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Abstract

Coreference resolution is the task of extracting referential expressions, or mentions,

in text and clustering these by the entity or concept they refer to. It is an important com-

ponent of natural language processing (nlp) pipelines since it enables computational

systems to understand that the information from textual attributes and relationships

of mentions concern coherent entities, such as particular people or organisations. The

sustained research interest in the task reflects the richness of reference expression usage

in natural language and the difficulty in encoding insights from linguistic and cognitive

theories effectively.

In this thesis, we design and implement limeric, a state-of-the-art coreference

resolution engine. In the literature, coreference resolution has typically been modelled

as a mention pairing problem. However, simple local decoding strategies make errors

by failing to account for global consistency constraints, and the two directions to

incorporate such constraints – non-local decoding and entity-level modelling – have

largely been orthogonal. limeric naturally incorporates both to achieve the highly

competitive benchmark performance of 64.22% and 59.99% using gold and automatic

preprocessing on the CoNLL-2012 benchmark with a simple model and a baseline

feature set. This performance is stronger than any system that only use non-local

decoding or entity-level modelling in isolation for global consistency, arguing for their

mutual benefit.

As well as strong performance, a key contribution of this work is a reconceptu-

alisation of the coreference task. We draw an analogy between shift-reduce parsing

and coreference resolution to develop an algorithm which naturally mimics cognitive

models of human discourse processing. Leveraging the self-ordering forest of discourse

entities as a simple model of the human mind, we redefine how features can be defined

and competition in antecedent selection modelled.

In our feature development work, we leverage insights from cognitive theories to

improve our modelling. Specifically, we exploit the fine-grained typology of the Acces-
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sibility hierarchy (Ariel, 2001), as well as a range of factors postulated to explain human

reference resolution: antecedent competition, frame semantic inference, and syntactic

parallelism. Each contribution achieves statistically significant improvements and sum

to gains of 1.65% and 1.66% on the CoNLL-2012 benchmark, yielding performance

values of 65.76% and 61.27%. This performance is either better or not significantly

different from our benchmark, Björkelund and Kuhn (2014), the best performing system

at the time of this work.

For each novel feature we propose, we contribute an accompanying analysis so as

to better understand how cognitive theories apply to real language data. These enable

us to identify fine-grained patterns in reference expression usage, to demonstrate the

insufficiency of cohesion for modelling coreference, and to identify factors contributing

to the difficulty in achieving performance gains from using frame semantic knowledge.

The techniques we propose in this thesis represent a break from how coreference

resolution has been approached as a computational task; limeric is at once a platform

for exploring cognitive insights into coreference and a viable alternative to current

systems. We are excited by the promise of incorporating our and further cognitive

insights into more complex frameworks since this has the potential to both improve the

performance of computational models, as well as our understanding of themechanisms

underpinning human reference resolution. By furthering our understanding of how to

model coreference, we improve our ability to organise and leverage the huge amounts

of information expressed in collections of natural language data.
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1 Introduction

Natural language processing (nlp) is concerned with building automatic systems

which are able to understand natural language data. Its goal of human-level language

comprehension is particularly attractive given the large volume of natural language data

available, for instance via the internet; automatic systems which are able to intelligently

process this datawould enable us to extract and organise the vast amount of information

it expresses. The high-level goal of language comprehension is typically decomposed

into a number of sub-tasks which may be composed into a pipeline solution. The focus

of this thesis is a core sub-task common to many nlp pipelines, coreference resolution.

Coreference resolution is the task of extracting referential expressions, or mentions,

in text and clustering these according to the entity or concept they refer to. For instance,

in the following Voice of America excerpt, an ideal coreference resolution engine would

produce a cluster containing the mentions ‘The battered US Navy destroyer Cole’, ‘its’, and

‘the ship’ and this cluster would be distinct from the one containing ‘a huge Norwegian

transport vessel’, which refers to a related, but distinct, entity.

The battered US Navy destroyer Cole has begun its journey home from
Yemen, 17 days after a suspected terrorist bomb tore a hole in its side.
The attack killed 17 American soldiers and wounded 39. Flanked by other
US warships and guarded by aircraft, the ship was towed out of Aden
Harbor to rendezvous with a huge Norwegian transport vessel that will carry
the crippled ship to the United States.

3
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1.1 Challenges in Coreference Resolution

Coreference resolution is an active area of research. This interest reflects the challenges

involved in developing computational systems to effectively capture the richness of

reference expression usage in natural language.

1.1.1 Modelling

Coreference resolution has typically been approached using the mention-pair model in

which each pairing of extracted mentions is evaluated for their compatibility based

on defined linguistic indicators. These O(n2) scores then need to be decoded into a

clustering over mentions; the complete enumeration of possible clusterings of mentions

is exponentially large and this has motivated the use of greedy algorithms.

A simple decoding strategy is to greedily cluster compatible mentions which are

close to one another in their source document. This strategy serves to establish a

reasonable baseline since textual proximity is indeed an indicator of coreference, but

can make globally inconsistent decisions. For instance, ‘The battered US Navy destroyer

Cole’ and ‘the ship’ may be highly compatible, but so too may be ‘the ship’ and ‘a huge

Norwegian transport vessel’; if these resolutions are done independently of one another,

we may erroneously corefer ‘The battered US Navy destroyer Cole’ and ‘a huge Norwegian

transport vessel’.

Two promising but orthogonal approaches to incorporate global consistency into

coreference modelling are mention synchronous or non-local decoding (Ng and Cardie,

2002b; Durrett and Klein, 2013; Chang et al., 2013) and entity-level modelling (Rahman

and Ng, 2009; Raghunathan et al., 2010). Non-local decoding refers to strategies which

cluster mentions based on overall compatibility, rather than just textual proximity;

entity-level modelling refers to algorithms which incrementally grow entity clusters,

which allows feature extraction to be aware of previous resolutions. Both of these

approaches could improve our resolution of the example excerpt. For instance, ‘the
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crippled ship’ and the ‘the ship’ refer to the same entity using similar words despite being

separated textually by the distractor mention ‘a huge Norwegian transport vessel’; this

similarity would allow a non-local decoding strategy to prefer this resolution. In a

similar vein, if ‘the ship’ has already been resolved to ‘The battered USNavy destroyer Cole’,

nationality modification argues against ‘a huge Norwegian transport vessel’ also joining

this cluster. Among current systems, decoding strategies are increasingly complex

and entity-level models do not fully leverage psycholinguistic cues such as reading

order. Structured prediction offers a means to incorporate both, but is rigid in how

entity-level features may be defined.

1.1.2 Cognitive Insights

Coreference resolutionmay be defined at the level of the document or across a collection

of documents; this thesis is concerned with the former. The clusters produced there-

fore correspond to the discourse entities around which the narrative of the document

develops. In psycholinguistic theory, discourse entities are distinct from real-world

entities in that they are abstract and have properties that are incrementally developed

as a discourse proceeds. That is, coreference is a relationship between a mention and a

grouping of entity mentions from the proceeding discourse, and its resolution follows

the natural top-to-bottom, left-to-right reading order of documents. While outside

the scope of our work, we note that discourse entities, particularly those headed by a

proper name, are anchored in the real world, a fact which motivates joint models of

Named Entity Linking and coreference resolution (e.g. Hajishirzi et al., 2013).

Having discourse entities as our object of interest allows us to draw insights from

psycholinguistic and cognitive theories including Centering (Grosz et al., 1995) and Ac-

cessibility (Ariel, 2001). The richness in these theories, including Accessibility theory’s

hierarchy of reference expressions and the explanatory factors of cohesion, proximity,

parallelism, topicality, competition, and inference automaticity, have yet to be fully
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explored for their utility in computational modelling. It remains an open question

whether these insights can improve the performance of our computational systems.

1.2 Contributions

The main contribution of this thesis is a reconceptualisation of computational ap-

proaches to coreference resolution. We draw an analogy between coreference resolution

and shift-reduce parsing to develop an incremental clustering algorithm which is able

to leverage the strengths of both non-local decoding and entity-level modelling for

global consistency. As well as yielding an efficient and simple model, our baseline

system is highly competitive with the current state of the art. Furthermore, the forest

of discourse entities in this model can be viewed as a simple model of the human mind,

giving us the opportunity to explore defining features and modelling the competition

between candidate antecedents in a cognitively-aware way.

Concretely, we design and build a coreference resolution engine, limeric, in Chap-

ter 4. limeric’s baseline configuration achieves 64.22% and 59.99% on the standard

CoNLL-2012 benchmark, using gold and automatic preprocessing. This performance is

competitive with the best reported research systems and outperforms all systemswhich

use just non-local decoding or entity-level modelling to capture global consistency,

arguing for their mutual benefit.

Chapters 5, 6, and 7 improve from this strong baseline by exploiting insights from

cognitive theory. Chapter 5 incorporates the fine-grained mention hierarchy of Acces-

sibility theory (Ariel, 2001); Chapter 6 considers the mutual information in features,

which includes how antecedent competition can be modelled in a cognitively-aware

way; and Chapter 7 adapts features from the Winograd Schema Challenge to capture

frame semantic inference in a natural discourse setting.

Improvements in Chapter 5 from incorporating the fine-grained Accessibility hier-

archy yield a statistically significant improvement on both gold and automatic settings
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of CoNLL-2012 against limeric, while those in Chapter 6 frommutual information are

additionally significant above this enriched baseline on the difficult automatic setting.

Our best performing system from these closed-task chapters achieves CoNLL-2012

scores of 65.29% and 61.13% using gold and automatic preprocessing. This perfor-

mance is either better or not significantly different from Björkelund and Kuhn (2014),

the best reported system performance on the benchmark task at the time of this work1.

Furthermore, the analyses accompanying these feature proposals contributes to our

understanding of the fine-grained trends in reference expression usage, as well as the

complex interactions of coreference indicators. This work is valuable for understanding

the mechanisms underpinning human reference resolution, which in turn sheds light

on how to improve computational systems for the task. Specifically, we argue that the

degree of cohesion between mentions is insufficient for resolving reference and provide

detailed analyses of the utility of a wider set of cognitively-aware indicators.

Error analysis reveals that limeric makes errors from being overly conservative.

We identify frame semantic inference as a promising way to address this and explore

its challenges in Chapter 7. We find that the two commonly used frame semantic

resources, FrameNet and Narrative Schemas, suffer from poor coverage, and propose

Brown clusters as an automatically generated alternative to these. Despite being simple

to extract, Brown cluster features outperform those based on FrameNet and Narrative

Schema, though we fail to find mutual benefit from using multiple resources. This

work achieves a weakly significant improvement on the gold setting of the CoNLL-2012

benchmark and opens up the possibility of exploring frame semantic inference in

under-resourced settings. We see future work in expanding resources and modelling

their non-independent views on frame semantic knowledge.

1As noted in Chapter 3, the current best reported performance is Wiseman et al. (2015)





2 Task Definition

The formulation of coreference resolution as a computational problem has largely

been shaped by its definition in shared tasks. While the current standard, which is

used in this thesis, is the definition of OntoNotes, evaluated at Conferences on Natural

Language Learning (CoNLL), it is important to understand how this definition has

developed from those used earlier, for the Message Understanding Conference (muc)
and Automatic Content Extraction (ACE) projects, since issues raised in these efforts

have introduced changes which have implications for system design.

Section 2.1 reviews the development of the task guidelines from the perspective of

the annotation guidelines and the datasets labelled with these. Referential ambiguity

is highlighted as a persistent problem for annotation. While the shared task format and

evaluation gives us a stable basis for comparison, all proposed coreference resolution

metrics to date have observed biases. The metrics available and a discussion of their

biases forms Section 2.2, which concludes with a discussion of remaining challenges.

In particular, we review the error-driven evaluation method proposed by Kummerfeld

and Klein (2013) which is designed to give a finer-grained analysis of system output,

with the aim of informing research design.

2.1 Standard Datasets

The development of coreference resolution as a computational task has been shaped by

three shared tasks at conferences targeting information extraction. Each has associated

datasets on which systems may be developed and evaluated, summarised in Table 2.1.

9
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Dataset

Task Agreement Languages Genres

muc 91% 1 1

ACE 86% 3 3

OntoNotes 88-94% 3 7

Table 2.1: Overview of the differences between muc, ACE, and OntoNotes coreference

annotations.

We can see that the trend is for datasets to grow in size and scope, while guidelines

are refined to maintain reasonable agreement between annotators (measured using

F-score). We review each in turn, chronologically. English is a target for all these efforts

and the focus of this work. Therefore, we do not review non-English corpora here.

2.1.1 Message Understanding Conferences

Coreference resolution was first formulated as a shared task in 1995 at the 6th Message

Understanding Conference (muc-6; Grishman and Sundheim, 1996), where it com-

plemented the conference’s core task of template filling, in which systems produced

structured information stores, or templates, about people and organisations.

Coreference resolution was introduced to address one of the three key goals of

muc-6, namely to encourage work on “deeper understanding” of documents. Co-

ordinators saw the reliance at previous conferences on local pattern matching for

template filling as problematic; the introduction of coreference resolution was intended

to promote semantically richer modelling of documents.

Dataset The muc corpora are derived from newswire, primarily the Wall Street

Journal for muc-61, with additional material from Reuters2, and the New York Times

formuc-73. Statistics over the two are given in Table 2.2; columns represent the number

1https://catalog.ldc.upenn.edu/LDC2003T13
2https://catalog.ldc.upenn.edu/LDC96T10
3https://catalog.ldc.upenn.edu/LDC2001T02

https://catalog.ldc.upenn.edu/LDC2003T13
https://catalog.ldc.upenn.edu/LDC96T10
https://catalog.ldc.upenn.edu/LDC2001T02
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Dataset Train Test Tokens Mentions Clusters M/C

muc-6 30 30 27,059 4,232 960 4.4

muc-7 30 20 27,996 4,297 1,081 3.9

Table 2.2: Coreference annotation statistics for the muc corpora.

of documents in the training and test splits, the number of mentions and entity clusters

in the combined dataset, and the mean number of mentions per entity cluster.

Compared to later datasets, the muc datasets are small and this limits their use-

fulness for modern approaches to coreference resolution, especially learning-based

approaches. They are still used, though infrequently, to benchmark performance

against seminal work evaluated at, and following, muc.

Annotation Annotation was carried out by a team of experts in computational lin-

guistics with the goal of clarifying how to define the task and identifying problems in

annotating coreference relationships (6th Message Understanding Conference, 1995;

7th Message Understanding Conference, 1997). While the initial goal of the annotation

was to mark three coreference relationships, namely identity of reference, part-whole,

and set-subset, only identity ended up being annotated. This was because the annota-

tion task, as well as the task of devising consistent task guidelines, was found to be

more difficult than anticipated (Grishman and Sundheim, 1996).

The battered US Navy destroyer Cole has begun its journey home from
Yemen, 17 days after a suspected terrorist bomb tore a hole in its side. The
attack killed 17 American soldiers and wounded 39. Flanked by other US
warships and guarded by aircraft, the ship was towed out of Aden Harbor
to rendezvous with a huge Norwegian transport vessel that will carry the
crippled ship to the United States.

Coreference was modelled as a pairwise relationship between two nouns. For

instance, since ‘The US Navy destroyer Cole’ and ‘the ship’ share a common referent in

our example excerpt, an anaphoric link would be annotated from ‘the ship’ to ‘Cole’.

