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Abstract. In this paper we analyze judgement aggregation problems in which a group of agents in-
dependently votes on a set of complex propositions that has some interdependency constraint between
them (e.g., transitivity when describing preferences). We consider the issue of judgement aggrega-
tion from the perspective of approximation. That is, we generalize the previous results by studying
approximate judgement aggregation. We relax the main two constraints assumed in the current liter-
ature, Consistency and Independence and consider mechanisms that only approximately satisfy these
constraints, that is, satisfy them up to a small portion of the inputs. The main question we raise is
whether the relaxation of these notions significantly alters the class of satisfying aggregation mecha-
nisms. The recent works for preference aggregation of Kalai, Mossel, and Keller fit into this framework.
The main result of this paper is that, as in the case of preference aggregation, in the case of a subclass
of a natural class of aggregation problems termed ‘truth-functional agendas’, the set of satisfying aggre-
gation mechanisms does not extend non-trivially when relaxing the constraints. Our proof techniques
involve boolean Fourier transform and analysis of voter influences for voting protocols.
The question we raise for Approximate Aggregation can be stated in terms of Property Testing. For
instance, as a corollary from our result we get a generalization of the classic result for property testing
of linearity of boolean functions.

Keywords: judgement aggregation, truth-functional agendas, computational social choice, computational
judgement aggregation, approximate aggregation, inconsistency index, dependency index

1 Introduction

A famous jury paradox shows that aggregating complex decisions might be non-trivial. Assume a jury is
faced with a case in which a defendant is accused of murder. The legal doctrine (known by all of them) is
that the defendant should be convicted if and only if they are convinced that a)The defendant indeed killed
the victim and b)The defendant is sane. We assume that each of the jurors decides his opinion on the two
issues independently and based on these decisions decides whether to convict. Then, the members cast their
votes simultaneously and we assume no strategic behavior on their behalf. Kornhauser and Sager[25] noticed
that it’s possible to have an opinion profile in which, when applying issue-wise aggregation using majority,
which seems natural1, we get a discrepancy between the majority vote on the conviction question and the

? The research was supported by a grant from the Israeli Science Foundation (ISF) and by the Google Inter-
university center for Electronic Markets and Auctions
? Previous versions of this work were presented at Bertinoro Workshop on Frontiers in Mechanism Design 2010,
Third International Workshop on Computational Social Choice, Düsseldorf 2010, and Computation and Economics
Seminar at the Hebrew University. The author would like to thank the participants in these workshops for their
comments.
? A shorter version of this work was published in WINE-2011[44]

1 although it is not the common aggregation method of jurors (or judges in a tribunal in most countries



conjunction of the majority vote on the two basic questions (whether the defendant killed and whether he is
sane)2. This discrepancy is termed The Doctrinal Paradox. Lately, in [27], List showed that the probability to
get such a discrepancy is non-negligible under the uniform distribution and also under other mild relaxations
of it (still assuming the voters are i.i.d.).

This insight, that is common to many aggregation problems (e.g., Condorcet paradox for preference
aggregation), started the field of ‘Judgement Aggregation’ and nowadays this field is the subject of a growing
body of works in economics, computer science, political science, philosophy, law, and other related disciplines.
We find this field highly applicable to agent systems, voting protocols in a network and other frameworks in
which one needs to aggregate a lot of opinions in a systematic way without letting the voters deliberate. An
aggregation problem in our context concerns a given Agenda, which is a set of {0, 1} vectors of length m
(the number of issues), that defines the consistent (legal/rational/admissible) opinions that an individual
might hold. Given an agenda, Aggregation Theory deals with exploring ways to aggregate the opinions of
(often many) experts/judges while maintaining two main syntactical properties:

– Consistency - always returning an admissible opinion.
In our example, the aggregated opinion should be to convict iff the aggregated opinion was that indeed
the defendant killed and is sane.

– Independence - define the aggregated opinion on each issue independently of the votes on other issues.
This criterion can be seen as respecting the structure of the agenda instead of handling it as a set of
several different opinions (in the example above, four) disregarding the structure.

Most of these works find the set of ‘acceptable’ aggregation mechanisms (i.e., that satisfy the two criteria) to
be very small and undesired (e.g., dictatorships) and hence are considered as impossibility results. A survey
of this field can be found in [30,28]. Such impossibility results are quite strong, they show the impossibility
of finding any reasonable aggregation mechanism that satisfies the two conditions and hence for (almost)
every mechanism there will always be some judgement profile that leads to a breakdown of the mechanism.

In this work we extend the question to ‘Approximate Judgement Aggregation’. We relax the above
two properties and search for an aggregation mechanism that only approximately respects the structure of
opinions and up to a small fraction of the inputs returns a consistent opinion. More specifically, we are
interested in exploring the influence of relaxing the two properties on the set of ‘acceptable’ aggregation
mechanisms.

We quantify being almost consistent by defining δ-consistency of an aggregation mechanism F as having
a consistent aggregation mechanism G that disagrees with F on at most δ fraction of the inputs3. Similarly, we
quantify being almost independent by defining δ-independence of an aggregation mechanism F as having
an independent aggregation mechanism that disagrees with F on at most δ fraction of the inputs. Both
terms can be equivalently defined as the failure probability of tests as we show in Section 2. Both definitions
use the Hamming distance between mechanisms dX(F,G) = Pr [F (X) 6= G(X) | X ∈ Xn]. It includes two
assumptions: uniform distribution over the opinions for each voter and assuming voters draw their opinions
independently (Impartial Culture Assumption). These assumptions, while certainly unrealistic, are the
natural choice in this kind of work and are discussed further in Section 2.

Lately there is a series of works coping with impossibility results in Social Choice Theory using approx-
imations (e.g., [6,19]). In some cases allowing approximation enables significantly better results, while in
other cases, hardly anything is gained by allowing it. For example, in [6] the authors deal with preference
aggregation and show that when one approximates Dodgson’s scoring rule one can achieve several desired
properties (monotonicity, homogeneity, and low complexity) that cannot be achieved without this relaxation.
On the other hand, in [19] the authors also deal with aggregation of preferences and show that relaxing the

2 For instance, the following profile:
Killed Sane Guilty

25% of the jurors: X X X
33% of the jurors: X × ×
42% of the jurors: × X ×

3 Formally, Pr [F (X) 6= G(X) | X ∈ Xn] 6 δ.
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strategy-proofness property does not extend the set of satisfying aggregation mechanisms non-trivially and
by that they strengthen the classic impossibility result of Gibbard & Satterthwaite. In this work we formalize
(as far as we found for the first time) this question of quantifying the influence of relaxing the constraints
and query whether one can use this in order to circumvent the impossibility results (as in [6]) or whether we
strengthen the impossibility results (as in [19]).

In this paper we study a family of agendas: truth-functional agendas in which each conclusion is defined
as conjunction or xor of several premises (up to input & output negation). In a truth-functional agenda the
issues are divided into two types: premises and conclusions. Each conclusion j is characterized by a boolean
function Φj over the premises and an opinion is consistent if the answers to the conclusion issues are attained
by applying the function Φj on the answers to the premise issues.

X =
{
x ∈ {0, 1}m xj = Φj(premises) for every conclusion issue j.

}
For instance the (2-premises) conjunction agenda used in the example above is a truth-functional agenda
with two premises and one conclusion and we notate the agenda by 〈A,B,A ∧B〉.

For all the agendas we examined, we show that relaxing the two constraints, consistency and indepen-
dence, does not extend the set of acceptable aggregation mechanisms in a non-trivial way.

We concentrated on two basic agendas: Conjunction Agenda
〈
A1, . . . , Am,∧mj=1A

j
〉

(i.e., m+1 issues
where the consistency means that the last one should be a conjunction of the first m) and Xor Agenda〈
A1, . . . , Am,⊕mj=1A

j
〉

(i.e., m+1 issues where the consistency means that the last one should be a parity
bit of the first m). For these agendas we prove

Theorem.

1. For any m > 2, ε > 0, and n > 2, there exists δ(ε, n,m) polynomial in n and ε (but degrades exponentially
in m) s.t. if an aggregation mechanism F over n voters for the m-premises conjunction agenda is δ-
independent4 and δ-consistent5, then it is ε-close to a consistent independent aggregation mechanism G6.

Moreover, δ = C
n

(
ε

8m

)2m−1
(for some constant C>0),

2. For any m > 2, ε > 0, and n > 2, there exists δ(ε,m) linear in ε (and degrades quadratically in m) s.t.
if an aggregation mechanism F over n voters for the m-premises xor agenda is δ-independent4 and
δ-consistent5, then it is ε-close to a consistent independent aggregation mechanism G6.
Moreover, δ = ε

m(2m+3)

We have a characterization for the sets of the independent and consistent aggregation mechanisms for
the two agendas. For the conjunction agenda, an independent aggregation mechanism is consistent if either
it returns constant False for one of the premises (and for the conjunction issue) or if it aggregates all the
issues using the same oligarchy aggregation function (i.e., ∧

i∈S
xi for some coalition S - returns True if all

the member of a coalition S voted True). This characterization is a direct corollary from a series of works
in the more general framework of aggregation, e.g., [35,13] and for completeness we include a proof of it in
the appendix. For the xor agenda, our proof implies a characterization of the independent and consistent
aggregation mechanism which states that an independent aggregation mechanism is consistent if (essentially)
all the issues are aggregated using the same linear aggregation function of the form χ(x) = ⊕

i∈S
xi (for some

coalition S ⊆ [n]).
Hence, the above theorem can be seen as an impossibility result saying that it is impossible even to

find a mechanism that is almost consistent and almost independent besides the trivial answers: independent
consistent mechanism and perturbations of them which is (still) a relatively small and undesired collection
of mechanisms.

