81 research outputs found

    Combining Dependency and Constituent-based Syntactic Information for Anaphoricity Determination in Coreference Resolution

    Get PDF

    Graph-Cut-Based Anaphoricity Determination for Coreference Resolution

    Get PDF
    Recent work has shown that explicitly identifying and filtering non-anaphoric mentions prior to coreference resolution can improve the performance of a coreference system. We present a novel approach to this task of anaphoricity determination based on graph cuts, and demonstrate its superiority to competing approaches by comparing their effectiveness in improving a learning-based coreference system on the ACE data sets.

    Anaphora Resolution with Real Preprocessing

    Full text link
    In this paper we focus on anaphora resolution for German, a highly inflected language which also allows for closed form compounds (i.e. compounds without spaces). Especially, we describe a system that only uses real preprocessing components, e.g. a dependency parser, a two-level morphological analyser etc. We trace the performance drop occurring under these conditions back to underspecification and ambiguity at the morphological level. A demanding subtask of anaphora resolution are the so-called bridging anaphora, a special variant of nominal anaphora where the heads of the coreferent noun phrases do not match. We experiment with two different resources in order to find out how to cope best with this problem

    Conundrums in noun phrase coreference resolution: making sense of the state-of-the-art

    Get PDF
    Journal ArticleWe aim to shed light on the state-of-the-art in NP coreference resolution by teasing apart the differences in the MUC and ACE task definitions, the assumptions made in evaluation methodologies, and inherent differences in text corpora. First, we examine three subproblems that play a role in coreference resolution: named entity recognition, anaphoricity determination, and coreference element detection. We measure the impact of each subproblem on coreference resolution and confirm that certain assumptions regarding these subproblems in the evaluation methodology can dramatically simplify the overall task. Second, we measure the performance of a state-of-the-art coreference resolver on several classes of anaphora and use these results to develop a quantitative measure for estimating coreference resolution performance on new data sets

    Real Anaphora Resolution is Hard

    Get PDF
    We introduce a system for anaphora resolution for German that uses various resources in order to develop a real system as opposed to systems based on idealized assumptions, e.g. the use of true mentions only or perfect parse trees and perfect morphology. The components that we use to replace such idealizations comprise a full-fledged morphology, a Wikipedia-based named entity recognition, a rule-based dependency parser and a German wordnet. We show that under these conditions coreference resolution is (at least for German) still far from being perfect

    Improved Coreference Resolution Using Cognitive Insights

    Get PDF
    Coreference resolution is the task of extracting referential expressions, or mentions, in text and clustering these by the entity or concept they refer to. The sustained research interest in the task reflects the richness of reference expression usage in natural language and the difficulty in encoding insights from linguistic and cognitive theories effectively. In this thesis, we design and implement LIMERIC, a state-of-the-art coreference resolution engine. LIMERIC naturally incorporates both non-local decoding and entity-level modelling to achieve the highly competitive benchmark performance of 64.22% and 59.99% on the CoNLL-2012 benchmark with a simple model and a baseline feature set. As well as strong performance, a key contribution of this work is a reconceptualisation of the coreference task. We draw an analogy between shift-reduce parsing and coreference resolution to develop an algorithm which naturally mimics cognitive models of human discourse processing. In our feature development work, we leverage insights from cognitive theories to improve our modelling. Each contribution achieves statistically significant improvements and sum to gains of 1.65% and 1.66% on the CoNLL-2012 benchmark, yielding performance values of 65.76% and 61.27%. For each novel feature we propose, we contribute an accompanying analysis so as to better understand how cognitive theories apply to real language data. LIMERIC is at once a platform for exploring cognitive insights into coreference and a viable alternative to current systems. We are excited by the promise of incorporating our and further cognitive insights into more complex frameworks since this has the potential to both improve the performance of computational models, as well as our understanding of the mechanisms underpinning human reference resolution

    Structured learning with latent trees: a joint approach to coreference resolution

    Get PDF
    This thesis explores ways to define automated coreference resolution systems by using structured machine learning techniques. We design supervised models that learn to build coreference clusters from raw text: our main objective is to get model able to process documentsglobally, in a structured fashion, to ensure coherent outputs. Our models are trained and evaluated on the English part of the CoNLL-2012 Shared Task annotated corpus with standard metrics. We carry out detailed comparisons of different settings so as to refine our models anddesign a complete end-to-end coreference resolver. Specifically, we first carry out a preliminary work on improving the way features areemployed by linear models for classification: we extend existing work on separating different types of mention pairs to define more accurate classifiers of coreference links. We then define various structured models based on latent trees to learn to build clusters globally, andnot only from the predictions of a mention pair classifier. We study different latent representations (various shapes and sparsity) and show empirically that the best suited structure is some restricted class of trees related to the best-first rule for selecting coreference links. Wefurther improve this latent representation by integrating anaphoricity modelling jointly with coreference, designing a global (structured at the document level) and joint model outperforming existing models on gold mentions evaluation. We finally design a complete end-to-endresolver and evaluate the improvement obtained by our new models on detected mentions, a more realistic setting for coreference resolution

    Robustness in Coreference Resolution

    Get PDF
    Coreference resolution is the task of determining different expressions of a text that refer to the same entity. The resolution of coreferring expressions is an essential step for automatic interpretation of the text. While coreference information is beneficial for various NLP tasks like summarization, question answering, and information extraction, state-of-the-art coreference resolvers are barely used in any of these tasks. The problem is the lack of robustness in coreference resolution systems. A coreference resolver that gets higher scores on the standard evaluation set does not necessarily perform better than the others on a new test set. In this thesis, we introduce robustness in coreference resolution by (1) introducing a reliable evaluation framework for recognizing robust improvements, and (2) proposing a solution that results in robust coreference resolvers. As the first step of setting up the evaluation framework, we introduce a reliable evaluation metric, called LEA, that overcomes the drawbacks of the existing metrics. We analyze LEA based on various types of errors in coreference outputs and show that it results in reliable scores. In addition to an evaluation metric, we also introduce an evaluation setting in which we disentangle coreference evaluations from parsing complexities. Coreference resolution is affected by parsing complexities for detecting the boundaries of expressions that have complex syntactic structures. We reduce the effect of parsing errors in coreference evaluation by automatically extracting a minimum span for each expression. We then emphasize the importance of out-of-domain evaluations and generalization in coreference resolution and discuss the reasons behind the poor generalization of state-of-the-art coreference resolvers. Finally, we show that enhancing state-of-the-art coreference resolvers with linguistic features is a promising approach for making coreference resolvers robust across domains. The incorporation of linguistic features with all their values does not improve the performance. However, we introduce an efficient pattern mining approach, called EPM, that mines all feature-value combinations that are discriminative for coreference relations. We then only incorporate feature-values that are discriminative for coreference relations. By employing EPM feature-values, performance improves significantly across various domains

    Review of coreference resolution in English and Persian

    Full text link
    Coreference resolution (CR) is one of the most challenging areas of natural language processing. This task seeks to identify all textual references to the same real-world entity. Research in this field is divided into coreference resolution and anaphora resolution. Due to its application in textual comprehension and its utility in other tasks such as information extraction systems, document summarization, and machine translation, this field has attracted considerable interest. Consequently, it has a significant effect on the quality of these systems. This article reviews the existing corpora and evaluation metrics in this field. Then, an overview of the coreference algorithms, from rule-based methods to the latest deep learning techniques, is provided. Finally, coreference resolution and pronoun resolution systems in Persian are investigated.Comment: 44 pages, 11 figures, 5 table
    corecore