Therefore, singleton clusters (those comprising one referential mention whose referent
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is not mentioned again in a document) are not annotated in muc. That is, not all

mentions which are referential are annotated; annotation depends on the context of a

mention.

The guidelines note that the identity relation should be assumed to be symmetric

and transitive. That is, if ‘Cole’ and ‘the ship’ are marked as coreferential, and ‘the ship’

and ‘its’ are also, it should be assumed that ‘Cole’ and ‘its’ share their referent too.

However, for the purposes of evaluating system performance, the guidelines suggest

that coreference be marked between a mention and its most recent antecedent mention

in the document.

Noun mentions were explicitly distinguished from verbs and clauses in the guide-

lines. In particular, gerunds were considered markables if they were noun-like (could

be modified by an adjective or take a determiner, e.g. ‘the buying’) but not if they

were verb-like (could be modified by an adverb or take an object, e.g. ‘buying shares’).

Expanding the range of mention forms was proposed as future work for the task.

Each mention had two spans annotated: the minimal span consisted of the head of

a noun phrase (e.g. ‘ship’ in ‘the ship’) or the full name of a proper name mention (e.g.

‘Cole’ in ‘the US Navy destroyer Cole’, but the full span in the name ‘Haden MacLellan’),

while the maximal span included the full noun phrase, including determiners and

modifiers. This decision was made so as to separate the tasks of coreference resolution

and syntactic parsing, and a system could get full credit for labelling coreference

between minimal spans.

Noun phrases were considered analysable while entity names were considered

atomic regardless of any internal structure. This means that possessive pronouns used

as determiners were markables, as were nominal modifiers including tokens in noun

compounds such as ‘aluminium’ in ‘aluminium siding’. However the name ‘Iowa’ in

‘Equitable of Iowa Cos.’ is not a markable due to the atomicity of the organisation name.

One implication of the decision to annotate nouns in compounds was that un-

quantified, bare nouns, which are typically non-referential (Non-Ref in Table 2.1), are
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markables. If a bare noun referred to a type, such as the type of material ‘aluminium’, it

was coreferential with other mentions of that type. However, if a bare noun referred to

a set, such as a group of ‘teachers’, it was only coreferential with other references to a set

containing exactly the same collection of entities. Being able to distinguish when a bare

noun referred to a type or to a set was found to be difficult, which was problematic

since how the decision was made could impact whether a given link was annotated.

The guidelines identify metonymy and referential ambiguity as difficult cases

for annotation. Metonymy was handled by stipulating that instances be annotated

according to the interpretation after the metonymy had been resolved. For instance,

‘White House’ should be interpreted as a reference to the presidential administration

in ‘The White House announced ...’ . Anaphoric links could additionally be labelled as

optional, if a human might feasibly not be certain that identity of reference holds.

Agreement Inter-annotator agreement on themuc-6 datasetwas the topic ofHirschman

et al. (1997). Agreement was measured (after the shared task data was annotated) by

having two annotators label an initial set of five documents to identify problematic

cases for discussion, before being given a further five documents to label to generate

official agreement statistics.

However, agreement was similar between the two rounds of annotation, with the

annotators achieving F scores of 83% on the first round and 84% on the second round.

The reason for the low agreement was determined to be a problem of identifying

markable spans. In particular, date spans and spans referring to less prominent entities

were found to be easy to miss. After a two stage process of agreeing on markable

mentions before annotating coreference, the F score of agreement improved to 91%.

Hirschman et al.’s recommendation for improving the annotation guidelines was

to distinguish between extensional and intensional mentions. For instance, in the text

‘Mr. Dooner was appointed as CEO’, the name ‘Mr. Dooner’ (an extensional reference

to a particular individual) should be distinguished from a role that he holds for an
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undetermined period of time ‘CEO’ (an intensional predication) since failure to do so

breaks the assumption of transitivity: different people may have been the CEO of Mr.

Dooner’s company across time. Intensional predications include attributive mentions

such as ‘the president’ in ‘Barack Obama is the president’. Here, ‘the president’ attributes

presidency to Barack Obama, rather than referring to the man himself.

This argument was taken up further by Van Deemter and Kibble (2000), who argue

that, since the motivation for defining the muc guidelines is that two mentions are

to be considered coreferential if and only if the real-world entity they refer to is the

same, it is underspecified with respect to how to handle non-referential mentions.

Intensional usages do not point to an entity but, rather, attribute some property to

an extensional usage. In the following example, the given prices attribute numerical

values to ‘The stock price’. Yet, annotating each as coreferential with ‘The stock price’,

yields the contradiction that the two prices are coreferential under transitivity.

The stock priceA fell from $4.02B to $3.85C.

Van Deemter and Kibble’s (2000) proposed strategies for dealing with these are:

• annotate according to the present (only annotate C as coreferential with A, if it is

the current value of the stock price); or

• having attributes be a function of the seed mention and some variable e.g. time

(i.e. introduce a functional, f which takes a time and outputs A or B according

to this input); or

• exclude attributives since they are not referential (neither B and C are markables

and A participates in no coreference relationships in this sentence).

2.1.2 Automatic Content Extraction

The ACE program (Doddington et al., 2004) was initiated in 2000 to extend from

muc and encourage the development of systems which could automatically extract
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Dataset Train Test Words Mentions Clusters M/C

ACE-2 130 29 270,000 2,630 1,148 2.3

ACE03 74 31 150,000 3,106 1,340 2.3

ACE04 90 38 350,000 3,037 1,332 2.3

ACE05 57 24 350,000 1,991 775 2.6

Table 2.3: Coreference annotation statistics for the (English) ACE corpora. The number

of words is as reported by Doddington et al. (2004) and NIST (2005).

knowledge about entities and events from natural language data. In particular, the

organisers saw ACE systems being applied to creating a database of what is happening

in the world: “who is doing what, where and when”.

In line with this motivation, coreference resolution was framed as an aspect of the

target capability of Entity Detection and Tracking (EDT). In Phase 1 of EDT, a system

would mark all entity references in a document and, for each mention, the entity type

being mentioned. From Phase 2 in 2002, the relationships between mentions became

part of EDT, with identity of reference annotated between mentions.

Dataset The ACE program annotated datasets4 in three languages, namely English,

Mandarin Chinese, and Standard Arabic; we focus on the English datasets here. In

addition to newswire, documents also came from broadcast news and newspapers, for

which manually and automatically transcribed versions were available. In particular,

broadcast news was processed with automatic speech recognition (asr) and newspa-

pers with optical character recognition (ocr). In 2005, the scope increased to include

weblogs and newsgroups.

Statistics for the four releases are given in Table 2.3. Note that the number of words

is reported for ACE, rather than the number of tokens for muc and OntoNotes, which

means corpus size can only be compared approximately. We can see that, compared

4ACE-2: https://catalog.ldc.upenn.edu/LDC2003T11
ACE 2003: https://catalog.ldc.upenn.edu/LDC2004T09
ACE 2004: https://catalog.ldc.upenn.edu/LDC2005T09
ACE 2005: https://catalog.ldc.upenn.edu/LDC2006T06

https://catalog.ldc.upenn.edu/LDC2003T11
https://catalog.ldc.upenn.edu/LDC2004T09
https://catalog.ldc.upenn.edu/LDC2005T09
https://catalog.ldc.upenn.edu/LDC2006T06
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to muc, more documents have been annotated but these comprise fewer mentions

and, on average, smaller entity clusters. Both are a consequence of the formulation of

EDT: only mentions of entities (cf. types and concepts) are annotated, and entities can

be annotated when only mentioned once in a document (i.e. a mention need not be

coreferential with another to be a markable).

Annotation Entity Detection and Tracking annotated proper name, nominal, and

pronominal references to entities from up to seven semantic classes (Linguistic Data

Consortium, 2008). Initially, the classes included were Person, Organization, Facility,

Geo-Political Entity, and Location; this was expanded in 2004 to include Weapon and

Vehicle. Each semantic class had a fixed system of sub-classification to capture such

information as an Organization being Commercial or Religious, and a Person reference

being to an Individual or a Group. Unlike in muc, coreference was encoded at the

entity level, with all mentions of a given entity being labelled with the same entity

identifier. That is, ‘The battered US Navy destroyer Cole’, ‘its’, ‘its’, ‘the ship’, and ‘the

crippled ship’ would be identified as coreferential by being assigned the same entity

identifier. Coreference within a document was annotated in all datasets, and cross-

document coreference in ACE 2008 (Linguistic Data Corsortium, 2008).

In addition to the sub-classification of entity types, ACE introduced a classifica-

tion scheme to capture the different types of mentions seen. The categories were

proposed to address shortcomings noted in the muc annotation effort and expanded

by Van Deemter and Kibble (2000). In particular, a mention was labelled as one of:

specific, generic, attributive, negatively quantified, or underspecified; all mentions

in our Cole example would be labelled as specific mentions. In this way, intensional

information (such as a person’s role) could be tagged as attributive to distinguish it from

specific, extensional usage. Indeed, attributive was the suggested tag for information

expressed in copula constructions. Additionally, references to a particular set of entities
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were labelled as specific, enabling them to be distinguished from references to types of

entities, which were labelled as generic.

In a similar vein, a metonymy relation was introduced to handle this problematic

case, which was noted to frequently be used when an Organization was referred to by

the Facility it operated from (e.g. ‘White House’ for the US presidential administration).

Agreement Inter-annotator agreement was measured in a pilot phase of annotation,

and monitored throughout the annotation process (Doddington et al., 2004). In the

initial, pilot phase all documents were triple annotated, with annotators achieving

F score 86%. While this is lower than the 91% reported for muc-6, the annotation

guidelines are more complex and the comparison dataset larger.

Reported cases of error include differences in ‘judgement calls’, notably on cases

of referential ambiguity and where knowledge beyond what was expressed in the

document was required to resolve reference. Long documents were found to be more

difficult to annotate than shorter documents, with the possibility of missing coreference

links between mentions appearing far apart. Additionally, there were reported errors

due to the annotation tool interface and ambiguities in the annotation guidelines.

2.1.3 OntoNotes

OntoNotes (Hovy et al., 2006) is a large corpus with rich, cross-layer semantic annota-

tions: each document in OntoNotes is annotated with part-of-speech tags, named entity

labels, constituency parse trees, propositional structure, word sense, and coreference.

While word sense and propositional labels do not have 100% coverage, the creators

expect that the majority of ambiguous terms and verbal propositions are labelled.

The Conference on Natural Language Learning organised shared tasks for coref-

erence resolution using the OntoNotes data in 2011 (Pradhan et al., 2011) and 2012

(Pradhan et al., 2012) to address difficulties in gauging the state of the art for the task.

In particular, unrestricted coreference resolution had not been evaluated since the small
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Genre Train Dev. Test Tokens Mentions Clusters M/C

broadcast conversation 283 59 55 203,628 25,988 5,898 4.4

telephone conversation 110 16 16 103,587 15,346 2,461 6.2

bible text 319 24 26 243,040 48,636 7,695 6.3

weblogs 173 25 24 169,628 16,307 3,906 4.2

newswire 745 88 89 488,935 43,874 11,925 3.7

broadcast news 763 91 93 335,657 28,103 8,043 3.5

magazine text 409 40 45 197,520 16,226 4,293 3.8

Total 2802 343 348 1,631,995 194,480 44,221 4.4

Table 2.4: Coreference annotation statistics for (English) OntoNotes 5.

scale experiments in muc. It was also seen that, despite being introduced to promote

richer modelling of document meaning, coreference was still reliant on surface and

shallow semantic features, such as gender and linguistic number.

Dataset As for ACE, OntoNotes data5 is multi-lingual, with annotations available

in English, Mandarin Chinese, and Standard Arabic, but we focus on the English

release here. As well as newswire, broadcast news, and weblogs which were studied

in ACE, OntoNotes includes documents from broadcast news conversation, telephone

conversation, NewTestament Bible text, andmagazines. Long texts from the introduced

genres were split into parts to facilitate annotation. All conversation text is frommanual

transcriptions rather than automatically processed audio files.

For the shared task, both the gold standard OntoNotes annotations, as well as the

output of automatic processing for non-coreference layers, was released. Automatic

annotations were generated by the BBN’s IdentiFinder for ner, Charniak re-ranking

parser (Charniak and Johnson, 2005) for syntactic structure, ASSERT (Pradhan et al.,

2004) for propositional structure, and an in-house tool (see Pradhan et al., 2011) for

word senses. Official scores pertain to this automatic preprocessing.

5https://catalog.ldc.upenn.edu/LDC2013T19

https://catalog.ldc.upenn.edu/LDC2013T19
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The corpus statistics for OntoNotes are given in Table 2.4. We can see that this corpus

is at least an order of magnitude larger than previously available datasets. Indeed,

the number of mentions is two orders of magnitude larger than the ACE corpora; this

makes sense given that annotation is not restricted by the semantic class of the mention.

The mean number of mentions per entity cluster again sits around 4, as it did for

muc, since entity clusters comprising a singleton mention are again not annotated.

Newswire and broadcast news make up just over half the dataset, but entity clusters

in these genres contain fewer mentions on average. Telephone conversation and Bible

text contain larger entity clusters, due to repeated chains of first and second person

pronouns in the first case and of divine entities in the second (Pradhan et al., 2011).

Annotation Annotation decisions for OntoNotes reflect a balance between ease of

annotation (to allow for the large scale of the corpus) and being consistent enough to

make coreference resolution a feasible computational task (BBN Technologies, 2012).

Apart from having no restriction by semantic type, the most salient difference

between OntoNotes and ACE is that OntoNotes has no sub-typing on mentions: only

specific mentions are markables. Generic and underspecified mention are only mark-

ables when they are coreferential with a specific mention. However, there is no explicit

rule about what constitutes a specific or a generic mention, though it is stipulated that

unquantified plurals, indefinite nominals, expletive pronouns, as well as certain usages

of ‘you’, are always generic.

ACE’s attributive category partly maintained by OntoNotes coreference relation-

ships being sub-typed as identity of reference or apposition. However, the subject

complement in copula constructions is no longer a markable, since inferring the rela-

tionship between the phrases is considered to be straightforward to derive from the

syntactic structure

Annotation proceeds from the gold standard syntactic parse layer in OntoNotes. In

particular, annotators are presented with noun phrases as their base markable units for



20 Chapter 2. Task Definition

labelling. In the case of nested noun phrases with the same head word, the longest span

is presented. While this removes the burden of identifying mentions from annotation,

it conflates the problems of mention span detection and coreference resolution since a

mention is considered correct if and only if its span matches the annotated span.

There are two cases where an annotator may add a span to those derived from the

gold parse trees. Single token heads of a verb phrase may be marked as coreferential

with a noun mention, as in:

Sales of passenger cars grew 22%. The strong growth followed ...

Proper name spans can be added within noun phrases markables, provided they

are not adjectival. Therefore ‘FBI’ is a markable in ‘the FBI spokesman’, but ‘US’ is not in

‘the US spokesman’, since the latter is presumably equivalent to ‘the American spokesman’.

However, proper names are still atomic and sub-spans are not markables. Therefore

‘Massachusetts’ is not a markable in ‘Massachusetts Institute of Technology’.

One case of metonymy is explicitly mentioned in the guidelines: references to a

geo-political entity’s government are coreferential with the geopolitical entity itself. For

instance, ‘Lebanon’ would be coreferential with both ‘Beirut’s government’ and ‘Beirut’

since all three refer to the geo-political entity Lebanon.