4 I.e., there exists an independent (not necessarily consistent) aggregation mechanism G that returns the same
aggregated opinion as F for at least (1− δ) fraction of the profiles.

5 I.e., F returns a consistent result for at least (1− δ) fraction of the profiles.
6 I.e., F returns the same aggregated opinion as G for at least (1− ε) fraction of the profiles.
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Our results are invariant to negation of issues (which is merely renaming), and hence we can eas-

ily generalize the results to other agendas such as
〈
A1, A2, A3, A1 ∧A2 ∧A3

〉
,
〈
A1, A2, A1 ∨A2

〉
, and〈

A1, A2, A3, A1⊕A2⊕A3
〉

. Using induction we can generalize the result to more complex agendas that

include several conclusion issues such as
〈
A1,A2,A3, A1∨A2,A2⊕A3

〉
. We notice that this generalize our

result to any agenda of the form
〈
A1, A2, Φ

(
A1, A2

)〉
for any function Φ7 and to any affine agenda (I.e.,

the set of admissible opinions form an affine space).

1.1 Previous works

There is a long line of works trying to circumvent impossibility results in Aggregation Theory (i.e., results
which state that the set of consistent independent aggregation mechanisms is very small and undesired).
Most of these works suggest consistent aggregating mechanisms while still trying to stay ‘reasonably close’
to independence (E.g., [25,24,37,29,10,5,26,11,38]). These classical works are heuristic, sometimes use the
semantics of the agenda, and mainly do not prove bounds on the compliance to the independence property.
In [27], List studies the asymptotic probability of getting an inconsistent result in the 2-premises conjunction
agenda 〈A,B,A ∧B〉 for voter-independent distributions and common (majority-based & supermajority-
based) aggregation mechanisms. He mainly studies the conditions for the probability to converge to zero and
to one. As far as we found, this is the only work that deals with quantifying, although only asymptotically,
the property compliance of an aggregation mechanism for agendas other than the Arovian agenda (preference
aggregation).

Another approach is Approximate Aggregation. This line of research started with [21] and was extended
in [33,22]. In these works the authors deal with preference aggregation (although without stating the general
framework of approximate aggregation) and show that relaxing the transitivity constraint (which is equivalent
to consistency for this agenda) does not extend the set of satisfying aggregation mechanisms non-trivially.

Theorem ([22] Theorem 1.3). There exists an absolute constant C such that the following holds: For any
ε > 0 and k > 3, if f is an aggregation mechanism for the preference agenda over k candidates that satis-

fies independence and C ·
(
ε/k2

)3
-consistency, then there exists an aggregation mechanism G that satisfies

independence and consistency such that d(F,G) < ε.

This result is neither derived by our results nor derives them because the agendas we deal with and the
preference agenda are too different (For instance, the preference agenda cannot be represented as a truth-
functional agenda and in some sense it is even far from it).

1.2 Connection to Property Testing

We think it might be useful to phrase the question of approximate aggregation using terminology of property
testing. In this field we query a function at a small number of (random) points, testing for a global property
(in our case, the property is being a consistent independent aggregation mechanism). For example, a corollary
of the results we present in this paper (in property testing terms):

For any three binary functions f, g, h : {0, 1}n → {0, 1}, if the probability Pr [f(x)⊕ g(y) = h(x⊕ y)] is
larger than (1−ε) (when the addition is in Z2 and Zn2 , respectively), then there exists three binary functions
f ′, g′, h′ : {0, 1}n→{0, 1} such that Pr[f(x) 6=f ′(x)], Pr[g(x) 6=g′(x)], and Pr[h(x) 6=h′(x)] are smaller than
Cε for some constant C independent of n and ∀x, y : f ′(x)⊕ g′(y) = h′(x⊕ y).
A special case of this result, f = g = h, is the classic result of Blum, Luby, and Rubinfeld ([3,1]) for linear

testing of boolean functions. We discuss this connection further and its possible implications in in Section
5.

7 The case of a function that ignores one of the two arguments (or both) is trivial.
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1.3 Techniques

We prove the main theorem by proving the specific case of independent aggregation mechanism for two basic
agenda families: the conjunction agendas (agendas in which there is exactly one conclusion that is constrained
to be the conjunction of the premises. Theorem 3) and the xor agendas (agendas in which there is exactly
one conclusion that is constrained to be the xor of the premises. Theorem 4). Later we extend these theorems
to the general theorem of relaxing both constraints (Theorem 5) using an agenda-independent method.

We use two different techniques in the proofs. For the conjunction agendas we study influence measures
of voters on the issue-aggregating functions8. and for the xor agendas we use Fourier analysis of the issue-
aggregating functions.

An open question is whether one can find such bounds for any agenda or whether there exists an agenda for
which the class of aggregation mechanisms that satisfy consistency and independence expands non trivially
when we relax the consistency and independence constraints.

We proceed to describe the structure of the paper. In Section 2 we describe the formal model of aggre-
gation mechanisms. In Section 3 we present the main agendas we deal with, truth-functional agendas, and
specifically conjunction agendas and xor agendas. In Section 4 we state the motivation to deal with approx-
imate aggregation. In Section 5 we describe the connection we find between Approximate Aggregation and
the field of Property Testing. In Sections 6 and 7 we describe our main theorems and outline the proof.
Section 8 concludes.

2 The Model

We define the model similarly to [13,14] (which is Rubinstein and Fishburn’s model [41] for the boolean
case).

We consider a committee of n individuals that needs to decide on m boolean issues9. An opinion is
a vector x = (x1, x2, . . . , xm) ∈ {0, 1}m denoting an answer to each of the issues. An opinion profile is a
matrix X ∈ ({0, 1}m)

n
denoting the opinions of the committee members, so an entry Xj

i denotes the vote of
the ith voter for the jth issue, the ith row of it Xi states the votes of the ith individual on all issues, and the
jth column of it Xj states the votes of each of the individuals on the jth issue. In addition we assume that
an agenda X ⊆ {0, 1}m of the consistent opinions is given.

The basic notion in this field is Aggregation Mechanism which is a function that returns an aggre-
gated opinion (not necessarily consistent) for every profile10 : F : ({0, 1}m)

n → {0, 1}m.
An aggregation mechanism satisfies Independence (and we say that the mechanism is indepen-

dent) if for any two consistent profiles X and Y and an issue j, if Xj = Y j (all individuals voted the
same on the jth issue in both profiles) then (F (X))j = (F (Y ))j (the aggregated opinion for the jth is-
sue is the same for both profiles). This means that F satisfies independence if one can find m boolean
functions f1, f2, . . . , fm : {0, 1}n → {0, 1} s.t. F (X) ≡

(
f1
(
X1
)
, f2

(
X2
)
, . . . , fm (Xm)

)
11. An indepen-

dent aggregation mechanism satisfies systematicity if all issues are aggregated using the same func-
tion, i.e., F (X) =

〈
f
(
X1
)
, . . . , f (Xm)

〉
for some issue aggregating function f . We will use the notation〈

f1, f2, . . . , fm
〉

for the independent aggregation mechanism that aggregates the jth issue using f j .
The main two measures we study in this paper are the inconsistency index ICX(F ) and the depen-

dency index DIX(F ) of a given aggregation mechanism F and a given agenda X. These measures are

8 Both the known influence (Banzhaf power index) and a new measure we define: The ignorability of an individual
and of a coalition of individuals.

9 There is some literature on aggregating non-boolean issues, e.g., [41,15], but this is outside the scope of this paper.
10 We define the function for all profiles for simplicity but we are not interested in the aggregated opinion in cases

one of the voters voted an inconsistent opinion.
11 Notice this property is a generalization of the IIA property for social welfare functions (aggregation mechanism for

the preference agenda) so a social welfare function satisfies IIA iff it satisfies independence as defined here (when
the issues are the pair-wise comparisons).
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relaxations of the consistency and independence criterion that are usually assumed in current works12.
We define the measures in the following way:

Definition 1 (Inconsistency Index).
For an agenda X and an aggregation mechanism F for that agenda, the inconsistency index is defined to
be the probability to get an inconsistent result.13

ICX(F ) = Pr [F (X) /∈ X | X ∈ Xn] .

Definition 2 (Dependency Index14).
For an agenda X and an aggregation mechanism F for that agenda, the dependency vector DIj,X(F ) is
defined as

DIj,X(F ) = E
X∈Xn

[
Pr

Y ∈Xn

[
(F (X))j 6= (F (Y ))j |Xj = Y j

]]
.

The definition can be seen as a test for independence of the jth issue as discussed in Section 5
The dependency index DIX(F ) is defined by: DIX(F ) = max

j=1,...,m
DIj,X(F )

In contexts where the agenda is clear we omit the agenda superscript and notate these as IC(F ), DIj(F ),
and DI(F ), respectively.

We define these two indices using local tests and prove that the more natural definition of distance to
the class of aggregation mechanisms that satisfy consistency (or independence) is equivalent to the above
(up to multiplication by a constant).

Proposition 1. Let F be an aggregation mechanism for an agenda over m issues. Then F satisfies
IC(F ) 6 δ iff there exists a consistent aggregation mechanism H that satisfies d(F,H) 6 δ.

