computation to be able 
to sum. We propose a solution in the discussion. 



Example 

  
FIGURE 1. Example setup A (left) and B (right), 2 foes, 2 “tanks”, players with stars can heal allies, 

players with dotted lines will soon die (ID=true). 
This model has been applied to a simulated situation with 2 foes and 4 allies while 

our robot took the part of a “druid”, a versatile class that can cast spells to do direct 
damages, damages over time, buff (enhancements), debuff, crowd-control, heal and 
heal over time. We display a schema of this situation in Figure 1. The arrows indicate 
foes attacks on allies. The larger the ring is, the more health points the characters have. 
MT stands for “main tank”, Add for “additional foe”. We worked with the skills 
corresponding to a Druid. HOT stands for heal over time, DOT for “damage over 
time”, “abol” for abolition and “regen” for regeneration, a buff is an enhancement and 
a “dd” is a direct damage. “Root” is a spell which disables the target to move for a 
short period of time, useful to flee or to put some distance between the enemy and the 
druid to cast attack spells. “Small” spells are usually faster to cast than “big” spells. 

Skills ∈ { small_heal, big_heal, HOT, poison_abol, malediction_abol, buff_armor, 
regen_mana, small_dd, big_dd, DOT, debuff_armor, root } 

We did not do the “Identification” part, which consists in learning the probability 
tables from observations. To keep things simple and because we wanted to explore the 
model, we worked with manually defined probability tables. So we introduced “soft 
evidences”, parameters that will modify the conditional probability tables, which we 
will change to watch their effects. For instance the “soft evidence that a selected target 
is foe” and the “soft evidence that a selected target will soon die (ID=true)” that will 
consequently modify the probability tables of P(Ai) and P(IDi) respectively. We set the 
probability to target the same target as before to 0.4 and the previous target to Lich so 
that the prior probability for all other 6 targets is 0.1 (4 times more chances to target 
the Lich than any other character). We set the soft evidence P(Ai=false|T=i) to 0.6. 
This means that our robotic Druid is mainly a damage dealer and not a healer. For the 
“target selection” model, we can see on Figure 2.A that the evolution from selecting 
the main foe Lich to selecting the ally Tank is driven by the increase of “soft evidence 
that a selected target will soon die” and our robot eventually moves on targeting his 
Tank ally (to heal him). We can see on Figure 2.B that, at some point, the robotic 
Druid prefers to kill the dying Add to save his ally Tank instead of healing him. Note 
that there is no variable showing the relation between Add and Tank (the first is 
attacking the second, who is taking damages from the first), but this is under 
consideration for a future, more complete, model. 



  
FIGURE 2.A. (left) Probabilities of targets depending on the soft evidence that a target is dying with 

setup A | FIGURE 2.B. (right) Same, with setup B 
For the “skill selection” model, we can see on Figure 3 the influence of IDi on Skill 

which is coherent with the Target distribution: either, in setup A, we evolve with the 
increase of P(IDi=true|Target=i) to choose to heal our ally or, in setup B, to deal 
direct damage (and hopefully, kill) the foe attacking him. As you can see here, when 
we have the highest probability to attack the main enemy (“Lich”, when 
P(IDi=true|Target=i) is low), who is a C=tank, we get a high probability for the Skill 
debuff_armor. We only cast this skill if the debuff is not already present, so perhaps 
that we will cast small_dd instead. To conclude this example, Figure 4 shows the 
distribution on P(T,S|all_status_variables) with setup A and a the probability to target 
the previous target (set to Lich here) only ~2 times greater than any other character (so 
that we focus less on the same character), soft evidences P(IDi=true|Target=i)=0.9 
and P(Ai=false|Target=i)=0.6. In a greedy way, if the first couple (T,S) is already 
done or not available, we take the second. 

  
FIGURE 3.A. (left) Probabilities of skills depending on the soft evidence that a target is dying with 

setup A | FIGURE 3.B (right) Same, with setup B 

DISCUSSION 

Perspectives 

These results are encouraging, however the most challenging aspect will be to 
complete the model for different kind of tasks and for the robot to be able to learn 
sequences of actions, by developing forecasting strategy. This model has to be applied 
in a real MMORPG, out of its simulation, to reveal all its shortcomings and be 
improved. We foresee some future difficulties, for instance there is a possibility for 
many games that the Skill variable will be very big and that it will imply a too high 
computational cost. For that concern, we propose to cluster the skills in global skills 
(GS). This approach to break down the complexity of computation is general and can 
be used with other variables.  



Conclusion 

We believes that modeling the human behavior has two big advantages of being 
able to learn from human-played examples so that it can generate a behavior (control 
the character) as well as predict what will the other players do. Learning from game 
sequences with a human model allows for fast development of realistic AI in video 
games. It also decreases the complexity from having many possible actions and 
possible behaviors thanks to the behavior learning part. Applying the model to other 
players for prediction enables the robot to have these predictions as input variables, 
and act accordingly (“I think that you think”...). Human players do long term planning, 
consciously or not. However, modeling high-level cognition is very hard. We assume 
that by modeling a reactive robot with regard to observable variables and predicted 
variables, we can emulate human planning. In particular, some variables are future 
extrapolated values, some others encode past states and, in the future, we plan to have 
variables corresponding to more elaborated predicted states through other Bayesian 
programs.  

 
FIGURE 4. Log-probabilities of Target and Skill with setup A, P(ID|Target)=0.9, P(A|Target)=0.6 
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