Agreement Annotation consistency is reasonably stable across genres, with broadcast

conversation and weblogs surpassing the benchmark ‘90% solution’ (Hovy et al., 2006)

at 93.7% and 91.2% (after adjudication), and broadcast news, newswire, and magazine

text falling just short at 89.4%, 88.3%, and 88.8%.

To understand the problems for coreference annotation, 15000 disagreements were

categorised. It was found that roughly 25% of cases represented genuine ambiguity

for human readers. As well as referential ambiguity, 11% of cases involved annotators

disagreeing about whether a mention was specific or generic and, so, whether it was a

markable. 8% of disagreements stemmed from ambiguity in the annotation guidelines,
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8% were a byproduct of the annotation tool, while the remainder were either small

classes comprising less than 5% the error, or could not be categorised.

2.2 Evaluation

For each of the above shared tasks, a standard evaluation metric was defined and a ref-

erence implementation released to enable the quality of system outputs to be assessed

and the state of the art for the task to be defined. However, due to documented biases

in the proposed metrics, the problem of how to score coreference output has been

addressed beyond the definition of shared tasks. There exist at least five evaluation

metrics in wide use, namely the muc score (Vilain et al., 1995), B3 (Bagga and Bald-

win, 1998), ceafm and ceafe (Luo, 2005), and blanc (Recasens and Hovy, 2011).

These will be explained in the sections below with reference to the example output in

Figure 2.1.

To address this diffusion, official CoNLL evaluation reports performance on all

five metrics, though the official score is the mean of the muc, B3, and ceafe scores.

While this solution is a reasonable choice for evaluating a shared task, it has various

shortcomings when applied to identifying promising research directions. We therefore

conclude this section by introducing Kummerfeld and Klein’s (2013) solution of error-

driven analysis of system output.

Gold : { ‘The battered US Navy destroyer Cole’A← ‘its’B← ‘the ship’C ← ‘its’D }

System : { ‘The battered US Navy destroyer Cole’A← ‘its’B } , { ‘the ship’C ← ‘its’D }

A B
C D A B C D

Figure 2.1: Example output for evaluation.
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2.2.1 muc

Vilain et al. (1995) formulate the evaluation metric used to score the muc shared tasks.

It is classified as a link-basedmetric in that it is factored over the number of links between

mentions which are missing from or extra in the system output, with respect to the

annotated gold standard. For instance in Figure 2.1, the system output contains two

separate entity clusters which require at least one additional link between them to be

equivalent to the four-mention gold cluster. Note that when coreference is annotated

as a series of pairwise links between mentions, as it is in muc corpora, entity clusters

are produced by taking the transitive closure over these links.

The metric is calculated by drawing a contribution from each of the entity clusters

in the gold and system output using the equations below. In particular, G refers to a

gold cluster, S to a system cluster, and p(G) and p(S) to the clusters in the opposite

output covering the mentions in G and S, respectively. In Figure 2.1, when G is the

four-mention cluster containing mentions A, B, C, D, p(G) contains the two mention

clusters since both are required to cover the four mentions in G. On the other hand,

when S is either of the two system clusters, p(S) is the four-mention G cluster, even

though it comprises more mentions than either of the S clusters, since it is the cluster

required to cover A and B or C and D. Contributions with gold clusters as the base

truth add to recall since these measure the number of gold links which are missing

from system output; those with systems clusters as the base add to precision since

these measure the number of spurious links in the system output.

In our example, the recall contribution reflects that a link is missing from the

system output: 2 system clusters are required to cover the 4 gold mentions, hence

R = 4−2
4−1 = 2

3 = 0.67. The precision contribution of each of the system clusters reflects

that no links are spurious: only 1 gold cluster is required to cover the 2 systemmentions,

hence P = (2−1)+(2−1)
(2−1)+(2−1) = 1.00. The overall F score is then 2×0.67×1.00

1.00+0.67 = 0.80.
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R =
∑(|G| − |p(G)|)

∑(|G| − 1)

P =
∑(|S| − |p(S)|)

∑(|S| − 1)

F =
2PR

P + R

Biases Bagga and Baldwin (1998) identify two shortcomings with the muc metric.

Firstly, since the metric is link-based, it does not include clusters of singleton men-

tions explicitly in its calculations. This means that systems do not get any credit for

correctly identifying which mentions in a document are not coreferential with any

other. There are two considerations when thinking about this shortcoming. On the

one hand, discourse singletons are the majority class when annotating coreference,

and we still want our metric to be discriminative with respect to how well systems

annotate coreference relationships. However, the task of classifying whether a mention

is a discourse singleton or not is very difficult (e.g. Ng and Cardie, 2002a; Uryupina,

2003; Ng, 2004; Recasens et al., 2013), and scoring should reflect how well a system can

perform this classification.

Bagga and Baldwin’s second criticism of the muc metric is that the metric is blind

to how damaging a coreference error is to output. In particular, they argue that errors

concerning large entity clusters (which presumably relate to topical discourse entities)

are more damaging than errors concerning smaller ones. Recasens and Hovy (2011)

further this criticism by considering it from the point of view of the number of links

involved in an incorrect decision. The reason they say that errors involving larger

clusters are worse is because the total number of involved links is larger and, by being

formulated around the minimum number of links required to repair output, muc does

not capture this insight. Predominately for this second reason, Bagga and Baldwin

define a new metric to evaluate coreference output, B3.
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2.2.2 B3

In contrast to the muc metric which is defined over coreference links, B3 is calculated

by iterating over the mentions in a dataset. In this way, it is possible for entity clusters

which contain more mentions to contribute more to the final score.

The contribution from each mention is given in the following equations, which are

designed to capture the purity of the entity cluster the mention has been assigned to

in the system output. In particular, the numerator of the mention’s contribution to

both precision and recall comes from the number of mentions in the system entity

cluster which are coreferential in the gold standard (including self-links), while the

denominator is the size of the system entity cluster for precision and the size of the

gold entity cluster for recall. In this way, recall reflects what proportion of the gold

cluster is captured by the system cluster and precision reflects what proportion of the

system cluster is correct with respect to gold.

R = average(
|G| ∩ |S|
|G| )

P = average(
|G| ∩ |S|
|S| )

Since each of the four mentions in our example are clustered correctly with a

partner in the system output and the gold cluster has size 4, the B3 recall would be

R= average(2
4 , 2

4 , 2
4 , 2

4) = 0.50. Likewise, B3 precisionwould be P= average(2
2 , 2

2 , 2
2 , 2

2) =

1.00. Therefore, the F = 2×0.50×1.00
1.00+0.67 = 0.67: B3 scores the clustering lower by assigning

a larger penalty on recall to reflect that the missing link impacts the interpretations of

all four mentions in the gold cluster.

Variations (Pradhan et al., 2014) highlights that the B3 metric iterates over a fixed

set of mentions, which makes it undefined on mentions automatically extracted by

systems. Necessarily, such mention sets will not correspond exactly to those in the
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gold standard, which B3 targeted. For this reason, the literature reports a number of

variations on B3 which vary in how they handle cases where either an annotated or an

extracted mention cannot be aligned to one in the converse set, commonly referred to

as twinless mentions.

Bengtson and Roth (2008) simply ignore mentions which cannot be aligned, arguing

that this is justified given that mention detection has over 90% coverage. However, the

following literature finds this solution overly lenient. Stoyanov et al. (2009) propose

two variations of the B3 metric, namely B3-all and B3-0. B3-all retains all non-aligned

mentions and punishes their presence by having them contribute 1
|G| in the case of a

gold mention missing from the system output and 1
|S| in the case of a spurious mention.

B3-0 discards all spurious extractions, but penalises recall by having allmissedmentions

contribute zero to recall.

Cai and Strube (2010) find these variants flawed in that B3-all assigns credit for

spurious mentions in the system output in singleton clusters, while B3-0 does not

penalise erroneous coreference relations if their mentions do not appear in the gold

standard. Yet another variation was proposed in Rahman and Ng (2009): discard

all unaligned spurious mentions which are singletons since the system has correctly

predicted that these are not coreferential with any other mention in the document.

Cai and Strube (2010) deem this valid and note that it gets around the shortcoming of

B3-all, but does not address the shortcoming of B3-0.

To rectify this divergence of how B3 is being evaluated and, more importantly,

reported for comparison, Cai and Strube (2010) proposes yet a further variant, and

this was used in the evaluation of the CoNLL shared tasks. Cai and Strube’s variant

draws on the ideas from the previous B3 variants, but adjusts them to produce more

intuitive results. Concretely, all mentions which are missing from system output are

added as singleton clusters since the system did not find them to be coreferential with

any other mention in the document; all spurious mentions in the system output are
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either discarded if singletons, or added to the gold standard as singletons if they were

erroneously included in coreference relationships.

Pradhan et al. (2014) re-interpret how the B3 should be implemented based on

communication with the original authors. That is, they resolve the underspecification

of the metric on system mentions, rather than proposing a new variation. Their most

recent release of the official scorer implements B3 such that recall is calculated by iterat-

ing over gold mentions and precision is calculated by iterating over system mentions,

thereby not requiring any explicit mapping between the two sets.

Biases Luo (2005) argues that B3 is flawed by allowing the same gold cluster to be

aligned to multiple different system clusters and vice versa, as we saw in our alignment

in Figure 2.1. He argues that this does not allow the metric to correctly penalise systems

for producing an incorrect number of clusters.

Recasens and Hovy (2011) find that B3 is highly sensitive to the number of singleton

clusters there are in the mention set. In particular, as the number of singletons grows,

the B3 score tends to inflate such that differences in how well the system classified

coreference relationships is obscured. However, it is a difference which is most relevant

for corpora which annotate singleton discourse entities, such as ACE (61% of entities

are singletons), rather than those which do not, such as muc and OntoNotes.

2.2.3 ceaf

Constrained Entity Alignment F scores (CEAF, Luo, 2005) seek to improve coreference

resolution evaluation by ensuring that errors in the number of entity clusters produced

by a system translate to penalties in score. It does this by finding an optimal alignment

between gold and system clusters with the constraint that each system cluster is aligned

to at most one gold cluster, and vice versa. After finding this alignment, the scores

are calculated by iterating over the pair and using one of two similarity metrics to

determine the correspondence between the two.
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There are two variants of themetric, themention-basedceafm and the entity-based

ceafe, based on the similarity metric used. ceafm iterates over mentions calculating

a contribution for the purity of the cluster it is in while ceafe iterates over entities

calculating the overlap between gold and predicted entities. Specifically, to calculate

ceafm, the following equations are used.

R =
∑(|G ∩ S|)

∑(|G|)

P =
∑(|G ∩ S|)

∑(|S|)

These equations look very similar to those used to calculate B3: the numerator and

denominator are the same, but scores are combined by summing rather than averaging.

The scores may also be different due to the constraint on 1-1 mapping between the

gold and system output. However, although only one of our system fragments can

be aligned to the four mention gold cluster, the precision and recall turn out to be the

same as they were for B3. That is R = 2
4 = 0.50 and P = 2

2 = 1.00, regardless of which

cluster is selected in the alignment. This is consistent with Luo’s interpretation that

ceafm reflects the proportion of mentions in the correct entity clusters, since the gold

cluster is split in half, without any spurious relationships introduced.

On the other hand, to calculate ceafe, the following equations are used.

R =
∑( 2|G∩S|
|G|+|S| )

∑(G)

P =
∑( 2|G∩S|
|G|+|S|)

∑(S)

The numerators in these equations reflect an alternative measure of cluster purity to

B3, while denominators calculate the number of entity clusters in the gold standard and

system output, respectively. That is, R =
4
6
1 = 0.67 since the new purity estimate is 2×2

4+2
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Gold : { ‘The battered US Navy destroyer Cole’A← ‘its’B← ‘the ship’C ← ‘its’D } ,

{ ‘a huge Norwegian transport vessel’E }

System : { ‘The battered US Navy destroyer Cole’A← ‘its’B } , { ‘the ship’C ← ‘its’D } ,

{ ‘a huge Norwegian transport vessel’E }

A B C D E A B C D

Figure 2.2: Example output for blanc evaluation.

and there is one gold cluster, while P =
4
6
2 = 0.33 since there are two system clusters

output. The F score is therefore F = 2×0.67×0.33
0.67+0.33 = 0.44. This is the lowest score we

have derived for our example and this makes sense: ceafe is designed to measure the

proportion of entity clusters which are found in both the gold and system output and,

without aligning the system fragments to the same gold cluster, the alignment misses

half the mentions.

Biases Recasens and Hovy (2011) find that the CEAF scores are just as sensitive to

the number of singleton clusters as B3 scores are, which limits its ability to discriminate

between the quality of various system outputs, particularly on corpora which annotate

singleton entity clusters.

2.2.4 blanc

Recasens and Hovy (2011) propose blanc to provide a better spread of scores than

B3 and CEAF in the case that singleton clusters are annotated. It also addresses the

bias of muc in which it underestimates the impact of errors in large clusters by only

considering the minimum (vs. total) number of links involved in the error. It does this
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Rcore f =
correct_core f _links

gold_core f _links

Pcore f =
correct_core f _links

predicted_core f _links

Rnon_core f =
correct_non_core f _links

gold_non_core f _links

Pnon_core f =
correct_non_core f _links

predicted_non_core f _links

by adapting the Rand index (Rand, 1971), a metric devised to evaluate clustering, by

treating clusters of mentions in coreference as clusters of nodes in the general setting.

The calculation of blanc involves the calculation of two F scores, one to capture

how accurately a system labels coreference relationships, Fcore f , and another to capture

how well the system classifies mentions as singletons, Fnon_core f . All mention pairs in a

corpus contribute to one of the F scores. If there is no coreference relationship between

the two, the link contributes to Fnon_core f and if there is, it contributes to Fcore f . These

scores are simply defined as the proportion of correct links, normalised by the number

of gold links to give recall (the proportion of gold links retrieved) and by the number

of system links to give precision (the proportion of system links that are correct). F

scores are the standard harmonic mean of the corresponding precision and recall.

We use the modified example in Figure 2.2, which includes an additional mention

which is not coreferential with any in the gold cluster of Figure 2.1 to better illustrate

how blanc is calculated. We note that in OntoNotes, this mention will only be

included in evaluation if it is part of a larger, non-singleton cluster, though the steps

involved in calculating blanc proceed in the same way as described here.

There are now 10mention pairs in the example, one from eachmention to each of the

mentions preceding it; in the gold standard, 6 of these mention pairs are coreference

relations and 4 are non-coreference relations. In the system output, 2 coreference

relationships are identified and both are correct (A← B and C ← D), giving Rcore f =

2
6 = 0.33, Pcore f = 2

2 = 1.00, and Fcore f = 0.50. However, the system output labels

8 mention pairs as non-coreferential, where only 4 (A ← E, B ← E, C ← E, and
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D ← E) are in the gold standard. Therefore our example scores Rnon_core f =
4
4 = 1.00,

Pnon_core f =
4
8 = 0.50, and Fnon_core f = 0.67.

In the standard setting, the arithmetic mean of these two scores produces the

final assessment of system quality, blanc = avg(0.50, 0.67) = 0.57. In giving each

equal weight, blanc is designed not to be inflated, thereby less discriminative to the

coreference classification problem, in corpora which annotate singleton clusters.