Proposition 2. Let F be an aggregation mechanism and j an issue. If DIj(F ) 6 δ, then there exists an
aggregation mechanism H that satisfies DIj(H) = 0 and d(F,H) 6 2δ. If DIj(F ) > δ, then every aggregation
mechanism H that satisfies DIj(H) = 0, also satisfies d(F,H) > 1

2δ

Proposition 3. Let F be an aggregation mechanism for an agenda over m issues that satisfies DI(F ) 6 δ.
Then there exists an independent aggregation mechanism H that satisfies d(F,H) 6 2mδ. If DI(F ) > δ, then
every aggregation mechanism H that satisfies DI(H) = 0, also satisfies d(F,H) > 1

2δ

These definitions include two major assumptions on the opinion profile distribution. First, we assume the
voters pick their opinions independently and from the same distribution. Second, we assume a uniform
distribution over the (consistent) opinions for each voter (Impartial Culture Assumption). The uniform
distribution assumption, while certainly unrealistic, is the natural choice for proving ‘lower bounds’ on
IC(F ). That is, proving results of the format ”Every ‘reasonable’ aggregation mechanism of a given class
has inconsistency index of at least γ(n)”. In particular, the lower bound, up to a factor δ, applies also to any
distribution that gives each preference profile at least a δ fraction of the probability given by the uniform
distribution15. Note that we cannot hope to get a reasonable bound result for every distribution. For instance,
since for every aggregation mechanism we can take a distribution on profiles for which it returns a consistent
opinion.

12 F satisfies consistency iff IC(F ) = 0 and independence iff DI(F ) = 0
13 In [27] List presented this measure under the name ‘Probability of a collective inconsistency’ and studies its

asymptotical behavior for the conjunction agenda and the issue-wise majority aggregation mechanism.
14 In [33] Mossel defines similar measure for preference aggregation mechanism called η-IIA. Our definition coincides

with his definition for this agenda.
15 In successive works we relax this assumption and prove similar results for more general distributions.
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2.1 The Independence Property

The independence criterion is sometimes criticized as being unjustified normatively in most real-life scenar-
ios16. The impossibility results of judgement aggregation can also be seen as ‘empirical’ argument against
independence since they show that it contradicts consistency which seems to be more desired. While we
accept this argument, we think our work quantifies the tradeoff between the two criteria. Moreover, in this
section we claim that this criterion can be justified on several different grounds.

First, in a lot of cases it is justified to expect, due to normative reasons or legal reasons, that changing an
individual judgement on an issue should not change the collective judgement on another issue. The rational
is usually that when the agenda is described as having a combinatorial structure (or perceived in such a way),
the aggregation method should respect the structure and not treat the agenda as a simple set of alternatives.

Secondly, as in the case of multi-issue voting domains[43], when the number of voters is small compared
to the agenda size (number of possible opinions) the natural ways of aggregating might be nonsignificant.
For instance, using plurality when the number of voters is too small could well result in a situation where
no outcome gets more than one vote, in which case plurality would give an extremely poor result.

In addition, there are works that defend this criterion by using manipulation-resistance arguments. In
[12] Dietrich and List define the notion of manipulability of an aggregation mechanism17 and prove that
any aggregation mechanism that does not satisfy independence is manipulable. In this paper they further
prove that this manipulability property is equivalent to a more game-theoretic property of strategy-proofness
under some assumptions on players’ preferences.

On the ground of simplicity of representation one can justify independence as a criterion that returns
aggregation mechanisms that are easy to represent, calculate, or justify (for instance, justify an election
result to the public).

Other grounds of justification for such aggregation mechanisms are from the voter point of view. There
are situations in which the decisions are made over time and place (different meetings) or by different
representatives of the same voting identity so it is fair to assume that when voting on an issue or aggregating
the votes it is unreasonable to depend on votes on other issues. Another argument might be that there are
scenarios in which you need to define the aggregation method and only at a later stage choose from the
set of issues the relevant ones (For instance, the definition of Social Welfare Functions as returning a choice
function so only at a later stage the society is faced with the menu of alternatives).

2.2 Binary Functions

Since this work deals with binary functions (for aggregating issues), we need to define several notions for
this framework as well. To ease the presentation, throughout this paper we will identify True with 1 and
False with 0 and use logical operators on bits and bit vectors (using entry-wise semantics).

Let f : {0, 1}n → {0, 1} be a binary function. f is the oligarchy of a coalition S if it is of the form:
f(x) = ∧

i∈S
xi. This means that f returns 1 if all the members of S voted 1. We denote by OligOligOlig the class of

all 2n oligarchies. Two special cases of oligarchies are the constant 1 function which is the oligarchy of the
empty coalition and the dictatorships which are oligarchies of a single voter.

f is a linear function if it is of the form f(x) = ⊕
i∈S

xi for some coalition S18. This means that f returns

1 if an even number of the members of S voted 1. We denote by LinLinLin the class of all 2n linear functions.

16 Chapman([7]) and Mongin([32]) attack this criterion and claim it removes the discipline of reason from social choice
since it disregards the intra-issue dependencies which is the essence of the problem. According to this criterion the
aggregation of ‘complex’ issues is done without regarding the reasons of the voters for their opinions and hence
lacks the information for good aggregation.

17 An aggregation mechanism F is manipulable at the profile X by individual i(the manipulator) on issue j if
Xi

j 6= (F (X))j , but Xi
j = (F (X ′))j for some profile X ′ that differs form X in i‘s vote only. I.e., the manipulator

disagrees with the aggregated opinion on issue j and can get his will on j by voting differently.
18 An equivalent definition is: f is linear if ∀x, y : f(x)+f(y) = f(x+y) when the addition is in Z2 and Zn

2 , respec-
tively.
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Two special cases of linear functions are the constant 1 function which is the xor function over the empty
coalition and the dictatorships which are xor of a single voter.

We say that f satisfies the Pareto criterion if f(0̄) = 0 and f(1̄) = 119. I.e., when all the individuals
voted unanimously 0 then f should return 0 and similarly for the case of 1.

We define the following measures for the influence of an individual or a coalition of individuals on a
function f : {0, 1}n → {0, 1}. Both definitions use the uniform distribution over {0, 1}n (which is consistent
with the assumption we have on the profile distribution).

– The Influence20 of a voter i on f is defined to be the probability that he can change the result by
changing his vote.

Ii(f) = Pr [f(x) 6= f(x⊕ ei)]

(x⊕ei = adding to x, ei(the ith elementary vector)=flipping the ith bit 0↔ 1)
– The (zero-)Ignorability of a voter i on f is defined to be the probability that f returns 1 when i voted 0.

Pi(f) = Pr [f(x) = 1 | xi = 0]

(We did not find a similar index defined in the voting literature or in the cooperative games literature).
– A generalization of the above definition is the (zero-)Ignorability of a coalition S ⊆ {1, . . . , n}. It is

defined to be the probability that f returns 1 when one of the members of S voted 0. (So we get that
Pi(f) = P{i}(f).)

PS(f) = Pr [f(x) = 1 | ∃i ∈ S xi = 0]

In addition we define a distance function over the binary functions. The distance between two functions
f, g : {0, 1}n → {0, 1} is defined to be the probability of getting a different result (normalized Hamming
distance). d(f, g) = Pr [f(x) 6= g(x)]. From this measure we will derive a distance from a function to a set of
functions by d(f,G) = min

g∈G
d(f, g) One more notation we are using in this paper is x

J
for a binary vector

x ∈ {0, 1}n and a coalition J ⊆ {1, 2, . . . n} for notating the entries of x that correspond to J .

3 Agenda Examples

A lot of natural problems can be formulated in the framework of aggregation mechanisms. It is natural
to divide the agendas into two major classes Truth-Functional Agendas and Non Truth-Functional
Agendas.

3.1 Truth-Functional Agendas

A (k-premise) truth-functional agenda is defined by a conclusions function (Φ : {0, 1}k → {0, 1}m−k) from
the k premises to the (m− k) conclusions. An opinion is consistent if the answers to the conclusion issues
are attained by applying Φ on the answers to the premise issues.

X =
{
x ∈ {0, 1}m xj = Φj(x1, . . . , xk) j = k + 1, . . . ,m

}
There are cases in which there might be more than one way to classify the issues to premises and conclu-

sions. For instance, the 2-premises xor agenda X = {001, 010, 100, 111} can be defined both as 〈A,B,A⊕B〉
and as 〈A,A⊕C,C〉. Since we choose to analyze the agenda as opinion sets (and not as a proposition set)
we do not handle this point and notice that it is irrelevant for our results.

These agendas, due to their structure, seem to be a good point to start our work on approximate aggre-
gation and in this paper we prove results for two families of truth-functional agendas. Later we derive results
for a more general family of truth-functional agendas.

19 In the literature this criterion is sometimes referred to as Unanimity, e.g., in [30]. We chose to follow [13,14] and
refer to it as Pareto to distinguish between it and the unanimity function which is the oligarchy of {1, 2, . . . , n}.

20 In the simple cooperative games regime, this is also called the Banzhaf power index of player i in the game f .
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Conjunction Agendas: In the m-premises conjunction agenda
〈
A1, . . . , Am,∧mj=1A

j
〉

there are m+ 1
issues to decide on and the consistency criterion is defined to be that the last issue is a conjunction of the
other issues. For instance the Doctrinal Paradox agenda is the 2-premises conjunction agenda.
Xor Agendas: Similarly, in the m-premises xor agenda

〈
A1, . . . , Am,⊕mj=1A

j
〉

there are m+ 1 issues to
decide on and the consistency criterion is defined to be that the last issue is True if the number of true-valued
opinions for the first m is even. An equivalent way to define this agenda is constraining the number of True
answers to be odd.