2.2.5 CoNLL

Despite the availability ofmultiple, motivated evaluationmetrics, the problemof how to

best evaluate coreference resolution output in a way that is both intuitive and unbiased

remains an open question. One undesirable outcome of this proliferation of metrics is

that, due to biases in each, they make different assessments about whether one system’s

output is better than another’s. This shortcoming is exemplified in Table 2.5, which

shows the scores assigned to all systems submitted to the CoNLL-2012 shared task by

Pradhan et al.’s (2014) reference implementation from the official scorer.

These scores are sorted by their CoNLL score, the official metric for the task, which

averages a system’s muc, B3, and ceafe scores. We can see that this score provides a

fair indication of the relative quality of each system, making it suitable for the purposes

of scoring the shared task. That is, while the official ranking obtained from the CoNLL

score is not reflected uniformly across all metrics, there are only a few and small

exceptions which break the trend, and these are indicated in boldface and underline.

2.2.6 Error-Driven Evaluation

It is problematic that the different metrics make different assessments about output

quality when translating work to the research space, given that systems typically are

designed to optimise for the evaluation metric and it is this optimisation process which

drives future research directions. Kummerfeld and Klein (2013) also question the use of

‘monolithic’ scores being used to assess system quality for research since such metrics,
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Entrant muc B3 ceafm ceafe blanc CoNLL

fernandes 70.51 57.58 61.42 53.86 58.75 60.65

martschat 66.97 54.62 58.77 51.46 55.04 57.68

bjorkelund 67.58 54.47 58.19 50.21 55.42 57.42

chang 66.38 52.99 57.10 48.94 53.86 56.10

chen 63.71 51.76 55.77 48.10 52.87 54.52

chunyang 63.82 51.21 55.10 47.58 52.65 54.20

stamborg 64.26 51.66 55.10 46.60 54.42 54.17

shou 62.92 49.44 53.16 46.66 50.44 53.00

yuan 62.55 50.11 54.53 45.99 52.11 52.88

xu 66.18 50.30 51.31 41.25 46.47 52.58

uryupina 60.89 46.24 49.31 42.93 46.04 50.02

songyang 59.84 45.90 49.58 42.36 45.10 49.36

zhekova 53.52 35.66 39.66 32.16 34.80 40.45

xinxin 48.27 35.73 37.99 31.90 36.54 38.63

li 50.84 32.29 36.28 25.21 31.85 36.11

Table 2.5: Official scores of the competing systems at CoNLL-2012.

by design, give an overview of system quality, abstracting over the particular errors

seen in system output. Specifically, single scores give little insight into promising

avenues of future work or the cascading impact of a single error.

To provide a finer-grained alternative, Kummerfeld and Klein proposes a procedure

which reports on the repairs which need to be applied to the system output to transform

it to the gold standard. The seven error categories reported are span error, missing

entity cluster, spurious entity cluster, missing mention, spurious mention, divided

entity cluster, and conflated entity cluster. Our example in Figure 2.1 shows an instance

of divided cluster.

These error categories are tallied by a process of aligning gold and systemmentions

and comparing the pairings using a pipelined five-stage classification process.

1) correct system mention spans to match those annotated in the gold standard
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2) split system clusters which are not homogeneous with respect to the gold to be

such

3) remove spurious mentions from system output

4) insert missing mentions into the system output

5) merge system fragments to achieve the gold clustering

The raw numbers of these repairs are converted heuristically to the seven reported

error classes.

2.3 Summary

We have seen that, while coreference is an intuitively simple concept, there have been

numerous challenges in defining it as a computational task and evaluating the quality

of a system. While mainstream annotation efforts, mostly recently OntoNotes, have

produced large datasets onwhich systems can be developed and evaluated in a standard

setting, referential ambiguity has been a trouble case in the annotation of each. This

manifests itself in reduced inter-annotator agreement statistics on mentions of complex

entities, particularly nominal mentions. In this thesis, all benchmarking will conform

to CoNLL standards on the English portion of the English OntoNotes corpus. To better

understand areas for improvement, we additionally use the error analysis toolkit of

Kummerfeld and Klein (2013).

In the next chapter, we will review approaches to the task set out by annotation

guidelines, as well as the relative performance of systems competing at the shared

tasks. This review is then used to motivate the design of the coreference resolution

system whose development is a key contribution of this thesis.
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Coreference resolution, and reference resolution more generally, is an important com-

ponent of natural language processing pipelines. Resolving that linguistic expressions

refer to mutually understood entities and concepts, and that different linguistic expres-

sions may refer to the same entity (and, conversely, that the same expression can refer

to different entities) is necessary for humans and automatic systems to understand the

meaning being expressed in a discourse. Modelling how humans resolve reference has

been explored in the linguistic literature and this frames our review of computational

approaches to coreference resolution in this chapter.

In Section 3.1, we survey the models which have been proposed for coreference res-

olution. This section starts with an overview of cognitive models of linguistic reference,

which guides the following discussion of computational models. In Section 3.2, we

then enumerate the list of coreference indicators described in the literature, giving first

their description in linguistic and cognitive theories on anaphora resolution, which

then motivates their implementation as features in coreference engines.

Our survey shows that linguistic insights have been effective in pushing forward the

state of the art, but there remain insights which have yet to be explored for improving

computational models for coreference resolution.

3.1 Models

Coreference is typically defined in shared task guidelines as identity of reference

between noun mentions. Because of this, our first goal is to understand how reference

33
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is created by language. The review of linguistic models below demonstrates that

reference is a relationship between linguistic expressions and abstract discourse entities

which take shape as a discourse proceeds. While this is inconsistent with shared task

guidelines which are based on real world referents, the accompanying theories offer us

insight into how humans create and track discourse entities and their relationships,

which is useful for understanding what properties our computational models should

have. We use this description as the basis for the design of our system in Chapter 4.

We then survey the computational approaches which have been applied to the

task. We find that entity-level models are consistent with linguistic models of reference

but are generally not competitive with the more widely used mention-pair model.

However, the recent success of structured prediction approaches to coreference has

argued for the benefit of enriching mention-pair models with entity-level features.

3.1.1 Linguistic Reference

The problem of understanding linguistic reference can be thought of as modelling the

objects which stand as the referents of linguistic expressions and how humans resolve

linguistic expressions to these referent objects. For instance, reading the linguistic

expression ‘The US Navy destroyer Cole’ will cause a human to draw to mind some

representation of the warship and we would like to understand what is the nature of

the object drawn to the reader’s mind and what drives this process. The first question

is addressed in this section, while the second is the topic of Section 3.2.1.

While the early literature on the representation of discourse entities used logical

objects (e.g. Russell, 1905), current theories hold referents to be cognitively based

objects with properties that are informed by the linguistic context of their mentions.

For instance, Heim (1982) likens referents to file cards which are created when an entity

is introduced into a discourse and retrieved upon subsequent mention of their referent.

A series of file change semantics can apply to the file card as more information about

the referent is revealed in the discourse.
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Mental space theory (Fauconnier, 1994) is likewise incremental in that the properties

of cognitive objects are populated as they are revealed in their discourse. However, the

nature of referent objects is recastwith each referential expression creating a newmental

space object, which may be related to other mental space objects in any number of ways.

The identity relation is the target for coreference resolution, and is indeed highlighted

as the vital relation for facilitating communication in that it enables language users

to refer to an entity multiple times and have its narrative be construed as continuous.

The important aspect of this theory for our work is that there is no one single object

representing a discourse entity, but as many objects as there are referential expressions,

each related via identity.

Fauconnier and Turner (2008) expand mental space theory by describing the pro-

cesses in which spaces are understood to be identical, namely blending and compressing.

Blending is the process by which human imagination likens dissimilar mental space

objects to one another via analogy. Compression is the process of omitting certain

properties so that incongruous mental spaces can be seen as similar. For instance, in

the following sentence from part 1 of the OntoNotes document ‘cnn_0007’, the mental

space objects associated with ‘White House’ and ‘the administration’ can be identically

related by compressing the fact that ‘White House’ refers to a physical location.

... But her husband being a prominent White House critic who clearly
the administration was angry at and wanted to.

Mental space theory relaxes the requirement for mentions to cluster only according

to discourse entities, instead mentions are able to relate to one another flexibly. While

this fuzziness gives the model rich descriptive power, it is more powerful than the

picture of coreference resolution given by shared task guidelines.

Versley (2008) argues that the fuzziness of cognitive models is inherent and this is

what causes referential ambiguity — uncertainty about whether two related linguistic

units are coreferential. Entities are multi-faceted and may be referred to in many

different frames of reference, with a frame of reference selecting among these different
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facets. Near identity of reference is introduced by Recasens et al. (2011) to explain

referential ambiguity. In the proposed model, linguistic expressions are encoded

as mental space objects, whose properties reflect the information expressed in the

linguistic context of the expression. Referents of related linguistic expressions fall

along a continuum with identity of reference at one extreme and non-identity at the

other. Expressions need not refer exactly to the same discourse entity to be considered

by a human as coreferential; reference merely needs to be near enough. Specifically,

resolving coreference, and the lack thereof, comes from the processes of refocusing and

neutralisation, which are akin to Fauconnier and Turner’s blending and compression.

We take the above cognitive models as our underlying theory of reference in this

thesis. However, while we will assume that discourse entities correspond to fuzzy

psychological objects, we also believe that shared task guidelines capture human

intuition to a reasonable degree. In particular, we see them as an approximation of

reality. Therefore, we explore how the state of the art for coreference resolution can be

extended, but also how referential ambiguity impacts the performance of our system.

With such a model in mind, we now review a representative selection of the compu-

tational approaches which have been applied to coreference resolution, starting with

those used at the 7th Message Understanding Conference (muc-7); for a review of

work pre-dating shared tasks, see Mitkov (1999). These early rule-based systems were

heavily informed by cognitive theories of reference, though were limited by having

small feature sets due to the small scale of the muc corpora. With larger datasets,

machine learning approaches with rich feature sets could be applied to the task. The

standard way to cast coreference resolution as a machine learning problem is the

mention-pair model. While such systems produce promising results, the current trend

is to reintegrate the notions of incremental processing and emergent discourse entities

into machine learning approaches. The work in this thesis represents a contribution to

this effort, which we argue more faithfully represents cognitive theories.
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3.1.2 Rule-Based Discourse Models

Five teams competed in coreference resolution at muc-7, namely OKI (Fukumoto et al.,

1997), and the Universities of Durham (Garigliano et al., 1998), Manitoba (Lin, 1998c),

Sheffield (Humphreys et al., 1998), and Pennsylvania (Baldwin et al., 1998), with all

but the University of Pennsylvania using systems designed to compete in multiple

task tracks. There is no detail about the model used by the OKI system and very little

about the University of Pennsylvania system in the shared task reports. The following

discussion therefore omits the OKI system and bases the discussion of University of

Pennsylvania on Baldwin (1997).

Overall, the design of the resolution module of the four university systems is

relatively simple and there aremany similarities between the submissions. In particular,

all maintain a store of discourse entities, the discourse model of a document, and this

is incrementally populated and updated as a document is processed. A document

is processed by iterating over the extracted mentions in left-to-right, top-to-bottom

reading order, with each triggering a search for candidate antecedents among the

entities in the discourse model. If a compatible antecedent is found, the new mention

is added to the entity and its attributes updated according to the linguistic form and

context of the mention; otherwise, a new entity object comprising just the current

mention is added to the discoursemodel. For Pennsylvania andDurham, all compatible

candidates indicated by these features are returned and then sent to a second stage

which selects the most salient candidate based on grammatical and semantic features,

position in sentence, mention recency, and relatedness to the topic of the text. On the

other hand, Sheffield’s andManitoba’s indicators are each assigned a relative confidence

and this is used to rank candidate antecedents, with the best selected.

This approach is linguistically licensed in that discourse entities take shape as a

document is processed, in a similar way to how a human reader might process the
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muc-7
System R P F

OKI 28.4 60.6 38.6

Durham 46.9 57.0 51.5

Pennsylvania 46.8 78.0 58.5

Manitoba 58.2 64.2 61.1

Sheffield 56.1 68.8 61.8

Table 3.1: Performance of rule-based entity level models on muc-7.

document. Indeed, Baldwin (1997) explicitly models its approach on file card semantics

of Heim (1982).

The muc score for the best performing system from each team is given in Table 3.2.

Despite the similarity of their systems, there is a noticeable spread in their performance.

The University of Pennsylvania substantially outperforms its competitors in precision,

at the expense of relatively poor recall. The Manitoba and Sheffield Universities strike

more of a balance between precision and recall, and achieve the best results overall.

Given the similarity of their system descriptions, we can infer that implementation

decisions are an important factor for model performance.

We note that Pennsylvania report that their system often finds an antecedent for a

common noun mention which seems to be acceptable to its developers, but which has

not been labelled in the dataset. This could be a limitation of the annotations in muc,
or a consequence of the referential ambiguity problem described above.

3.1.3 Mention-Pair Models

In order to cast coreference resolution as a learning problem, researchers typically

formulated it as a binary classification task between mentions. That is, given a pair of

mentions extracted from a document, a classifier is trained to assign the positive class

to pairs which belong to the same coreference cluster, and the negative class to pairs
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System muc-6 muc-7 CoNLL-2011 CoNLL-2012

Soon et al. (2001) 62.6 60.4

Soon et al. reimplementation 66.3 61.2

Ng and Cardie (2002b) 67.5 63.0

Reconcile 71.2 62.9 51.92

UIUC 55.96

Yang et al. (2003) 71.3 60.2

Finkel and Manning (2008) 68.3

Durrett and Klein (2013) 60.13 61.79

Wiseman et al. (2015) 63.39

Table 3.2: Performance of mention-pair models on standard evaluation corpora.

which do not. Such models are commonly referred to as mention-pair models, and

remain competitive in the current research space.

However, the model has been criticised for its independence assumptions. In

classification, each mention-pair is processed independently of other pairings for

a given mention, not allowing candidate resolutions to compete with one another.

Clustering is defined as a static post-process decoding step, not allowing previous

decisions to influence later ones. For these reasons, which we note contradict cognitive

models of human discourse processing, mention-pair models are prone to global

consistency errors. These have been addressed by using increasingly sophisticated

reasoning for clustering.

Closest First Clustering

Soon et al.’s (2001) system was designed for the muc task definition and was the

first learning based system to be competitive with the above rule-based systems. The

top section of Table 3.2 shows the performance of the Soon et al.’s approach on the

muc-7 dataset; the first value is the reported performance of the original system

and the second reimplementation value was produced by Ng and Cardie (2002b)

using improved mention extraction and feature value calculation. The performance of
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the systems is indeed comparable with muc results, outperforming all systems but

Sheffield, who won the shared task.

Soon et al.’s system uses a pipeline architecture of pre-processing before coreference

resolution, and post-processing. Mentions are extracted in preprocessing, using trained

HMMmodels which identify noun phrase chunks given pos and ner tags over tokens.

Soon et al. finds that this simple method had roughly 85% coverage on a subset of the

muc-6 training documents, with many errors due to incorrect span determination

rather than spurious noise.

Resolution iterates over extracted mentions by generating a series of mention pairs

for the current mention with the mentions preceding it in its document and passing

these instances to a C51 decision tree classifier. In training, a mention with its closest

antecedent in the gold answer key constitute a positive training instance, while the

mentions between the current mention and its closest antecedent each trigger nega-

tive training instances. At test time, each mention preceding the current mention is

considered in turn, with the first pairing yielding a score over a predefined threshold

of 0.5 being resolved to be the mention’s antecedent, terminating the search process.

Because of this design, decoding in Soon et al. is called closest first clustering. If no

preceding mention is positively classified, the mention is treated as non-anaphoric,

potentially starting a coreference cluster or becoming a discourse singleton. Postpro-

cessing produces clusters by greedily chaining together compatible pairs of mentions

in left-to-right reading order.

Analysis of system performance reveals that the small dataset of muc is not prob-

lematic: the system achieves peak performance after about 25 training documents and

begins to overfit the data after this point. While overfitting is a particular danger for

decision tree classifiers, the small amount of training data required is surprising. It is

probably explained by the system’s small feature set: only 12 features are defined, and

the best model uses only 8 of these.

1http://www.rulequest.com/see5-info.html

http://www.rulequest.com/see5-info.html
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Best First Clustering

Ng and Cardie (2002b) argue that the closest first clustering of Soon et al. is insufficient

to model coreference due to the presence of distractor mentions: selecting a locally

acceptable antecedent without considering a range of potential candidates could mean

that a better one is missed. To address this shortcoming, they introduce best first

clustering in which decoding does not terminate upon finding a compatible antecedent

for a given mention, but rather exhaustively searched among candidate antecedents

for the one which is most compatible with the mention.

At the same time, they also use training instance selection to adjust what instances

are used to train their system. Instance generation still proceeds using Soon et al.’s

method of reverse iteration from the current mention but they extend the endpoint

for non-pronoun mentions to the closest non-pronoun antecedent. In this way, the

positive training instance generated is based on either a proper name or common

noun comparison, which Ng and Cardie suggest should correspond to an informative

mention pairing. They also improve Soon et al.’s string match feature by sub-classing it

according to the mention types involved; different features are generated for the cases

when the paired mentions are (1) both proper names, (2) both pronouns, or (3) both

non-pronouns.

The combination of these three changes significantly improves performance, as seen

in the second section of Table 3.2. On both datasets best first clustering substantially

improves system recall while sub-classing string match improves precision, though

this improvement is only large enough to impact muc-7 F score. Training instance

selection does not improve performance on either dataset when introduced without

the simultaneous introduction of the other two changes.

Reconcile2 (Stoyanov et al., 2010a,b, 2011) is the publicly available system which

extends Ng and Cardie’s work. In particular, it achieves competitive performance on

modern coreference corpora with best first clustering learned using either a perceptron
2https://www.cs.utah.edu/nlp/reconcile/

https://www.cs.utah.edu/nlp/reconcile/
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or decision tree classifier, presumably due to its extensive feature set (see Section 3.2).

Likewise the publicly available University of Illinois - Urbana Champagne (UIUC)

system3 (Bengtson and Roth, 2008; Chang et al., 2011) implements a best-first mention-

pair clusterer that achieves highly competitive performance, attributed to its rich feature

set by its developers. Training instances are generated using the procedure described

in Soon et al. and learning uses an averaged perceptron classifier.

Competition Learning

While best-first decoding implicitly captures competition between candidate antecedents

for a given mention via their relative classifier scores, the approaches we have seen

score mention pairs independently of one another; Yang et al. (2003) argue that this is

problematic because it does not allow candidates to compete directly with one another.

Tomodel competition, Yang et al. develop the twin candidate model in which training

instances are formed by the current mention, one preceding mention annotated in

the same entity cluster, and one preceding mention not in the same gold cluster. The

classifier is given the task of of determining which of the two candidates is the correct

antecedent of the given mention. This is modelled using features defined between the

mention and each candidate, as well as between the candidates themselves. In particu-

lar, features for the twin comprise the distance between the competing antecedents in

the document, which of the two have a more similar surface form to the current men-

tion, and which of the two are more semantically related to the current mention. The

correct antecedent for a given mention is determined in a series of twin comparisons:

it is the mention which wins against the most competing antecedents.

The training instances generated are a subset of the quadratic number of possible

twins. For pronoun mentions, instances are created using all mentions which agree

with the pronoun in number, gender, and person from the current and the preceding

two sentence context. For non-pronouns, instances are created using all non-pronoun

3http://cogcomp.cs.illinois.edu/page/software_view/Coref

http://cogcomp.cs.illinois.edu/page/software_view/Coref
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mentions in the current, previous, and next sentences. No training instance is generated

for mentions which start an entity cluster, or are discourse singletons.

Table 3.2 shows that results for Yang et al. approach are fair compared to standard,

best-firstmodels. The reported performance of Yang et al. exceeds that ofNg andCardie

on muc-6 but trails it on muc-7. Yang et al., however, reports adjusted performance

figures for Ng and Cardie based on the two systems using the same baseline feature

set, and in this evaluation, Yang et al. outperforms Ng and Cardie on both datasets

(muc-6: 69.4 vs. 71.3 and muc-7: 58.7 vs. 60.2). While vagueness of detail limits direct

comparison, there appears to be promise in directly modelling competition.

Similar to Yang et al., Denis and Baldridge (2008) criticise the independence assump-

tions of previous mention-pair implementations, but instead address the shortcoming

by moving to a model in which all candidate antecedents compete synchronously. This

is achieved by using a learned ranker in place of the classifier in their system. While the

goal is not to learn a complete ordering over candidates, Denis and Baldridge (2007)

show how a ranking architecture allows feature value determinations to be visible

between different mention pairings.

The move to a ranking framework is problematic since a ranker will always output

the best choice among the candidates, even when the current mention is non-anaphoric

(should start an entity cluster or be a discourse singleton). The authors therefore

implement a binary classifier to label mentions as anaphoric or not, and pipeline this to

precede ranking. In this way, only anaphoric mentions which are considered to corefer

with an earlier mention are sent to the ranker and non-anaphoric mentions are left

unresolved.

Denis and Baldridge’s results are nor comparable with the systems reported in

Table 3.2 since they evaluate on an ACE dataset but do not report ACE score. How-

ever, when a ranker is substituted in place of a classifier in their strongest system,

performance increases by 1.5 CoNLL score. This is a strong result, particularly given
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the reported accuracy of their anaphoricity classifier is only 80.8% (which means that

nearly 20% anaphoric mentions are erroneously filtered, guaranteeing a recall penalty).

Finkel and Manning (2008) and Durrett and Klein (2013) both develop from Denis

and Baldridge’s proposal that clustering should be mention synchronous.

Finkel and Manning proposes an Integer Linear Programming (ILP) model for

coreference resolution in which the sum of classifier scores over the graph of possible

mention pairings is maximised, subject to the constraint that clusters be transitive:

whenever the pairs (A, B) and (B, C) are classified to be coreferential, (A, C) should

be as well. Overall, results were mixed. In particular, the ILP formulation performed

worse than a standard mention-pair baseline when performance was measured with

the link-based muc score (shown in Table 3.2) but up to 2.7% better when measured

with the entity-aware B3 score. This suggests that while the raw number of pairwise

decisions made by their ILP system was not as good as in their mention-pair baseline,

the quality of the system output was better, particularly on large entity clusters.

Durrett and Klein, on the other hand, describes a publicly available state-of-the-art

system4 which models coreference resolution using a log-linear model. Analogous

to Finkel and Manning, the likelihood of a particular resolution of the mentions in a

document is taken from the sum of the ranker’s scores of all possible mention pairings,

together with terms to represent mentions being discourse new. This likelihood term

is augmented with a loss function parameterised over three error classes, namely a

mention being falsely labelled anaphoric, falsely being labelled as discourse new, and

being assigned an incorrect antecedent. By defining the task in this way, mention

pairs still compete via their relative scores, but the framework itself gives candidate

resolutions a direct means of competing with one another. This framework is powerful

and, together with novel feature design, places Durrett and Klein among the best

performing approaches to coreference resolution so far reported.

4http://nlp.cs.berkeley.edu/projects/coref.shtml

http://nlp.cs.berkeley.edu/projects/coref.shtml
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Post-dating the work in this thesis is Wiseman et al. (2015), who currently are

credited as the best reported performance on CoNLL-2012 task. Their state-of-the-art

approach again uses simple mention-pair feature, though formulate coreference resolu-

tion as the joint task of mention anaphoricity classification and reference resolution

and learn these with a neural network framework. We include it here as an example of

competition learning since it jointly weighs evidence for the specified sub-tasks.

3.1.4 Entity-Level Models

An alternative way to address the shortcomings of traditional mention-pair implemen-

tations has been to return to the early discourse model style approaches to coreference

used at muc, in which clusters are incrementally built and updated on processing

each mention. In this way, comparisons are between mentions and entity clusters of

resolved mentions, allowing previous decisions to influence later ones.

The problem with this model is that it is unclear how to best cast it as a machine

learning problem. Early attempts were straightforward extensions of the mention-pair

model in that comparisons were still between two mentions. That is, a cluster-mention

comparison was modelled as a series of comparisons between the current mention and

each of those in the cluster, with these pairwise scores being combined after the fact to

represent compatibility. It is difficult to assess the effectiveness of this approach since,

as a whole, these systems were not evaluated under standard shared task conditions.

However, most fail to substantially improve when compared to a standardmention-pair

baseline, suggesting that more sophisticated modelling is required.

The more recent way to leverage incremental clustering is to make comparisons

explicitly between a mention and whole cluster by pooling the attributes of individual

mentions at the cluster level. In this way, the various cues known for the different

mentions can be used simultaneously by the classifier or ranker, without any particular

mention needing to be fully informative. We feel this formulation reflects cognitive



46 Chapter 3. Background

ACE 2002 -Sep02 ACE 2004 ACE 2005 CoNLL 2012

System v5 v7

Luo et al. (2004) 89.9*

Daumé III and Marcu (2005a) 89.2*

Björkelund and Farkas (2012) 58.26 61.24

CherryPicker 63.4

Stanford 56.6 59.23 54.21

Table 3.3: Performance of entity-level models on standard evaluation corpora.

* indicates results are ACE scores using gold mentions.

theories of human discourse processing and note that its implementations have had

some success in advancing the state of the art for coreference resolution.

Combining Mention-Pair Scores

Luo et al. (2004) formulate coreference resolution as a search task over the set of possible

partitionings or clusterings of mentions in a document. This being the case, the decision

tree for how to process a document, mention by mention, is a tree with a Bell number

(Bell, 1934) of leaves. The ith layer of this tree represents the possible clustering states

which can be reached by resolving the ith mention to one of the existing clusters, or

starting a new cluster; the correct resolution will be one of the exponentially increasing

number of leaf nodes. Since exhaustive search over an exponential number of possible

clusterings is intractable, inference proceeds by keeping track only of the best paths

at each decision point. Luo et al. uses a capped maximum beam size of 20 paths,

populating it with paths whose scores are within 0.1% of the best path. Additionally,

only mention-cluster pairs which match in ACE entity type are considered.

Processing for each layer involves comparing the current mention against each

predicted partial cluster (in each path in the beam), as well as scoring how likely the

mention is to be discourse-new. On each mention-cluster comparison, the maximum of

the pairwise comparisons is taken as the likelihood of the decision to resolve the current
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mention to the given entity cluster. That is, Luo et al. selects the most informative

mention in the cluster to inform inference, following the work of Ng and Cardie (2002b).

Reported results are based on using only mentions annotated in the ACE corpus,

rather than having mention extraction as an automatic system component. When

compared to their mention-pair baseline, this entity level model trails by 0.8% on the

ACE 2002 Feb02 test set and 0.4% on the Sep02 dataset.

Daumé III and Marcu (2005a) generalise Luo et al.’s work by describing and testing

various ways to formulate the function which combines mention-pair scores. Summing

is ruled out since it could result in overcounting effects in large entity clusters. Average

score, minimum score, and maximum score are suggested as mathematically mean-

ingful. They additionally experiment using the last mention in the cluster, to emulate

Soon et al. (2001) style mention-pair models. The best proposed scoring function is

termed intelligent and uses a different combiner for each mention type. In particular,

for name mentions, the score from the first name in the cluster is used, otherwise that

from the last nominal. For nominal mentions, the maximum score from any nominal

in the cluster is used, otherwise that of the closest name mention. For pronouns, the

average of all scores from name and pronoun mentions is used. All combiners back off

to the maximum pairwise score if the required mention types do not occur in a given

cluster.

Simple combiners are all less effective, though vary in performance. Minimum

score performs only 0.4% worse than intelligent, suggesting that it is possible to learn

coreference by avoiding bad decisions, rather than promoting good decisions. Average

score represents a drop of 1.0%, maximum score 2.5% and the score from the closest

mention 5.2%. The poor performance of maximum score and closest mention explains

the relatively poor performance of Luo et al. and closest first clustering, respectively.

Björkelund and Farkas (2012) placed second on the CoNLL-2012 shared task using

a system which pipelined two coreference resolvers. The first was a mention-pair

resolver, whose decisions were fed as features to the second, entity-level resolver.
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The first, mention-pair classifier used closest first decoding for pronouns and best

first decoding for non-pronouns since it was found that this yielded a 0.23% increase

in CoNLL score above best-first clustering. The second, entity-level classifier adapted

mention-pair scores by taking their geometric mean. When this entity-level classifier is

used in isolation, it performs 1.2% worse on the CoNLL metric than the mention-pair

baseline despite a 0.66% gain in ceafe score (suggesting that it produces the correct

number of clusters, though not finding all links within these). Pipelining it with their

mention-pair classifier gave a 0.42% CoNLL score gain.

Entity-Level Attributes

Yang et al. (2004) retain the binary classification formulation of coreference but in-

troduce entity-level modelling by converting instances from being mention pairs to

triples comprising the current mention, candidate antecedent cluster, and a representa-

tive mention from that cluster. While the reference mention is used to extract typical

mention-pair features to inform the classifier, the inclusion of the candidate entity

cluster is novel. It is used to extract globally-aware features which track the entity’s lin-

guistic attributes, surface form, and topicality based on those of the resolved mentions.

In this way, the impact of some mentions being underspecified for these is minimised.

For instance, the semantic class of a mention is typically known from ner processing,

though that of nominals and pronouns is typically ambiguous.

The system is designed for the biomedical domain and evaluated on the GENIA5

corpus, making its results not directly comparable to those of other systems reviewed

here. We note, however, that incorporating entity-level features is shown to achieve a

2.8% F score increase, largely from boosting recall, which increases 2.6%.

Culotta et al. (2006) extend this work under the general task definition, proposing a

rich set of entity-level features to encode insights targeted by mention-pair features at

5http://www.geniaproject.org/

http://www.geniaproject.org/
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the level of emergent entities. Moreover, the mechanism for generating these features

can be seen as a template for how to formulate entity-level features in the general case.

Binary valued mention-pair features become four-valued features depending on

how many mention-pair comparisons return true: all-true, most-true, most-false, and

all-false. As in Yang et al., cluster size and the linguistic attributes of type, gender, and

number are important at the cluster level. The latter is captured in features which have

the form all-X and most-X if all or a majority of the clustered mentions have been the

same value for one of these linguistic attributes. Similarly, the authors use the output of

a trained mention-pair classifier model over the mention pairs to define a four-valued

feature according to the number of mention pairs predicted to be coreferential under

this model.