3.2 Non Truth-Functional Agendas

One can think on a lot of agendas that cannot be represented as a truth-functional agenda. Among such
interesting natural agendas that were studied one can find the equivalence agenda[18], the membership
agenda [40][31], and the preference agenda described below.
Preference Aggregation: Aggregation of preferences is one of the oldest aggregation frameworks studied.
In this framework there are s candidates and each individual holds a full strict order over them. We are
interested in Social Welfare Functions which are functions that aggregate n such orders to an aggregated
order. As seen in [34,9], this problem can be stated naturally in the aggregation framework we defined by
defining

(
s
2

)
issues21.

4 Motivation

We find the motivation for dealing with the field of approximate judgement aggregation in three different
disciplines.

– The consistent characterization are often regarded as ‘impossibility results’ in the sense that they ‘per-
mit’ a very restrictive set of aggregation mechanisms. (e.g., Arrow’s theorem tells us that there is no
‘reasonable’ way to aggregate preferences). Extending these theorems to approximate aggregation char-
acterizations sheds light on these impossibility results by relaxing the constraints.

– The questions of Aggregation Theory have often roots in Philosophy, Law, and Political Science.
There is a long line of works suggesting consistent aggregating mechanisms while still trying to stay
‘reasonably close’ to independence. The main general (not agenda-tailored) suggestions are premise-
based mechanisms and conclusion-based aggregation for truth-functional agendas (see, among others,
[25,24,37,29,10,5]), and a generalization of them to non-truth-functional agendas called sequential pri-
ority aggregation([26,11]). Another procedure in the literature is the distance-based aggregation([38])
which is well known for preference aggregation (E.g., Kemeny voting rule[23], Dodgson voting rule[2],
and lately a more systematic analysis in [16]). Our work contribute to this discussion by pointing out
where one should search for solutions while not leaving the consistency and independence constraints
entirely.

– Connections to the Property Testing field as discussed in Section 5.

5 Connection to Property Testing

In the words of [39], the field of property testing deals with the following:
Given the ability to perform (local) queries concerning a particular object (e.g., a function or a graph),

the task is to determine whether the object has a predetermined (global) property (e.g., linearity or
bipartiteness), or is far from having the property. The task should be performed by inspecting only a small
(possibly randomly selected) part of the whole object, where a small probability of failure is allowed.
Property testing trades accuracy (the distance parameter) for efficiency (number of queries).

21 The issue 〈i, j〉 (for i<j) represents whether an individual prefers ci over cj .
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We think it might be useful to view the Approximate Aggregation problem in the framework of Property
Testing. Below we highlight the connection between Approximate Aggregation and a special case of Property
testing termed ‘one-sided non-adaptive program testing’. For a general survey of the field, one can read
[17,39,20].

In our case the global property we are trying to test is ‘consistency and independence’ of an aggregation
mechanism. The class of satisfying aggregation mechanism is characterized by the current state of research.
It is clear that each of the components of this property separately, consistency and independence of an issue,
can be tested trivially. The consistency test consists of picking a (consistent) profile uniformly at random
and checking whether the aggregated opinion is consistent. The test for independence of issue j consists of
picking a (consistent) profile uniformly at random, altering randomly the opinion for each voter without
changing the jth bit and check whether the aggregated opinion on the jth issue is changed due to the altering.
For each of the two tests the probability to accept a non-satisfying mechanism is linear in the distance to the
satisfying set (and equals IC(F ) and DIj(F ), respectively). The main question of this work can be stated
using property testing terms as follows: What is the best test for being ‘consistent and independent’ one can
assemble from running the (m+1) tests as black boxes (and therefore get information only on IC(F ) and
DIj(F )).

Similar question was asked lately in [8]. In [8] the authors query (among other similar questions) the
conditions needed in order to deduce from testability of two properties the testability of the intersection
of the two properties. Our work can be seen as studying this question for a specific domain in which the
question seems to be natural while adding the constraint that the test of the intersection property should
be defined as a sequence of tests for the basic properties (in a non-adaptive way).

The main result of this paper is that for a class of mechanisms (corresponding to a natural class of
agendas) one can assemble those tests to a test for the property ‘consistent and independent’.

Similarly one can state questions dealing with sub-families of aggregation mechanisms. For example, as
we stated in the introduction, the classic result of Blum, Luby, and Rubinfeld for linearity testing of boolean
functions is a direct corollary of our result for the 2-premises xor agenda when considering systematic
aggregation mechanisms.

Still, the target of the two fields is different. While Property Testing deals with finding the most effi-
cient (query-wise) algorithm for testing a property (functions family), Approximate Aggregation deals with
analyzing a specific family of tests.

6 Main Results

The main result of this paper is

Theorem 1.
For any ε > 0 and m,n > 2, there exists δ

IC
, δ
DI

= n−1
(
ε
m

)poly(m)
, such that for every truth-functional

agenda X over m issues, in which each conclusion issue is defined to be either conjunction of several premises
or xor of several premises(up to negation of inputs or output)22, if F is an aggregation mechanism for X
over n voters satisfying δ

IC
-independence and δ

DI
-consistency, then there exists an aggregation mechanism

G that satisfies consistency and independence such that d(F,G) < ε

Moreover, one can take δ
IC

= n−1
(

(1−βε)ε
8m

)2m−1
−βεε and δ

DI
= 1

2mβεε for any βε ∈
[
0, n−1

(
ε

8m

)2m−2]
.

A direct corollary is the following impossibility result.

Corollary 1. There exists a constant C such that for any m,n > 2 and ε, δ ∈ [0, 1] s.t. δ < C · n−1
(
ε

8m

)2m−1
,

and a truth-functional agenda X over m issues, in which each conclusion issue is defined to be either con-
junction of several premises or xor of several premises(up to negation of inputs or output), no aggregation
mechanism F for X over n voters satisfies the following three conditions:

22 For example, 〈A,B,A ∧B〉, 〈A,B,A→ B〉 ≡
〈
A,B,A ∧B

〉
, 〈A,B,C,A ∧B,B⊕C,A ∨ C〉.
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– δ-independence
– δ-consistency
– F is ε-far from any independent and consistent aggregation mechanism for X .

In the case of xor agenda (and its generalization, a truth-functional agenda in which all the conclusions
are xor) we can get a better result (particulary, no dependency on the number of voters)

Theorem 2. Let m > 3 and let the agenda be X =

〈
A1, . . . , Am−1,

m−1
⊕
j=1

Aj
〉

. For any δ < 1
6 and any ag-

gregation mechanism F :
If F is an aggregation mechanism for X over n voters satisfying δ-independence and δ-consistency,
then there exists an aggregation mechanism G that satisfies consistency and independence such that
d(F,G) < m(2m+ 3)δ

Noticing that any affine agenda (i.e., an agenda that is an affine subspace) can be represented as a truth-
functional agenda that uses xor conclusions only (Lemma 10) we can get the following corollary

Corollary 2. For any ε > 0 and m,n > 2, there exists δ = ε
m(2m+3) , such that for every affine agenda

X over m issues, if F is an aggregation mechanism for X over n voters satisfying δ-independence and
δ-consistency, then there exists an aggregation mechanism G that satisfies consistency and independence
such that d(F,G) < ε

7 Proof Sketch of the Main Theorem

In this section we sketch the techniques behind our proofs. The full proofs can be found in the appendices.
We prove the main theorem by proving three independent theorems. An approximation result for indepen-

dent aggregation mechanisms for conjunction agendas (Theorem 3). An approximation result for independent
aggregation mechanisms for xor agendas (Theorem 4). An agenda independent method of converting results
for the independent case to the general case of relaxing both constraints (Theorem 5). Using induction on the
number of conclusions and noticing that negating (of the inputs and of the output) is renaming of opinions
in our framework (and hence does not change the approximation results) we get Theorem 1.

7.1 Conjunction Agenda

For the agenda

〈
A1, . . . , Am,

m
∧
j=1

Aj
〉

we prove:

Theorem 3. For the agenda X =

〈
A1, . . . , Am,

m
∧
j=1

Aj
〉

for m > 2:

For any ε > 0 and any independent aggregation mechanism F :
If IC(F ) 6 ε, then there exists an aggregation mechanism G that satisfies consistency and independence such

that d(F,G) < 8m (nε)
1

2m−1 .

There is a known characterization of the consistent independent aggregation mechanism for the conjunction
agenda. (This characterization is a direct corollary from a series of works in the more general framework of
aggregation, E.g., [35,13]. We include a proof of it in the appendix)

Lemma 1.
Let f1, . . . , fm, h : {0, 1}n → {0, 1} be m+ 1 voting functions satisfying IC

(〈
f1, . . . , fm, h

〉)
= 0. Then ei-

ther there exists an issue j s.t. f j = h ≡ 0 or f1 = f2 = . . . = fm = h ∈ Olig.

A corollary from the above is a characterization of the approximate aggregation mechanisms for this agenda.
Actually, in the proof of Theorem 3 we get a tighter characterization that distinguishes between the first
case of having a constant zero issue-aggregation function and the second of aggregating using an oligarchy.
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Proof (Proof sketch).
Let F =

〈
f1, . . . , fm, h

〉
be an aggregation mechanism that satisfies IC(F ) 6 ε. In case that f j for some

j is close to the constant zero function, F is close to the consistent aggregation mechanism that satisfies
f j = h = 0 (and all other issue-aggregating functions the same as in F ).