Together with their contribution of how to define features at the entity level, Culotta

et al. provide a novel inference algorithm and this requires a reformulation of how

training instances are generated. In particular, inference involves initialising a set of

singleton clusters, one for each of the extracted mentions, and repeatedly merging

clusters until the model suggests no further merges. Culotta et al. opt to use a ranker

rather than a classifier in their system since there may be two partially correct merges

(in the case of split clusters) and the goal in this case should be to prefer the best merge,

without penalising the less good, though still acceptable, merge.

To train this model, positive instances are generated by sampling a cluster from

the gold standard and splitting it; the correct action is then to merge the fragments.

Conversely, negative instances are generated by sampling two different annotated

clusters, which should not be merged. Importantly, training instance sampling is error

driven in that a sampled gold cluster is selected from those which would remain

fragmented by the current model, and a sampled cluster pair would erroneously be

merged. The performance of this system formulation is strong, improving B3 on an

(undocumented) ACE dataset by 6.8%; this boost comes from boosting precision at the

expense of recall.
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Two publicly available systems develop from the work: Rahman and Ng (2009)

extend the entity-level feature template in their ranking based system, CherryPicker6,

while Stanford’s (Raghunathan et al., 2010; Lee et al., 2011) multi-pass sieve system7 is

based on a similar inference algorithm, which incrementally merges partial clusters in

several stages to produce coreference output.

CherryPicker processes documents by iterating over mentions in left-to-right read-

ing order. For each mention, instances are generated comprising the current mention

and one of the entity clusters which has thus far emerged. For training, instances are

labelled for the ranker with preference 2 if they are positive in the gold standard and 1

otherwise. A special case is made for discourse-new mentions, which are modelled

as coreferring with a dummy entity cluster representing this decision. All features

used either pertain only to the current mention, or are four-valued translations of

mention-pair features between the mention and the candidate antecedent cluster.

CherryPicker is not commonly used in research due to difficulties translating beyond

the ACE task definition. In particular, it is designed for the ACE semantic classes rather

than the unrestricted coreference task of OntoNotes and span mismatch drastically

diminished observed performance since ACE only required the minimal span to be

indicated in the output. The reported results (Table 3.4) are based on CoNLL evaluation

in that they average muc, B3, and ceafe scores, though they are not comparable with

other systems since they use their variation of B3 (cf. Section 2.2.2) on an ACE corpus.

Stanford’s system was the best performing system in the CoNLL-2011 shared task.

It consists of a pipeline of deterministic sieveswhich take a set of clusters and attempt to

merge compatible fragments. The sieve passes are arranged from high to low precision

so that merges which happen early are more trusted , and the pooled attributes on the

clusters are able to inform clustering for the low precision sieves. For instance, mentions

which are aliases of one another are resolved before pronouns, so the gender of a person

(from their given name) can be used to inform resolution involving gendered pronouns.

6http://www.hlt.utdallas.edu/~altaf/cherrypicker.html
7http://nlp.stanford.edu/software/dcoref.shtml

http://www.hlt.utdallas.edu/~altaf/cherrypicker.html
http://nlp.stanford.edu/software/dcoref.shtml
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CoNLL 2012

System v5 v7

Fernandes et al. (2012) 63.37 60.65

Björkelund and Kuhn (2014) 61.63

CL3M 63.30 60.00

Table 3.4: Performance of structured prediction models on standard evaluation

corpora.

Due to its simplicity and integration with the CoreNLP8 package, Stanford’s system

has been heavily used in research, for instance in named entity linking (e.g. Hajishirzi

et al., 2013) and slot filling (e.g. Angeli et al., 2013).

While these two systems develop from the same work, we see CherryPicker as

remaining the most faithful to cognitive insights. In particular, it retains the natural

human left-to-right reading order which means that discourse entities emerge as a

document is processed in a way which perhaps mimics how mental space objects

become related in the mental model of human readers.

3.1.5 Structured Prediction

Current state-of-the-art systems are based on structured prediction combining the

strengths of mention-synchronous clustering and, to an extent, entity-level modelling.

They work from the assumption that clusters emerge via mention-pair links which

define a learnable structure overmentions in a document. This generalises the clustering

strategies seen for the mention-pair model: the pairings selected for resolution should

be those with the highest confidence among those possible for a document. At the

same time, it is possible to capture some non-local information in models, and this is

equivalent to defining entity-level attributes.

Fernandes et al. (2012) was the winning system for the CoNLL-2012 shared task.

It uses tree structures to formulate coreference resolution as a structured prediction

8http://nlp.stanford.edu/software/corenlp.shtml

http://nlp.stanford.edu/software/corenlp.shtml
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problem. In particular, each node in a tree represents a mention and parent nodes

are the antecedents of child nodes. The collection of entity clusters in a document is

therefore a forest of trees, which is artificially cast to a tree by rooting each tree in a

dummy parent. However, the authors note that they give no semantic interpretation to

tree structure, which they describe as a by-product of structured prediction.

The weight of an edge connecting a mention-pair is taken to be the classifier con-

fidence that the pair is coreferential. Inference proceeds by creating a graph of all

possible mention pairings, assigning edge weights, and finding the graph’s maximum

spanning tree using the CLE algorithm (Chu and Liu, 1965; Edmonds, 1967). This

means that inference is done over the document as a whole, rather than on a reading

order pass over its mentions.

Björkelund and Kuhn (2014) extend Fernandes et al.’s structured model to incor-

porate non-local features which allow previous decisions to influence later ones. To

achieve this, they decompose inference to iterate over mentions, on each iteration pre-

dicting the tree structure over the mentions so far seen, using best first decoding to

select the candidate antecedent mention which is most compatible with the current

mention.

To improve global consistency, beam search over candidate tree structures is used.

Within this formulation, the authors find that system performance is highly dependent

on the choice of beam search parameters and update strategy when no candidates in

the beam are consistent with gold standard annotations. In particular, they only find

performance gain over their local feature baseline Learning as Search Optimisation

(LaSO, Daumé III and Marcu, 2005b).

In standard LaSO, when all predictions in the beam are incorrect, the standard

perceptron update is made and the beam is reseeded from a correct analysis. Delayed

LaSO uses the same search strategy but updates are retained in memory throughout

document processing and applied after the whole document has been processed.

Updates to the model are made using the passive-aggressive algorithm and a loss term
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of 1.5 in the case of a false discourse-new prediction, else the hamming loss. Using

standard LaSO with these parameters affords a CoNLL score increase of just under 2%

and delayed LaSO just over 3% with respect to a greedy baseline.

Non-local features are included which encode the shape of the tree structure of the

cluster containing the candidate antecedent, the cluster’s (minimum) distance from the

start of the document, as well as a feature over the grammatical argument of clustered

mentions. Including these features achieves a 1% CoNLL score gain, which at the time

of publication, was the best reported performance on the CoNLL-2012 task.

Chang et al. (2013) similarly extend Fernandes et al. to include non-local features.

As in Björkelund and Kuhn, inference is decomposed to iterate over mentions and

incrementally produce a tree representation of the document’s clustering, though

they do not use beam search to achieve non-local modelling. Instead they implement

entity-level attributes as constraint terms that are added into the scoring function

which is maximised in training. The terms which add to the scoring function promote

the clustering if two mentions have (1) the same span length, or (2) same determiner

plus a semantically related head word, or (3) are the same proper name. Conversely,

the constraint terms which reduce a clustering’s score capture cases of incompatible

modification, or incompatibility in the assignment of linguistic attributes: gender,

number, professional title, or nationality.

Chang et al. acknowledge that the resulting objective function can be solved using

ILP, but find that, since the constraints need to be given high weights, greedy inference

produces similar results. While their results in Table 3.4 (styled as CL3M) are not as

strong as those of Björkelund and Kuhn, their non-local features perhaps offer a valid

alternative for how to incorporate entity-level attributes in structured prediction.

3.1.6 Summary

Based on this review, we propose to use an entity-level model in this thesis which

directly models competition between candidate antecedent entity clusters. This model
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is suggested both by cognitive theories of human discourse processing, and supported

by promising results of systems which use entity-level attributes to inform extraction

of non-local features. We want to retain natural left-to-right reading order when

processing a document rather than mention-synchronous approaches which view the

document as a whole since we consider these to be more faithful to linguistic models

of the task.

While Björkelund and Kuhn (2014) produce promising results with structured

prediction, we agree with Fernandes et al. (2012) that latent structure has no semantic

interpretation. Furthermore, the increase in complexity of structured models comes at

the expense of expressive power in that it becomes difficult to introduce entity-level

features. Since we feel that the richness of entity-level features has produced some

promising results, and is linguistically motivated, we opt not to pursue structured

prediction.

3.2 Features

Another relevant facet of theoretical research in coreference explores how coreference

is textually realised. By reviewing this literature, we now revisit our question from Sec-

tion 3.1.1 of how identity of reference between mental space objects is realised textually

between their linguistic expressions. We do this with the aim of understanding the

current features informing computational models, as well as to identify shortcomings

in these encodings.

In Section 3.2.1, we review the linguistic literature on reference, in particular

anaphoric coreference. The breadth of this research highlights that coreference is

a complex phenomenon straddling many domains including syntax, pragmatics, se-

mantics, and discourse theory. Section 3.2.2 then explores how linguistic insights have

informed feature development. We find that, while much of the strength of current

state-of-the-art approaches is achieved through linguistically inspired features, there is
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still a gap in the translation of linguistic theory, in particular Accessibility theory, to

the computational setting.

3.2.1 Linguistic Description

Coreference and anaphora are often used in thenlp literature synonymously. However,

in the linguistic literature, they are distinct: coreference is a semantic phenomenon

in which two linguistic units denote the same entity, while anaphora is a dependence

relationship between two linguistic units which may or may not indicate coreference.

While this thesis uses the term anaphora broadly, we survey the linguistic literature on

the dependence relation to better understand the nuances of coreference. We will see

that there is no neat one-to-one mapping between coreference and anaphora. Instead,

there are a range of linguistic cues which indicate possible coreference, whose summary

in Accessibility theory grounds much of the work in this thesis.

Anaphora and Binding

Anaphora is a dependence relationship between two linguistic expressions in which

one, the anaphor, is linked to another in its preceding context, the antecedent; this link

from anaphor to antecedent is crucial for determining how the anaphor is interpreted

by a reader. For instance, bridging anaphora grounds the referent of an anaphor. In

‘Cole was hit by a bomb and the hole let water into the hull’, ‘the hull’ anaphorically links

to ‘Cole’ and thereby is interpreted as referring to ‘the hull of Cole’. That is, anaphora

does not necessarily entail coreference. Also, coreference need not necessarily entail

anaphora: two unambiguous names are coreferential if both refer to the same entity,

regardless of their context.

However, in bound anaphora, anaphora and coreference do co-occur, as illustrated

in the following except. The anaphor ‘its’ has an anaphoric link to the antecedent ‘Cole’

and by linking to it in this way, is interpreted to have the same referent.
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S

VP

VP

NPj

its journey home from Yemen

VBN

begun

VBZ

has

NPi

The battered US Navy destroyer Cole

Figure 3.1: Example of c-command relationship in a constituency parse structure.

The battered US Navy destroyer Cole has begun its journey home
from Yemen, 17 days after a suspected terrorist bomb tore a gaping hole in
its side.

Bound anaphora is defined and studied in Government and Binding theory (Haege-

man, 1991). The theory explains when coreference between anaphor and antecedent is

certain (or impossible) using three principles based on the command structure of a sen-

tence. An anaphor is said to be bound if it is c-commanded (constituent commanded) by

a coreferential phrase. Figure 3.1 shows the c-command relationship: NPi c-commands

NPj because the parent of NPi, S, spans NPj.

The first principle is that anaphors which are coreferential with their antecedents

must be bound. That is, since ‘its’ does not head its nounphrase and also is c-commanded

by ‘Cole’, it follows that ‘its’ and ‘Cole’ are coreferential; if they were not, we would

have a violation of this first principle.

The second and third principles state that an anaphor (pronouns in the second

principle and other reference expressions in the third) which is not coreferential with

its antecedent cannot be bound. For instance, the second principle dictates that ‘him’

cannot be coreferential with ‘John’ in ‘John likes him’ since ‘him’ heads its constituent

and having ‘John’ and ‘him’ be coreferential would mean that ‘John’ binds ‘him’, since

‘John’ c-commands ‘him’. The third principle similarly precludes ‘John’ and ‘his father’

being coreferential in ‘John likes his father’.
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Overall, Government and Binding theory formulates the common sense intuition

that arguments of a verb (or other argument-taking unit) cannot be coreferential with

one another, unless they are reflexive, in which case they must be coreferential. This

makes sense since predicate-arguments structures typically predicate a relationship

between two entities.

Centering Theory

Centering theory (Grosz and Sidner, 1986; Grosz et al., 1995) extends the scope of

Government and Binding theory, explaining how the antecedent of a (free) referential

pronoun or full noun phrase can be found in the context preceding the expression. At

its core, Centering theory describes the interdependence of coreference and discourse

coherence. The linguistic expressions of interest are typically still pronouns, since co-

herence has “greater effect on the processing of pronominal expressions” than definite

descriptions.

Centering theory is formulated around two levels of discourse structure and the

entities which are salient therein. At the global level, a discourse as a whole is concerned

with a particular topic and the entities, or centers, around which its narrative develops.

At the local level, a discourse can be broken up into discourse segments, which are in

turn comprised of utterances. Each utterance refers to a collection of entities, but, the

authors claim, one most centrally. The collection of entities a utterance discusses is

called its forward looking centers, C f , and its central entity its backward looking center, Cb.

Discourse coherence requires each utterance’s backward looking center being amongst

the forward looking centers of a previous utterance.

As well as controlling discourse coherence, centering affects the choice of reference

expression used in anaphoric links according to the rule:

If the backward looking centers of adjacent utterances are the same
entity, pronominalisation of the center is strongly preferred. Else, a definite
noun phrase is typically used, to mark the transition.
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An example analysis is given in Figure 3.2. We divide the discourse into single-

clause utterances, giving example entities and concepts which could reasonably be

brought to a reader’s mind as C f . Importantly, the centers given in the figure do not

correspond to coreference mentions: instead, they are abstract entities and concepts

evoked by the textual mentions. The Cb of each utterance is indicated in bold.

The analysis shows that the discourse is largely coherent: ‘USS Cole’ is the Cb of

utterance 2 and is in C f of utterance 1, and related entities bridge the following Cb

to C f transitions. Applying the pronominalisation rule, we can say that the definite

noun phrase ‘the ship’ is used in utterance 4 despite being pronominalised in the

utterances 1 and 2, since it is not the Cb of utterance 3. However, utterance 5 represents

a discontinuity: the huge Norwegian transport vessel is the most salient entity of the

utterance (Cb), but not among the C f of utterance 4.

Grosz et al. (1995) formalise the ideas introduced by Grosz and Sidner (1986) and

developed in the intervening years. Its key contribution is introducing terminology for

understanding the different transitions in Cb and their impact on discourse coherence.

These rules rely on an extension of the model which claims that the C f sets are

partially ordered. This ordering measures the chance of a C f being the Cb of the subse-

quent utterance according to Centering’s proposed rule that it is the highest ranked C f

which is mentioned in the subsequent utterance which becomes its Cb. The authors

state that a range of factors can impact this ordering, giving the examples of gram-

matical argument and syntactic parallelism: subjecthood and sharing a grammatical

argument pushing a noun higher in the ordering. For instance, given that it is the

subject of utterance 1, ‘USS Cole’ is presumably its highest ranked C f and indeed goes

on to become the Cb of utterance 2.