Otherwise, all f j are ∆-far from the constant zero function (for some ∆). The main insight in the proof
is that for any two issue-aggregating functions f j and fk, we can bound the product of the ignorability
of a coalition S for fk and the minimal influence of its members on f j using the inconsistency index of
F by PS(fk) ·min

i∈S
Ii(f

j) 6 C · IC(F ) for C a constant that depends solely on the size of S and on simple

characteristics of the other issue-aggregating functions. Using this insight we can prove that any of the f j

functions is 4nε∆1−m-close to a function gj that is determined by log2

(
2
∆

)
voters. So if ∆ is big enough

(with respect to ε) we can deduce that there exists an issue aggregating function h′ s.t. G =
〈
g1, . . . , gm, h′

〉
is close to F and consistent. The latter is true since IC(G) is close to IC(F ) (and hence small) but is
determined by a small number of votes (and hence cannot be too small strictly positive number). ut

7.2 Xor Agenda

For the agenda

〈
A1, . . . , Am−1,

m−1
⊕
j=1

Aj
〉

we prove:

Theorem 4. Let m > 3 and let the agenda be X =

〈
A1, . . . , Am−1,

m−1
⊕
j=1

Aj
〉

.

For any ε< 1
6 and any independent aggregation mechanism F : If IC(F )6ε, then there exists an aggre-

gation mechanism G that satisfies consistency and independence such that d(F,G)6mε.

Proof (Proof sketch). 23

The proof uses the Fourier representation of the issue aggregating functions. That is, representing the
functions as linear combinations of the linear boolean functions. We can represent any boolean function as
f =

∑
χ∈Lin

f̂(χ)χ when f̂(χ) = E [f(x)χ(x)] = 1−2d (f, χ) = 2d (f,−χ)−1.

Given an independent aggregation mechanism F =
〈
f1, . . . , fm, h

〉
we analyze the expression

E = E

[
m∏
j=1

f j(xj)h

(
m∏
j=1

f jxj

)]
(when xj are sampled uniformly and independently). On one hand we

show that E = 1−2IC(F ). On the other hand we show that E =
∑

χ∈Lin

m∏
j=1

f̂ j(χ)ĥ(χ). Hence, when IC(F )

is small, this expression is close to one and hence there exists a linear function such that all f j , and h are
close to it (up to negation). Noticing that for any linear function χ, 〈χ, χ, · · · , χ〉 (and the result of negation
of any even number of functions) is a consistent independent aggregation mechanism for this agenda gives
us the result. ut

7.3 Extending to δ-independence Results

We prove

Theorem 5.
If

there exists a function δ(ε, n) s.t. for any ε > 0 and n > 2, if F is an aggregation mechanism for X over
n voters satisfying independence and IC(F )6δ(ε), then there exists an aggregation mechanism G that
satisfies consistency and independence such that d(F,G)<ε.

Then,

23 The proof is similar to the analysis of the BLR (Blum-Luby-Rubinfeld) linearity test done in [1].
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for any ε > 0 and n > 2, there exist δ
IC
, δ
DI
> 0, such that if F is an aggregation mechanism for X over

n voters satisfying IC(F ) 6 δ
IC

and DI(F ) 6 δ
DI

, then there exists an aggregation mechanism G that
satisfies consistency and independence such that d(F,G) < ε.
Moreover, one can take δ

IC
= δ ((1− βε) ε)− βεε and δ

DI
= 1

2mβεε for any βε ∈ [0, 1] satisfying
δ ((1− βε) ε) > βεε

In order to extend the results for the δ-dependent case (DI(F ) 6= 0) we prove the following agenda-
independent proposition.

Proposition (Proposition 3). Let F be an aggregation mechanism for an agenda over m issues that sat-
isfies DI(F ) 6 δ. Then there exists an independent aggregation mechanism H that satisfies d(F,H) 6 2mδ.
If DI(F ) > δ, then every aggregation mechanism H that satisfies DI(H) = 0, also satisfies d(F,H) > 1

2δ

I.e., if F is δ-independent we can find a close consistent aggregation mechanism H and since it is close we
can deduce bounds on the proximity of F to the consistent and independent aggregation mechanisms from
bounds on this proximity of H. Similarly, since H is close to F , we can deduce that if F is δ-consistent then
H is δ′-consistent for δ′ close to δ. Combining these we get the theorem.

8 Summary and Future Work

In this paper we defined the question of approximate aggregation which is a generalization of the study of
aggregation mechanisms that satisfy consistency and independence. We defined measures for the relaxation
of the consistency constraint (inconsistency index IC) and for the relaxation of the independence constraint
(dependency index DI). To our knowledge, this is the first time this question is stated in its general form.

We proved that relaxing these constraints does not extend the set of satisfying aggregation mechanisms
in a non-trivial way for any truth-functional agenda in which every conclusion is either conjunction or xor
up to negation of inputs or output. We notice that every conclusion of two premises can be stated as such
as well as any affine agenda. Particulary we calculated the dependency between the extension of this class
(ε) and the inconsistency index (δ(ε)) (although probably not strictly) for two families of truth-functional
agendas with one conclusion. The relation we proved includes dependency on the number of voters (n). In
similar works for preference agendas [21,33,22] the relation did not include such a dependency. An interesting
question is whether such a dependency is inherent for conjunction agendas or whether it is possible to prove
a relation that does not include it.

A major assumption in this paper is the uniform distribution over the inputs which is equivalent to
assuming i.i.d uniform distribution over the premises. We think that our results can be extended for other
distributions (still assuming voters’ opinions are distributed i.i.d) over the space over premises’ opinions
which seem more realistic.

Immediate extensions for this work can be to extend our result to more complex truth-functional agendas
and generalize our results to non-truth-functional agendas to get a result unifying our work and Kalai, Mossel,
and Keller’s works for the preference agenda.

A major open question is whether one can find an agenda for which relaxing the constraints of in-
dependence and consistency extends the class of satisfying aggregation mechanisms in a non-trivial way.
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A Lemmas Proof - General

A.1 Propositions 4,6

For a given pair of independent aggregation mechanisms, the following propositions connect between the
pairwise distance between respective issue-aggregating functions (which we found easier to analyze in most
cases) and both the distance between the mechanisms and the difference between the inconsistency indices
of them.

Proposition 4.
For any agenda X of m issues and any voting functions

f1, . . . , fm, g1, . . . , gm, : {0, 1}n → {0, 1},

dX
(〈
f1, . . . , fm

〉
,
〈
g1, . . . , gm

〉)
6

m∑
j=1

Pr
[
f j
(
Xj
)
6= gj

(
Xj
)
| X ∈ Xn

]
.

Proof. Direct use of the union-bound inequality.

Proposition 5.
For any agenda X of m issues and voting functions f1, . . . , fm, g1 : {0, 1}n → {0, 1},∣∣ICX (〈f1, f2, . . . , fm〉)− ICX (〈g1, f2, . . . , fm〉)∣∣ 6 Pr[f1

(
X1
)
6= g1

(
X1
)
| X ∈ Xn].

Proof.
IC
(〈
f1, . . . , fm

〉)
= Pr

[(
f1
(
X1
)
, f2

(
X2
)
, . . . , fm (Xm)

)
/∈ X | X ∈ Xn

]
6 Pr[f1

(
X1
)
6= g1

(
X1
)
| X ∈ Xn]

+ Pr
[(
f1
(
X1
)
, . . . , fm (Xm)

)
/∈ X

∧
f1(x) = g1(x) | X ∈ Xn

]
6 Pr[f1

(
X1
)
6= g1

(
X1
)
| X ∈ Xn]

+ Pr
[(
g1
(
X1
)
, f2

(
X2
)
, . . . , fm (Xm)

)
/∈ X | X ∈ Xn

]
= ICX (〈g1, . . . , fm〉)+ Pr[f1

(
X1
)
6= g1

(
X1
)
| X ∈ Xn]

Hence, IC
(〈
f1, . . . , fm

〉)
− IC

(〈
g1, f2, . . . , fm

〉)
6 Pr[f1

(
X1
)
6= g1

(
X1
)
| X ∈ Xn].

Similarly we can prove that IC
(〈
g1, . . . , fm

〉)
− IC

(〈
f1, f2, . . . , fm

〉)
6 Pr[f1

(
X1
)
6= g1

(
X1
)
| X ∈ Xn].

As a corollary of the above we derive

Proposition 6.
For any agenda X of m issues and any voting functions

f1, . . . , fm, g1, . . . , gm, : {0, 1}n → {0, 1},

∣∣ICX (〈f1, . . . , fm〉)− ICX (〈g1, . . . , gm〉)∣∣ 6 m∑
j=1

Pr
[
f j
(
Xj
)
6= gj

(
Xj
)
| X ∈ Xn

]
.
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A.2 Proposition 2

Proposition.
Let F be an aggregation mechanism and j an issue. If DIj(F ) 6 δ, then there exists an aggregation mecha-
nism H that satisfies DIj(H) = 0 and d(F,H) 6 2δ. If DIj(F ) > δ, then every aggregation mechanism H
that satisfies DIj(H) = 0, also satisfies d(F,H) > 1

2δ

Proof. With no loss of generality assume that j = 1.