The three transitions discussed in Grosz et al. are: center continuation, center

retaining, and center shifting. Sequences of continuation are preferred over sequences

of retention, which are in turn preferred over sequences of shifting.
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1) The battered US Navy destroyer Cole has begun its journey home from Yemen,

2) 17 days after a suspected terrorist bomb tore a hole in its side.

3) The attack killed 17 American soldiers and wounded 39.

4) Flanked by warships and guarded by aircraft, the shipwas towed out of Aden

Harbor

5) to rendezvous with a huge Norwegian transport vessel

6) that will carry the crippled ship to the United States.

C f Cb

1 USS Cole, United States, Yemen, Navy, journey -
2 2000 bombing of USS Cole, bombs, terrorism, USS Cole USS Cole
3 2000 bombing of USS Cole, United States, soldiers 2000 bombing of USS Cole
4 USS Cole, Aden Harbor, towing, warships, aircraft USS Cole
5 Norwegian transport vessel, Norway, meetings Norwegian transport vessel
6 USS Cole, United States USS Cole

Figure 3.2: Centering analysis of the example excerpt.
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In center continuation, the Cb of two adjacent utterances are the same and this center

is the most highly ranked element in C f of the second utterance. By having the second

utterance’s highest ranked C f be the same center as its Cb means that it is the most

likely center to become the Cb of the next utterance and discussion of its topic continues

without interruption. This, for instance, would explain the observation that topical

entities are repeatedly referred to with chains of pronouns.

In center retention, the Cb of adjacent utterances are again the same, but the center

is not the most highly ranked in the second utterance’s C f . This transition signals

a smooth transition of discourse topic away from the center. In center shifting, the

Cb of adjacent utterances are not the same: the topic has changed, but not smoothly.

Our analysis in Figure 3.2 is an example of center shifting, though the Cb of adjacent

utterances, if not identical, are related.

Accessibility Theory

Accessibility theory (Ariel, 2001) offers a more general formulation of the cognitive

foundations of reference resolution. Its specific goal is to explain how speakers select

what form a referential expression should have and how hearers use this cue when in-

terpreting a referential expression in discourse. While Centering theory explained how

speakers choose between pronouns and definite descriptions based on the salience of

their related discourse entities, Accessibility theory has the broader scope of explaining

the use of a diverse range of reference expressions, though salience is again the vital

factor determining usage. Concretely, Accessibility theory builds from the notion that

entities and concepts relate to human memory nodes which fluctuate in their degree of

activation during a developing discourse.

The surface form used for a referring expression tells the hearer how accessible or

activated the referent is, thus giving them an instruction about how to select between

candidate entities and concepts as the referent. In Centering theory, pronominalisation

was triggered when a center was highly ranked in salience among a set of centers; in
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Full name + modifier < Full name < Long definite description < Short definite description

< Last name < First name < Distal demonstrative + modifier

< Proximate demonstrative + modifier < Distal demonstrative + NP

< Proximate demonstrative + NP < Distal demonstrative < Proximate demonstrative

< Stressed pronoun + gesture < Stressed pronoun < Unstressed pronoun

< Cliticised pronoun < Verbal inflections < Zero

Figure 3.3: Accessibility hierarchy of Ariel (2001).

Accessibility theory, pronominalisation instructs a hearer to retrieve a highly accessible

entity, one corresponding to a highly activated memory node.

Accessibility theory contributes two key explanatory mechanisms. Firstly, it defines

an accessibility hierarchy which arranges referring expression types according to the

degree of accessibility they encode. This hierarchy is explained to result from three

factors: informativeness (how much semantic content the expression contains), rigidity

(how uniquely it refers to a particular entity), and attenuation (its phonological size,

or how many phonemes comprise its pronunciation). For instance, pronouns are

indicators of high accessibility since they have low informativeness, low rigidity, and

high attenuation and full names are indicators of low accessibility since they have high

informativeness, high rigidity, and low attenuation.

Secondly, it enumerates a range of factors which influence the accessibility of an

entity or concept when seeking to resolve an anaphor mention:

• Cohesion The higher the semantic similarity between a discourse entity and the

anaphor, the higher the accessibility of the entity.

• Proximity The shorter the distance between a mention of a discourse entity and

the anaphor, the higher the accessibility of the entity.

• ParallelismClauses which are more cohesively linked entail more dependency in

their interpretation. For instance, rephrasings or extrapolations of the description
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of an event are likely to refer to the same entities, with parallel syntactic and

semantic structures. This, for instance, would explain why entities tend to persist

in subject position if they are they agent in a narrative.

• Topicality Entities which are global discourse topics are more accessible than

those which are local discourse topics, which are more accessible than entities

which are not topical.

• Competition If multiple compatible entities compete for the role of being the

anaphor’s antecedent, each is less accessible than it otherwise would be.

• Automaticity of the inference required to resolve the entity impacts its accessibil-

ity in that cases where resolution requires complex inference have diminished

accessibility presumably since these create high cognitive load for the hearer.

These factors are found to correlate with determinations of accessibility in corpus

analysis, but no one factor is sufficient by itself. Additionally, Ariel notes that at times,

factors can conspire and indicate the same accessibility value. For instance, topics

tend to be mentioned more frequently than non-topics and this frequency alone means

that mentions are likely to be close to one another. Drawing on a range of factors not

only gives the model rich expressive power, but we also see its framework to be highly

compatible with machine learning in that Accessibility theory and machine learning

both weigh information across a multi-dimensional space in order to determine a

classification. However, explanations are different from generating a prediction, and

no algorithm is given for doing this.

There is a growing body of psychological work demonstrating that how humans

resolve pronoun reference is impacted by factors such as those listed in Accessibility

theory (e.g. topicality and inference in Kertz et al., 2006; Rohde et al., 2007; Kehler and

Rohde, 2013). The work in this thesis is complementary to this effort in that the two

provide alternative ways to assess the usefulness of cognitive theories: psychological

experiments assess how well the theories describe human discourse processing while
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our work assesses how well they can be applied to automation. We note also that this

psychological work splits reference form (specifically pronoun) understanding into

two sub-tasks, production and resolution. In such models, the above listed factors are

split according to whether they influence our production or resolution of reference

expressions in language: grammatical and salience-based factors influence production,

while semantic and pragmatic inference-based factors influencing resolution. The work

in this thesis accords with such models in that we argue that cohesion-based features

are insufficient for modelling coreference resolution and that encoding more complex

inference is essential for improving current performance.

In the next section, we will see how Binding and Centering theories, as well as

the Accessibility hierarchy and the theory’s enumeration of factors impacting entity

salience, have been encoded as features in computational models. A key goal of this

thesis is to address gaps in this effort, and, so, we draw heavily on these theories for

motivating our feature development work.

3.2.2 Feature Review

We now survey the features used in the systems discussed in Section 3.1, using the fac-

tors used in Accessibility theory to categorise the review. We do not review competition

here since it has been covered at the model level in competition learning approaches.

We aim to study a feature based on where it was first proposed because the trend is

that all subsequent systems will use all features described in earlier work.

The feature set for coreference resolution is now quite large and diverse, repre-

senting the aim of the CoNLL shared tasks to promote research in linguistically rich

modelling. Despite this, we find that there is still a substantial amount of insight

encoded in linguistic theory which has yet to be applied to the computational task.

This thesis represents an effort to identify this gap, and the best way to address it.
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Binding

Ng and Cardie (2002b) incorporate three features which capture the intuitions from

Government and Binding theory. In particular, the first indicates whether a c-command

relationship exists between the pair of mentions being compared, based on the given

constituency parse structure. A separate feature looks for whether two mentions have

the same maximal noun phrase, presumably to capture nouns which take arguments

and are thereby subject to binding constraints. In our example in Figure 3.1, ‘Yemen’ and

‘its journey’ both have the same maximal noun phrase ‘its journey home from Yemen’ and

their coreference is ruled out by this feature. The third is an alternative implementation

of the first two, using span overlap to approximate c-command.

Raghunathan et al. (2010) move to using dependency parse arcs in place of tradition

constituency parse trees. They forbid any clusters forming that will contain mentions

headed by tokens related to the same verb via the subject (‘nsubj’), direct object(‘dobj’),

or indirect object (‘iobj’) relationship.

Accessibility Hierarchy

Accessibility theory gives no mechanism for applying its hierarchy, but all modern

coreference systems use its typology of mentions to some extent. In particular, models

classify mentions into three and five broad categories: proper name, definite, indefinite

and demonstrative nominal, and pronoun.

One way to use such information is to encode features to capture how likely a

mention of a particular type is to be included in a coreference relationship, and which

transitions between mention types are allowed. Of the five features which build from

the Accessibility Hierarchy of Soon et al. (2001), only two are incorporated in their

final decision tree for muc-6. These two encode whether the current mention is a

pronoun and whether the candidate antecedent is a pronoun: pronouns are highly

likely to be anaphoric, thereby involved in coreference. The three features which

are not included indicate whether the current mention is definite noun phrase, is a
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demonstrative noun phrase, and whether both the current mention and candidate

antecedents are both proper names: a majority of nominals are not anaphoric and more

sophisticated reasoning than these features is required to determine whether or not to

include them in coreference clusters.

Ng and Cardie (2002b) implement similar features to Soon et al., but also include

four extra features to indicate whether both mentions are definite noun phrases, or

both are pronouns, and whether the candidate antecedent is a definite noun phrase,

or is an indefinite noun phrase. We note that a “both mentions are pronouns” feature

accords with Centering theory since it is an example of the most preferable transition,

center continuation. Stoyanov et al. (2010b) extend this still further, by introducing a

42 = 16 valued feature to reflect whether the mentions in the pair are proper name,

definite nominal, indefinite nominal, or pronoun.

An alternative way to use this information is to specialise modelling by mention

type. In this way, different weights can be learned for a given indicator, such as

proximity, for the different mention types. For instance, pronouns are more likely to be

close to their antecedents than other mention types are. Denis and Baldridge (2008)

learn five different models, one for each of the mention types: proper name, definite

nominal, indefinite nominal, third person pronoun, and non-third person pronoun.

This specialisation achieves an increase in CoNLL score of 1.1%, with ceafe increasing

the most (1.6%). The latter result suggests that specialisation enables the model to

choose the correct number of entity clusters.

Bengtson and Roth (2008) and Durrett and Klein (2013) implement specialisation at

the level of features within a model, rather than explicitly learning separate models.

Bengtson and Roth prefix each base feature generated with the type of the current

mention, one of proper name, nominal, or pronoun. On the other hand, Durrett and

Klein use the large training dataset of OntoNotes to learn a model over three versions

of each base feature: unprefixed, conjoined with the type of the current mention,

and conjoined with concatenation of the types of the current mention and candidate
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antecedent mention. Additionally, a finer-grained categorisation is used: the type of

a pronoun is given by its normalised form (e.g. ‘his’, ‘him’, and ‘he’ share the same

mention type, ‘he’). While the impact of specialising features in this way is not explicitly

tested, these two systems are highly competitive with similar mention-pair frameworks,

suggesting that intuitions from the Accessibility Hierarchy are particularly suited to

coreference resolution.

Cohesion

Cohesion is a primary target in the development of features for modern coreference

resolution systems. Semantic similarity is a fuzzy concept, and has been targeted at

various levels including mentions’ surface forms, morphosyntactic attributes, and their

lexical semantics. Lexical semantics requires knowledge external to a document, and

so has been a difficult factor to encode. The overall trend we see is that, as indicators

of semantic cohesion broaden to cover fuzzier relationships, improvements in system

performance plateau. We suggest that one explanation for why these features have

yet to realise a substantial performance gain is that their increase in descriptive power

requires stronger, more discriminative models to correctly rank the candidates they

generate.

Surface Form The first surface form feature explored was string match: if the surface

form of two mentions are the same, they are likely to refer to the same discourse entity.

Despite its simplicity, it is a very strong feature and remains a vital feature in current

state-of-the-art systems.

In Soon et al. (2001), stringmatch indicateswhether the surface formof twomentions

were the same up to their articles and demonstrative pronouns. Their decision tree

using just this feature covers 66.3% true positive examples inmuc-6 and achieves 53.9%

muc score on muc-6 and 54.3% on muc-7. Expanding from string match, Soon et al.

uses an alias feature to check whether two mentions have compatible, if not identical,
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surface form. In particular, they do comparisons between a normalised form of date

expressions, the last word of person names, and acronyms of organisation names. A

decision tree using just this alias feature covers 11.5% true positive examples in muc-6
and achieves 57.7% precision, but only 3.9% recall.

Soon et al.’s stringmatch features are both over- and under-productive. The authors’

error analysis over a sample of five test documents from the muc-6 corpus reveals that
71% of spurious coreference links are due to mentions having the same surface form

but different referent, while 63% missing links cannot be resolved by their surface form

match heuristics.

String match has remained little changed since these first features, except for adjust-

ments to suit the mention annotations of a given corpus. We have seen how Ng and

Cardie (2002b) boosted their system’s precision compared to their Soon et al. baseline

by decomposing into different features for different mention types. Raghunathan et al.

(2010) and Björkelund and Farkas (2012) adapt the string match heuristic to the CoNLL

shared task mention annotations, Raghunathan et al. using it to indicate whether two

mentions had the same surface form up to possessive markers and Björkelund and

Farkas up to determiners, possessive markers, and punctuation.

To address the under-productivity of stringmatch, Ng and Cardie (2002b) introduce

a range of features which look at sub-string match and do matching over the words in

mentions. Concretely, they encode features which indicate whether there is a sub-string

match between the surface form of two mentions, or whether there are any content

words in common between pairs. To capture the role of modification in restricting

reference, they encode a feature which indicates whether the pre-nominal modifier

words of one mention is a subset of those of the other. Unfortunately, these features

decreased performance by increasing recall at the expense of precision, particularly

on nominal mentions. They therefore were not included in the final system reported

in Ng and Cardie. Similar features, however, are vital to the strong performance of

the Stanford system (Raghunathan et al., 2010). This system, for instance, restricts
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coreference between any mentions where a later mention introduces a modifier not in

a previous mention.

An alternative solution to boosting the productivity of surface form match is head

match: mentions which have the same head word are likely to be coreferential since the

head word of a phrase captures its core semantic meaning. For instance, the head of

both phrases ‘the crippled ship’ and ‘the ship’ are the same, ‘ship’; the modifier ‘crippled’

is extra information. Culotta et al. (2006) introduce three head match features. The

first checks simple head match while the second indicates whether head words are

substrings of one another and the third accounts for rephrasings by indicating whether

the pre-nominal modifiers of one mention match the head or the pre-nominal modifiers

of the other. All current state-of-the-art systems use head match to inform inference.

Other inexact match features proposed include edit distance between mentions,

normalised by mention length (Denis and Baldridge, 2008; Stoyanov et al., 2010a,b),

and whether the length of the two mentions is the same (Bengtson and Roth, 2008).

Morphosyntactics One layer deeper than surface level features are morphosyntactic

features which are derived by rule-based processing of a mention’s surface form. The

morphosyntactic attributes commonly used are gender, number, animacy, and person;

with some exceptions, mentions need to agree in these attributes to be coreferential.

These attributes are derived from the pos and ner tags of a mention’s head word,

gazetteer lookup of gendered first names, and known properties of pronouns.