– Let F be an aggregation mechanism. We define the functions G1, . . . , Gm : Xn → {0, 1} by:

G1(X) =

{
1 Pr
Y ∈Xn

[
(F (X))

1
= 1 | Y 1 = X1

]
> 1

2

0 otherwise

j = 2, . . . ,m Gj(X) = (F (X))
j

and an aggregation mechanism G(X) =
〈
G1(X), . . . , Gm(X)

〉
. Clearly DI1(G) = 0.

d(F,G) = Pr
X∈Xn

[
(F (X))1 6= G1(X)

]
= Pr
X∈Xn

[
Pr

Y ∈Xn

[
(F (X))1 6= (F (Y ))1|X1 = Y 1

]
> 1

2

]
6 2 E

X∈Xn

[
Pr

Y ∈Xn

[
(F (X))1 6= (F (Y ))1|X1 = Y 1

]]
= 2DI1(F )

– Let F be an aggregation mechanism that is ε-close to satisfy DI1(F ) = 0. That is, we can find an
aggregation mechanism G such that d(F,G) 6 ε and DI1(G) = 0.

DI1(F ) = E
X∈Xn

[
Pr

Y ∈Xn

[
(F (X))1 6= (F (Y ))1|X1 = Y 1

]]
6 Pr[F (X) 6= G(X)] +

∑
X:F (X)=G(X)

Pr
Z∈Xn

[Z = X] Pr
Y ∈Xn

[
(G(X))1 6= (F (Y ))1|X1 = Y 1

]
6 ε+

∑
X:F (X)=G(X)

Pr
Z∈Xn

[Z = X] Pr
Y ∈Xn

[
(G(Y ))1 6= (F (Y ))1|X1 = Y 1

]
6 2ε ut

A.3 Proposition 3

Proposition.
Let F be an aggregation mechanism for an agenda over m issues that satisfies DI(F ) 6 δ. Then there exists
an independent aggregation mechanism H that satisfies d(F,H) 6 2mδ. If DI(F ) > δ, then every aggregation
mechanism H that satisfies DI(H) = 0, also satisfies d(F,H) > 1

2δ

Proof.

– We define issue aggregating functions h1, . . . , hm : {0, 1}n → {0, 1} by:

hj(t) =

{
1 Pr
X∈Xn

[
F j(X) = 1 | Xj = t

]
> 1

2

0 otherwise

17



and an (independent) aggregation mechanism H =
〈
h1, . . . , hm

〉
.

d(F,H) = Pr
X∈Xn

[F (X) 6= H(X)]

6
m∑
j=1

Pr
X∈Xn

[
F j(X) 6= Hj(X)

]
=

m∑
j=1

Pr
X∈Xn

[
Pr

Y ∈Xn

[
F j(X) 6= Hj(Y )|Xj = Y j

]
> 1

2

]
6

m∑
j=1

2 E
X∈Xn

[
Pr

Y ∈Xn

[
F j(X) 6= F j(Y )|Xj = Y j

]]
6 2mDIj(F )
6 2mDI(F )

– The other direction is a direct corollary of Proposition 2. ut

A.4 Id Agenda

For completeness we add here an approximate aggregation theorem for the id agenda 〈A,A〉

Theorem 6.
For any ε > 0 and any independent aggregation mechanism F :
If IC〈A,A〉 6 ε, then there exists an aggregation mechanism G that satisfies consistency and independence
such that d(F,G) 6 ε.

Proof. This theorem is trivial since

IC〈A,A〉(〈f, g〉) = Pr [f(x) 6= g(y) | x = y] = Pr [f(x) 6= g(x)] = d(f, g)

Noticing that any aggregation mechanism of the form 〈f, f〉 is consistent for this agenda, we get the theorem.
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B Lemmas Proof - Conjunction agenda

B.1 Theorem 3

Theorem.

For the agenda X =

〈
A1, . . . , Am,

m
∧
j=1

Aj
〉

for m > 2:

For any ε > 0 and any independent aggregation mechanism F :
If IC(F ) 6 ε, then there exists an aggregation mechanism G that satisfies consistency and independence such

that d(F,G) < 8m (nε)
1

2m−1 .

Proof.

Assume a mechanism F =
〈
f1, . . . , fm, h

〉
is given such that IC(F ) 6 ε and define ∆ = 4 (nε)

1
2m−1 .

If there exists j ∈ {1, . . . ,m} s.t. d(f j , 0) 6 ∆ (with no loss of generality assume j = 1), then〈
f1, f2, . . . , fm, h

〉
is (ε+∆)-close to

〈
0, f2, . . . , fm, 0

〉
24 which is a consistent mechanism.

If ∀j ∈ {1, . . . ,m} : d(f j , 0) > ∆, then, based on the following lemma each of the functions f j is close
to a function that depends on a small number of voters.

Lemma 2.
Let f1, . . . , fm, h : {0, 1}n → {0, 1} be (m+ 1) voting functions and ε, δ > 0 constants. If

IC

〈
A1,...,Am,

m
∧
j=1

Aj
〉

(f1, . . . , fm, h) 6 ε.

Then there exists a function g : {0, 1}n → {0, 1} that depends on at most

log2

d (f2, 0)− 2

 m∏
j=3

d
(
f j , 0

)−1 nε
δ


−1

voters and satisfies
d
(
f1, g

)
6 δ.

(and similarly for f2, . . . , fm)

By choosing δ = 4ε∆1−m we get that there exist functions g1, . . . , gm : {0, 1}n → {0, 1} s.t.

– ∀j : d
(
f j , gj

)
6 4nε∆1−m

– gj depends on a junta of voters, Jj , of size at most log2

(
∆
2

)−1
Let h′ : {0, 1}n → {0, 1} be a issue-aggregating function satisfying
∀h : IC(f1, . . . , fm, h′) 6 IC(f1, . . . , fm, h). Then based on Proposition 6 we get:

IC(g1, . . . , gm, h′) 6 IC(g1, . . . , gm, h)

6 IC(f1, . . . , fm, h) +
m∑
j=1

d
(
f j , gj

)
6 ε

(
1 + 4mn∆1−m)

6 5mnε∆1−m

= 22−3m5m · 1
2m∆

m

< 1
2m∆

m

6
m∏
j=1

·2−|Jj |

One the other hand, since the functions gj depend on a small number of voters, the inconsistency index
cannot be too small.
24 d

(
F ,

〈
0, f2, . . . , fm, 0

〉)
= Pr[f1

(
X1
)

=1 ∨ h(Xm+1)=1] = Pr[f1
(
X1
)

=1] + Pr[f1
(
X1
)

=0 ∧ h(Xm+1)=1] 6 ∆+ ε
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Lemma 3. Let f1, . . . , fm : {0, 1}n → {0, 1} be m voting functions and J1, . . . , Jm ⊆ {0, 1, . . . , n} coalitions
such that each voting function f j depends only on the votes of the members of the coalition Jj. Then

min
h:{0,1}n→{0,1}

IC(f1, . . . , fm, h) = C

m∏
j=1

·2−|J
j |

for some integer C.

So we get that actually IC
(〈
g1, . . . , gm, h′

〉)
= 0 and

〈
g1, . . . , gm, h′

〉
is consistent.

Since max(ε+∆, ε+ 4mnε∆1−m) 6 8m (nε)
1

2m−1 (when n2ε < 1), we get the theorem.
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B.2 Lemma 2

Lemma.
Let f1, . . . , fm, h : {0, 1}n → {0, 1} be (m+ 1) voting functions and ε, δ > 0 constants. If

IC

〈
A1,...,Am,

m
∧
j=1

Aj
〉

(f1, . . . , fm, h) 6 ε.

Then there exists a function g : {0, 1}n → {0, 1} that depends on at most

log2

d (f2, 0)− 2

 m∏
j=3

d
(
f j , 0

)−1 nε
δ


−1

voters and satisfies
d
(
f1, g

)
6 δ.

(and similarly for f2, . . . , fm)

Proof. The proof of the lemma is constructive and defines a junta J and the function g that depends only
on the votes of J . For proving the lemma, we define for a given function f : {0, 1}n → {0, 1} and a coalition
J (the junta), the junta function fJ : {0, 1}n → {0, 1}. It is derived from f in the following way:

fJ(x) = majority {f(y) | y
J

= x
J
} .

I.e., for a given input, fJ reads only the votes of the junta members, iterates over all the possible votes for
the members outside the junta, and returns the more frequent result (assuming uniform distribution over
the votes of the voters outside J).
In our case, we define the junta to be all the voters with large influence

J = {i | Ii(f1) > δ}

and g to be
(
f1
)J

.
For these two definitions we prove the different claims of the lemma.

– d
(
f1, g

)
6 nδ

This is a direct corollary of the following lemma and the definition of J .

Lemma 4. Let f : {0, 1}n → {0, 1} be a boolean function and J ⊆ {1, . . . , n} a coalition. Then
d(f, fJ) 6

∑
i/∈J

Ii(f).

– |J | 6 log2

d (f2, 0)− 2 εδ

(
m∏
j=3

d
(
f j , 0

))−1−1

Lemma 5. Let f1, . . . , fm, h : {0, 1}n → {0, 1} be m voting functions, S ⊆ {1, . . . , n} a coalition.

Then PS(f2) ·min
i∈S

Ii(f
1) 6 2

(∏
j>3

d(f j , 0)

)−1 (
1− 2−|S|

)−1
IC(f1, . . . , fm, h)

Assigning in lemma 5 S ← J , we get:

(
1− 2−|S|

)
PJ(f2) ·min

i∈S
Ii(f

1) 6 2

(∏
j>3

d(f j , 0)

)−1(
min
i∈J

Ii(f
j)

)−1
IC(f1, . . . , fm, h)

6 2

(
m∏
j=3

d(f j , 0)

)−1
ε
δ
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Lemma 6. Let f : {0, 1}n → {0, 1} be a voting function and S ⊆ {1, . . . , n} a coalition. Then

|S| 6 log2

(
d(f, 0)−

(
1− 2−|S|PS(f)

))−1
Assigning in lemma 6 S ← J , f ← f2, we get:

|J | 6 log2

(
d
(
f2, 0

)
−
(

1− 2−|J|
)
PJ(f2)

)−1
6 log2

d (f2, 0)− 2
ε

δ

 m∏
j=3

d
(
f j , 0

)−1

−1

ut
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B.3 Lemma 5

Lemma.
Let f1, . . . , fm, h : {0, 1}n → {0, 1} be m voting functions, S ⊆ {1, . . . , n} a coalition.

Then PS(f2) ·min
i∈S

Ii(f
1) 6 2

(∏
j>3

d(f j , 0)

)−1 (
1− 2−|S|

)−1
IC(f1, . . . , fm, h)

Proof. With no loss of generality assume S = {1, 2, . . . , t}. Denote by E the event
[
∀j > 3 : f j(xj) = 1

]
and by Pr

E
[A] the probability Pr[A | E]. Then (We use the notation x⊕ ei for adding ei (the ith elementary

vector) which is equivalent to flipping the ith bit 0↔ 1)

Pr
E

[
m∧
j=1

f j(xj) 6=h

(
m∧
j=1

xj

)]
= Pr

E

[
f1(x1) ∧ f2(x2) 6= h

(
m∧
j=1

xj

)]

> Pr
E

[
f1(x1) ∧ f2(x2) 6= h

(
m∧
j=1

xj

)
; x2|

S
6= 1̄ ∧ f2(x2)=1

]

= Pr
E

[
f1(x1) 6= h

(
m∧
j=1

xj

)
; x2|

S
6= 1̄ ∧ f2(x2)=1

]

=
t∑
i=1

Pr
E

[
f1(x1) 6= h

(
m∧
j=1

xj

)
; x2|

[i−1]
=1̄ ∧ x2i = 0 ∧ f2(x2)=1

]

>
t∑
i=1

1
2 Pr

E


f1(x1) 6= h

(
m∧
j=1

xj

)
; x2|

[i−1]
=1̄ ∧ x2i = 0 ∧ f2(x2)=1∨

f1(x1+ei) 6= h

(
(x1+ei) ∧

m∧
j=2

xj

)
; x2|

[i−1]
=1̄ ∧ x2i = 0 ∧ f2(x2)=1



= 1
2

t∑
i=1

Pr
E


f1(x1) 6= h

(
m∧
j=1

xj

)
; x2|

[i−1]
=1̄ ∧ x2i = 0 ∧ f2(x2)=1∨

f1(x1+ei) 6= h

(
x1 ∧

m∧
j=2

xj

)
; x2|

[i−1]
=1̄ ∧ x2i = 0 ∧ f2(x2)=1


> 1

2

t∑
i=1

Pr
E

[
f1(x1) 6= f1(x1+ei) ; x2|

[i−1]
=1̄ ∧ x2i = 0 ∧ f2(x2)=1

]
= 1

2

k∑
i=1

Pr
E

[
f1(x1) 6= f1(x1+ei)

]
· Pr

E

[
x2|

[i−1]
=1̄ ∧ x2i = 0 ∧ f2(x2)=1

]
> 1

2 min
i∈S

Pr
E

[
f1(x1) 6= f1(x1+ei)

]
· Pr

E

[
x2|

S
6= 1̄ ∧ f2(x2)=1

]
IC(f1, . . . , fm, h) = Pr

[
m∧
j=1

f j(xj) 6= h

(
m∧
j=1

xj

)]

= Pr
[
∀j > 3 : f j(xj) = 1

]
· Pr

[
m∧
j=1

f j(xj) 6= h

(
m∧
j=1

xj

)
∀j > 3 : f j(xj) = 1

]
>

m∏
j=3

Pr[f j(xj) = 1] · 12 min
i∈S

Pr
[
f1(x1) 6= f1(x1+ei) ∀j > 3 : f j(xj) = 1

]
·Pr

[
x2|

S
6= 1̄ ∧ f2(x2) = 1 ∀j > 3 : f j(xj) = 1

]
=

m∏
j=3

Pr[f j(xj) = 1] · 12 min
i∈S

Ii(f
1) · PS(f2) Pr

[
x2|

S
6= 1̄
]

= 1
2

(
1− 2−|S|

) m∏
j=3

Pr[f j(xj) = 1] ·min
i∈S

Ii(f
1) · PS(f2) ut
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B.4 Lemma 4

Lemma.
Let f : {0, 1}n → {0, 1} be a boolean function and J ⊆ {1, . . . , n} a coalition. Then d(f, fJ) 6

∑
i/∈J

Ii(f).

Proof. We define for a vector c ∈ {0, 1}J the function fJc : {0, 1}n → {0, 1} by fJc (x) = f(y) where
y
J

= c and y−J = x−J . Assume that ci is sampled uniformly and independently at random. Then

fJ(x
J
, x−J ) =

{
0 Ec[fJc (x)] < 1

2
1 Ec[fJc (x)] > 1

2
We will use the following isoperimetric inequality on the boolean cube:

Proposition (The Isoperimetric Inequality for The Boolean Cube [4]).
Let f : {0, 1}n → {0, 1} be a voting function. Then

∑
i

Ii(f) > min(E[f ], 1− E[f ]).

For any c ∈ {0, 1}J :
∑
i/∈J

Ii(f
J
c ) =

∑
i

Ii(f
J
c )

> min(E[fJc ], 1− E[fJc ])
For i /∈ J : Ii(f) = Pr[f(x) 6= f(x⊕ ei)]

= Ec
[
Pr[fJc (x) 6= fJc (x⊕ ei)]

]
= Ec

[
Ii(f

J
c )
]

Ec

[∑
i/∈J

Ii(f
J
c )

]
=
∑
i/∈J

Ec
[
Ii(f

J
c )
]

=
∑
i/∈J

Ii(f)

Ec

[∑
i/∈J

Ii(f
J
c )

]
> Ec

[
min

(
E
[
fJc
]
, 1− E

[
fJc
])]

= Pr
[
fJ(x) 6= f(x)

]
d(f, fJ) 6

∑
i/∈J

Ii(f) ut
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B.5 Lemma 6

Lemma.
Let f : {0, 1}n → {0, 1} be a voting function and S ⊆ {1, . . . , n} a coalition. Then

|S| 6 log2

(
d(f, 0)−

(
1− 2−|S|PS(f)

))−1
Proof.

Pr [f(x) = 1] 6 Pr [x
S

= 1̄] + Pr [x
S
6= 1̄ ∧ f(x) = 1]

= Pr [x
S

= 1̄] + PS(f) (1− Pr [x
S

= 1̄])
= 2−|S| + PS(f)

(
1− 2−|S|

)
ut
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B.6 Lemma 3

Lemma.
Let f1, . . . , fm : {0, 1}n → {0, 1} be m voting functions and J1, . . . , Jm ⊆ {0, 1, . . . , n} coalitions such that
each voting function f j depends only on the votes of the members of the coalition Jj. Then

min
h:{0,1}n→{0,1}

IC(f1, . . . , fm, h) = C

m∏
j=1

·2−|J
j |

for some integer C.

Proof. For any function g : {0, 1}n → {0, 1}:25

IC(f1, . . . , fm, h) = Pr

[
m∧
j=1

f j(xj) 6= g

(
m∧
j=1

xj

)]

=
∑

c1∈{0,1}J
1

...
cm∈{0,1}J

m

m∏
j=1

Pr
[(
xj
)
Jj

=cj
]
· Pr

[
m∧
j=1

f j(xj) 6= g

(
m∧
j=1

xj

)
∀j
(
xj
)
Jj

=cj

]

Clearly there exists an issue-aggreagting function h : {0, 1}n → {0, 1} that minimizes the expression

IC(f1, . . . , fm, h) and does not depend on voters outside of
m
∪
j=1

Jj .

IC(f1, . . . , fm, h) =
m∏
j=1

·2−|Jj |#

{
c1 ∈ {0, 1}J1

, . . . , cm ∈ {0, 1}Jm
m∧
j=1

f j
(
cj , 0̄

)
6= h

(
m∧
j=1

(
cj , 0̄

))}
ut

25 We denote by (cj , 0̄) the vector that equals to cj on Jj and has zeroes elsewhere.
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B.7 Lemma 1

Lemma.
Let f1, . . . , fm, h : {0, 1}n → {0, 1} be m+ 1 voting functions satisfying IC

(〈
f1, . . . , fm, h

〉)
= 0. Then ei-

ther there exists an issue j s.t. f j = h ≡ 0 or f1 = f2 = . . . = fm = h ∈ Olig.

Proof. Assume that for issues j, f j is not the constant zero function. We will prove that
f1 = f2 = . . . = fm = h ∈ Olig by proving the following series of claims.

– For all issues j, f j(1̄) = 1
With no loss of generality, assume for contraction that f1(1̄) = 0. Let x ∈ {0, 1}n. Then

h(x) = h

1̄ ∧

 m∧
j=2

x

 = f1 (1̄) ∧

 m∧
j=2

f j (x)

 = 0.

I.e. h ≡ 0. From that we can conclude that there exists an issue j s.t. f j ≡ 0 and get a contradiction.
– For all issues j f j = h

We will prove that f1 = h. The proof is similar for all j.

Let x ∈ {0, 1}n. Then h(x) = h

(
x ∧

(
m∧
j=2

1̄

))
= f1 (x) ∧

(
m∧
j=2

f j (1̄)

)
= f1(x)

– f1 ∈ Olig

Let J = {i | Ii(f1) 6= 0}. Then f1 is a function of {xi}i∈J . Based on lemma 5, for i ∈ J Pi(f
1) = 0 and

hence
[
xi = 0 ⇒ f1(x) = 0

]
. So we get that f1 is the oligarchy of J . ut
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C Lemmas Proof - XOR agenda

C.1 Theorem 4

Theorem.

Let m > 3 and let the agenda be X =

〈
A1, . . . , Am−1,

m−1
⊕
j=1

Aj
〉

.

For any ε< 1
6 and any independent aggregation mechanism F : If IC(F )6ε, then there exists an aggre-

gation mechanism G that satisfies consistency and independence such that d(F,G)6mε.

Proof.
The theorem is a corollary of the following lemma:
(We rename the values from {0, 1} to {1,−1} in order to ease the analysis (use multiplication instead of xor)
and in particular use the Fourier transformation for the issue-aggregating functions f j .26)

Lemma 7. Let f1, . . . , fm : {−1, 1}n → {−1, 1} be m voting functions and ε a constant such that

Pr

m−1∏
j=1

f j(xj) 6= fm

m−1∏
j=1

xj

 6 ε

Then,

– There exists a linear function χ : {−1, 1}n → {−1, 1} defined as χ(x) =
∏
i∈S

xi for some coalition S and

signs
(
aj
)
j=1,...,m

∈ {−1, 1} such that

m∏
j=1

aj = 1

d(f1, a1χ) 6ε
∀j : d(f j , ajχ) 62ε

– If ε < 1
6 , then there exists a linear function χ : {−1, 1}n → {−1, 1} defined as χ(x) =

∏
i∈S

xi for some

coalition S and signs
(
aj
)
j=1,...,m

∈ {−1, 1} such that
m∏
j=1

aj = 1 and d(f j , ajχ) 6 ε for all j

Noticing that
〈(
ajχ
)〉

is a consistent mechanism for any linear function χ and signs aj s.t.
m∏
j=1

aj = 1 gives

us the requested result by applying Proposition 4.

26 Fourier transforms are widely used in mathematics, computer science, and engineering. The main idea is repre-
senting a function f over an orthonormal basis to the functions space χS when the inner product is defined to be
〈f, g〉 = E[f(x)g(x)] and the basis vectors χS are defined to be χS (x) =

∏
i∈S

xi for S ⊆ {1, . . . , n}. The coefficients

of f according to the Fourier basis are notated f̂(S). I.e., f =
∑
S

f̂(S)χS . For a good introduction to the subject

see [36,42].
In this proof we are using the following:

– χS (xy) = χS (x)χS (y)

– E[χS (x)χT (x)] =

{
1 S = T
0 otherwise

– E[f2(x)] =
∑
S

f̂2(S)

– f̂(S) = 1− 2d(f, χS ) = 2d(f,−χS )− 1
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Proof (Proof of Lemma 7).
The main ingredient in the proof is the following lemma that connects the inconsistency index with a simple
expression over the Fourier coefficients of f j .

Lemma 8. Let f1, . . . , fm : {−1, 1}n → <. Then: E

[
m−1∏
j=1

f j
(
xj
)
fm

(
m−1∏
j=1

xj

)]
=
∑
S

m∏
j=1

f̂ j(S).

Corollary 3. For the aggregation mechanism F =
〈
f1, . . . , fm

〉
:

1− 2IC(F ) =
∑
S

m∏
j=1

f̂ j(S).

Now let F =
〈
f1, . . . , fm

〉
be an independent aggregation mechanism that satisfies IC(F ) 6 ε.

First we claim there exists a coalition A and a sign a1 ∈ {−1, 1} s.t. d
(
f1, aχ

A

)
6 ε

1− 2IC(F ) =
∑
S

m∏
j=1

f̂ j(S) 6
∑
S

∣∣∣f̂1(S)
∣∣∣ · ∣∣∣∣∣ m∏j=2

f̂ j(S)

∣∣∣∣∣
6 max

S

∣∣∣f̂1(S)
∣∣∣∑
S

m∏
j=2

∣∣∣f̂ j(S)
∣∣∣ 6Lemma 9 max

S

∣∣∣f̂1∣∣∣ m∏
j=2

m

√∑
S

∣∣∣∣f̂ jm−1(S)

∣∣∣∣
6 max

S

∣∣∣f̂1∣∣∣ m∏
j=2

√∑
S

f̂ j
2
(S) = max

S

∣∣∣f̂1∣∣∣ = 1− 2 min
S,a∈{−1,1}

(
d
(
f1, aχ

S

))
and hence there exists a coalition A and a sign a1 s.t. Pr[f1(x) 6= a1χ

A
(x)] 6 IC(f, g, h) = ε.

Based on Proposition 6, IC(a1χ
A
, f2, . . . , fm) 6 IC(F ) + d(f, a1χ

A
) 6 2ε. On the other hand based on

corollary 3,

IC(a1χ
A
, f2, . . . , fm) =

1

2

1− a1
∑
S

χ̂
A

(S)

m∏
j=2

f̂ j(S)

 =
1

2

1− a1
m∏
j=2

f̂ j(A)

 .

So we get that a1
m∏
j=2

f̂ j(A) > 1− 4ε and hence there exist signs (aj)mj=1 such that
m∏
j=2

aj = 1 and

aj f̂ j(A) > 1− 4ε so d(f j , ajχ
A

) 6 2ε.
Due to symmetry there is also a coalition B and a sign b2 such that d(f2, b2χ

B
) 6 ε and hence

d(b2χ
B
, a2χ

A
) 6 3ε. On the other hand d(b2χ

B
, a2χ

A
) =

0 a2 = b2 ∧A = B
1 a2 = b2 ∧A = B
1
2 A 6= B

.

Hence, if ε < 1
6 , we get that A = B, a2 = b2.

Due to symmetry we can repeat this for all f j . ut
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C.2 Lemma 8

Lemma.

Let f1, . . . , fm : {−1, 1}n → <. Then: E

[
m−1∏
j=1

f j
(
xj
)
fm

(
m−1∏
j=1

xj

)]
=
∑
S

m∏
j=1

f̂ j(S).

Proof. E

[
m−1∏
j=1

f j
(
xj
)
fm

(
m−1∏
j=1

xj

)]
= Ex1,...,xm−1

[ ∑
S1,...,Sm

m−1∏
j=1

(
f̂ j
(
Sj
)
χ
Sj

(
xj
))
f̂m (Sm)χ

Sm

(
m−1∏
j=1

xj

)]
=

∑
S1,...,Sm

m∏
j=1

f̂ j
(
Sj
) m∏
j=1

Exj
[
χ
Sj

(
xj
)
χ
Sm

(
xj
)]

=
∑
S

m∏
j=1

f̂ j(S) ut

30



C.3 Lemma 9

Lemma 9.
Let k > 2 be an integer and {ai,j}i=1...n,j=1...k positive reals. Then, n∑

i=1

k∏
j=1

ai,j

k

6
k∏
j=1

(
n∑
i=1

(ai,j)
k

)

Proof. We’ll prove by induction over k.

If k = 2, then by Cauchy-Swartz inequality

(
n∑
i=1

ai,1ai,2

)2

6

(
n∑
i=1

(ai,1)
2

)(
n∑
i=1

(ai,2)
2

)
If k > 2, then applying Hölder inequality

(
n∑
i=1

k∏
j=1

ai,j

)k
=

(
n∑
i=1

ai,k
k−1∏
j=1

ai,j

)k

6

( n∑
i=1

(ai,k)
k

) 1
k

 n∑
i=1

(
k−1∏
j=1

ai,j

) k
k−1


k−1
k


k

=

(
n∑
i=1

(ai,k)
k

)(
n∑
i=1

k−1∏
j=1

(ai,j)
k
k−1

)k−1

By the induction hypothesis we get that

(
n∑
i=1

k−1∏
j=1

(ai,j)
k
k−1

)k−1
6
k−1∏
j=1

(
n∑
i=1

(
(ai,j)

k
k−1

)k−1)
=
k−1∏
j=1

(
n∑
i=1

(ai,j)
k

)
ut

C.4 Affine Agenda - Lemma 10

Lemma 10. Let X be an affine subspace of {0, 1}m of degree k.
Then X can be represented as a truth-functional agenda using xor conclusions only.

Proof.
X is an affine space and therefore can be represented as a linear subspace shifted by a constant vector.
Shifting is merely renaming of the opinions so with no loss of generality, assume that X is a linear subspace
defined by a matrix Ak×m of rank k in the following way X = {x ∈ {0, 1}m | Ax = 0}. There exists an
invertible matrix (representing the Gaussian elimination process) P s.t.

– {x ∈ {0, 1}m | Ax = 0} = {x ∈ {0, 1}m | PAx = 0}
– PA is in canonical form. I.e. for any row t ∈ [k] there is a unique index at ∈ [m] s.t. (PA)t,j = 1 iff
j = at.

Hence X is a truth-functional agenda for the premises [m] \ {at}t∈[k] and conclusions based on the row of
PA.
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