Agreement in gender and number was introduced by Soon et al. (2001). Ng and

Cardie (2002b) introduce agreement in animacy, as well as a conjoined feature encoding

agreement in both gender and number. Feature conjunctions are expanded in later

work, with Stoyanov et al. (2010a,b) using features to capture whether both mentions

are pronouns and agree in gender, number, and person, and Culotta et al. (2006)

generalising the idea by producing the Cartesian product of their attribute match

features. To model when attributes are compatible, if not identical, Denis and Baldridge
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(2008) use sparse feature values which are pairs of attribute values from the paired

mentions.

WordNet (Miller, 1995) is a lexical semantic resource which organises the senses of

a word form as objects called synsets, and arranges these synsets into an ontology

according to their semantic relationships (e.g. hypernymy). One aim of the resource is

to capture common noun usage, making it a potentially valuable resource for under-

standing relationships between nominal mentions in a document. However, WordNet

features are typically not included in modern systems given their small impact on

performance.

We outline here two key ways it has been used to inform coreference resolution

systems. In the first, it is used to assign coarse-grained semantic class to nominal

mentions which mimic the ner annotations on proper name mentions. In this way,

semantic class can be used in linguistic attribute features akin to those just discussed:

agreement in semantic class is an indicator for coreference between mentions. Soon

et al. (2001) do this by mapping the ner labels of proper name mentions to synsets and

mining all hyponyms of these synsets to produce a gazetteer for each label. In this way,

if a nominal mention is headed by a word in one of these gazetteers, it gets the relevant

class label and semantic class match can be used to link it to a name in its context. Soon

et al.’s semantic class feature was not included in their final decision tree because the

assignments were found to be very noisy and the categorisation too coarse-grained.

Bengtson and Roth (2008) use this same methodology as Soon et al. to assign seman-

tic classes, but translate it to the ACE categories. Additionally, they use a generalised

notion of attribute compatibility in defining feature values to be pairs of coarse grained

semantic classes from the two mentions.

The second way that WordNet is used to model the cohesion between mentions

exploits the ontology structure of the resource directly. These features are generated by

mapping amention to a synset via its headword and encoding the relationship between
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these synsets. Ng and Cardie (2002b) encode features which indicate whether a hyper-

nym path exists between the synsets of the mention-pair and, if so, another with the

length of this path. This second feature is based on the approximation that path length

tracks semantic similarity. However, like their substring and word match features,

these WordNet features boost recall at the expense of precision and are dropped for

their final system. On the other hand, Culotta et al. (2006) use the fact that synonymous

words are mapped to the same synset, introducing features indicating synonymy and

antymony. These features are taken up by the competitive Reconcile and UIUC systems,

the former of which includes a feature whose value is the first WordNet synset that

both mentions share as a feature, presumably as an attempt to learn which regions of

WordNet can be trusted.

Since first sense is a good baseline for word sense disambiguation, as well as to

minimise processing time, it is typical to map a mention to a synset via the first sense of

its head word. Ponzetto and Strube (2006) argue that doing so fails to address semantic

ambiguity and introduces sense proliferation. They introduce a series of features based

on a range of available semantic similarity metrics (Rada et al., 1989; Wu and Palmer,

1994; Resnik, 1995; Jiang and Conrath, 1997; Leacock and Chodorow, 1998; Lin, 1998b).

In particular, feature extraction calculates the similarity between each synset pair in the

Cartesian product of all synsets for the mentions head words; feature values are then

the maximum or average similarity score from these calculations. The best performing

WordNet uses the maximumWu and Palmer similarity, while introducing all similarity

features improves the performance of a weak baseline by 6.3% and 2.2% on ACE 2003

BNEWS and NWIRE datasets.

External Knowledge Sources The general consensus is that deeper knowledge than

surface-level and morphosyntactic features is required to model semantic cohesion

between mentions, though we have seen that WordNet has been unable to address this.

In particular, WordNet has scattered coverage of proper names, making it unsuitable
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for encoding why proper name and nominal mentions are semantically related to

one another. There is an active body of research on how to use the information in

encyclopaedic knowledge bases for coreference resolution. In particular, Ponzetto and

Strube (2006) explore using Wikipedia, Uryupina et al. (2011) and Rahman and Ng

(2011) using yago (Suchanek et al., 2007), and Hajishirzi et al. (2013) using Freebase.

Additionally, researchers have sought to mine encyclopaedic knowledge from un-

labelled text, based on patterns which are high-precision indicators of coreference.

Hearst (1992) describes a general method for discovering these patterns and a study of

how reliably six such patterns find relationships annotated in WordNet. The largest

pattern finding study for coreference resolution is described by Haghighi and Klein

(2009), who use bootstrapping to detect patterns in blipp and Wikipedia to mine pairs

of proper names and nominal descriptors. These patterns boost coverage of recall

errors on coreference from ‘little more than half’ to 67%.

Proximity

The preference for coreferential mentions to be close to one another is used in all

approaches surveyed in this chapter. All features are formulated based on the assump-

tion that documents are single discourse units without segmentation. Modelling any

segmentation in documents would mean modifying the following features to indicate

enhanced distance in the case of a segment breaks, such as across sections in a report

or shifts in topic of a conversation.

Approaches vary in how they quantify distance in a document. Soon et al. (2001)

count the number of sentences between the mentions; their decision tree classifier

learns a rule on whether mentions are in the same sentence. By extension, Ng and

Cardie (2002b) measure distance with the number of paragraphs between mentions,

since paragraph structure is given for the muc corpora. Combining these features,

Stoyanov et al. (2010a,b) include features which indicate whether mention pairs are in

the same sentence, or in the same paragraph.
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Ng and Cardie introduce a feature encoding whether a candidate antecedent is

the closest compatible mention to the current mention since this is likely to be the

correct resolution. This is taken up in the rule-based Stanford system (Raghunathan

et al., 2010), which deterministically resolves a pronoun to its closest compatible an-

tecedent. Bengtson and Roth (2008) generalise the idea, measuring mention distance to

be the number of compatible mentions between a mention-pair, allowing for distractor

mentions.

Both Fernandes et al. (2012) and Durrett and Klein (2013) use number of mentions to

measure distance, but do not check for compatibility. Instead, distance from a pronoun

or person name mention counts the number of proper name mentions, indicating

the number of entities mentioned in the context. In their state-of-the-art approach,

Björkelund and Kuhn (2014) propose a novel distance based feature: the distance (in

number of mentions) of a candidate entity cluster from the start of the document.

This measurement presumably addresses entity clusters fragmentation, by learning to

disprefer late emergence of fragments.

Parallelism and Topicality

Parallelism is the linguistic tendency for similar mentions to surface in similar contexts.

Parallelism reduces the load on a hearer in that they can use similarity of context as a

cue for similarity of reference. Similarity of context has been encoded at the level of a

mention’s grammatical argument (e.g. whether the mention is a subject or object of a

phrasal verb), and its semantic role (from FrameNet, Baker et al., 1998).

Topicality, on the other hand, relates to the salience of an entity in its discourse.

Topical entities are mentioned frequently, in prominent contexts. Therefore, features

over grammatical arguments also capture topicality.

Grammatical Arguments When considering the grammatical argument of mentions,

parallelism says that mentions should take the same grammatical argument in adjacent
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sentences. To this end, Ng and Cardie (2002b) encode two features which capture

whether both mentions are subjects or are embedded as modifiers of larger noun

phrases, respectively. Additionally, four single-mention features capture whether the

current mention or the candidate antecedent, individually, are in the subject position,

or embedded.

Ng and Cardie’s features can also be seen to relate to topicality in that topical

entities prefer strong contexts, notably the subject position. So, these features capture

the tendency for parallelism and topicality to conspire in giving the same indication

of accessibility: topical entities tend to repeatedly appear in the subject position and,

thereby, make good targets for coreference.

Ponzetto and Strube (2006) expand Ng and Cardie by defining sparse features

whose values are a pair with the first element being the grammatical argument of a

mention and the second element the predicate governing the mention. These features

do not directly capture parallelism in that comparisons are not made between feature

values of the two mentions, though they provide a finer-grained model of the topicality

of the mention in the sentence. They yield a 4.9% gain on BNEWS in ACE 2003.

Björkelund and Kuhn (2014) learn transitions in grammatical argument with sparse

features. In their entity-level model, they define features whose values are pairs where

the first element is the grammatical argument of the current mention and the second

is that of the candidate antecedent. Such features are able to capture whether two

mentions are both subjects, but also the likelihood that two objects, or non-parallel

arguments, are coreferential.

External Knowledge Sources FrameNet has been used as a source of external knowl-

edge for frame semantic parallelism and will be reviewed in Chapter 7.
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Inference

Inference is the capability of humans to extrapolate from incomplete pieces of informa-

tion to deduce likely conclusions. In the case of coreference, humans are able to use

contextual cues to decide the likely resolution of a mention, evenwhen this resolution is

not necessarily indicated by the other cues we have seen. We review how systems have

encoded inference based on the relationship of speakers and pronouns in their quoted

speech, as well as how approaches to the Narrative Cloze task model consistencies in

narrative structure and referential patterns.

Quoted Speech Culotta et al. (2006) include a feature which captures whether two

mentions are both the attributed speaker of quotes, to capture the assumption that

cohesive quoted text has come from the same speaker. More directly, Stoyanov et al.

(2010a,b) and Raghunathan et al. (2010) include heuristics to identify mention pairs

with the relationship that one mention is the pronoun ‘I’ (‘we’) and in a quoted span

whose attributed speaker is the other mention, which has been ner tagged as person

(organisation).

External Knowledge Sources Systems on the Narrative Cloze task (Chambers and

Jurafsky, 2009) have been used to generate datasets for frame semantic inference. They

will be discussed in Chapter 7.

Lexicalised Features

The features reviewed in the previous sections are hand-engineered features based

on linguistic insight. Orthogonal to this are recent efforts which use highly sparse,

lexicalised features to approximate linguistic information.

Fernandes et al. (2012) introduce two feature classes comprising features whose

values are the surface form (pos tag) of a mention’s head word, previous two words,

and next two words. Both the current mention and the candidate antecedent are used
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to extract features. Fernandes et al. won the CoNLL-2012 shared task despite not using

entity-level modelling, suggesting the power of these lexicalised features.

Durrett and Klein (2013) similarly employ lexicalised features in their mention-pair

model to achieve competitive performance. Their lexical features have values which are

the surface form (with backoff to pos tag in the case of infrequent words) of a mention’s

head word, first word, last word, previous word, and next word, as well as the length of

the mention. Again, both the current mention and the candidate antecedent are used in

feature extraction. Durrett and Klein find that these lexical features perform similarly

to hand-engineered, linguistically-motivated features in their system, and argue that

this is because they target the same information, albeit implicitly. For instance, the

first word feature having value ‘the’ is equivalent to having a hand-engineered feature

capturing whether a mention is a definite noun phrase.

3.2.3 Summary

Our reviewhas shown a great diversity in the features explored tomodel coreference res-

olution computationally and that, whether implicitly as in the case of hand-engineered

features or explicitly in the case of lexicalised features, these are motivated by linguistic

models of reference resolution. Some explanatory mechanisms of Accessibility theory,

particularly lexical cohesion, have been heavily explored, while for others, we can see

gaps in the literature. In particular, our current typology of mentions as being proper

names, nominals, and pronouns is too coarse-grained given the Accessibility Hierarchy;

incorporating inference based on frame semantics has yet to yield substantial improve-

ment despite its intuitive appeal; and how to model competition in a way that is aware

of the relative salience of the competing entities is not at all obvious. These questions

frame the following chapters of this thesis.
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3.3 Summary

We have reviewed the literature on reference resolution, using the insights in the

linguistic and cognitive literature to frame our review of the computational literature.

We have seen that coreference resolution has most profitably been modelled by entity-

level approaches informed by a diverse range of features.

We ground the remainder of this thesis on this understanding. Chapter 4 devel-

ops our cognitively inspired system, limeric, which is an incremental, entity-level

approach to coreference resolution, which achieves performance competitive with the

state of the art despite its simple design. Chapters 5, 6, and 7 expand the space of

features available to inform our model, competing with the state of the art by drawing

on insights from Accessibility theory.



4 IncrementalCoreferenceResolution

Work described in this chapter forms part of the conference paper Kellie Webster and James R

Curran. 2014. Limited memory incremental coreference resolution. In Proceedings of the

25th International Conference on Computational Linguistics, pages 2129–2139.

In this chapter, we describe limeric, the low memory, incremental coreference resolu-

tion engine we design to capitalise on insights discussed in the last chapter. We start

by drawing an analogy between shift-reduce parsing and coreference resolution to

reformulate resolution as a series of shift and reduce operations which incrementally

produces a collection of entity clusters as a document is read in a single left-to-right

pass. By designing the entity collection to be self-ordering, it comes to have cognitive

meaning, being a simplified model of the human mind. Furthermore, limeric natu-

rally incorporates the strengths of both non-local decoding and entity-level modelling

for achieving globally consistent decisions.

We then identify our requirements for system design, before detailing our Python

implementation. We use the features reviewed in the last chapter as our baseline feature

set and explore its strengths in an ablation study and via feature weights. We find that

limeric is very good at learning discourse information and that semantic cohesion

features have decreasing impact as they broaden to capture fuzzier relationships.

We benchmark limeric and find that, while it is simpler and has lower memory

requirements, it is competitive with the best approaches to the task, achieving 64.22%

77
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and 59.99% CoNLL F score on the 2012 shared task benchmark using gold and automatic

preprocessing, respectively.

4.1 Motivation

In designing limeric, we draw an analogy between coreference resolution and shift-

reduce parsing (Section 4.1.1), and use Centering and Accessibility theories to motivate

implementing the entity cluster forest as a self-ordering list (Section 4.1.2). By incorpo-

rating these insights into the task, we develop a model which naturally incorporates

entity-level modelling into a best-first clustering framework (Section 4.1.3), and is

highly flexible for the development of rich linguistic features we develop in the next

chapters. It also enables us to define coreference resolution and anaphoricity deter-

mination (the task of classifying mentions as discourse-new or anaphoric) as a joint

task (Section 4.1.4).

4.1.1 Shift-Reduce Parsing

The shift-reduce algorithm (Aho and Johnson, 1974) is widely used to parse text in

languages (both programming and natural) due to its efficiency, simplicity, and its low

memory requirements. It takes as input a sentence (string of of symbols) and outputs

either a parse tree representing the syntactic structure of the sentence, or a value

indicating that the sentence is not valid in the language. For programming languages,

symbols correspond to units such as keywords, literals, and operators; for natural

languages, tokenised words.

The algorithm is designated LR(k) to denote that it processes a sentence from left

(L) to right, reading k symbols at a time. During processing, the syntactic parse is

incrementally generated as each symbol is read, as shown in Figure 4.1. Intermediary

parse units (sub-trees of the final parse tree) are stored and operated on in a collection

denoted the forest. At each step, the parser performs one of two operations, namely
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Forest Operation Queue

Initialise The President said he and his wife ...
DT

The

Shift The President said he and his wife ...

DT

The

NNP

President

Shift President said he and his wife ...

NP

NNP

President

DT

The

Reduce said he and his wife ...

NP

NNP

President

DT

The

VBD

said

Shift he and his wife ...

Figure 4.1: Series of shift and reduce operations creating a syntactic parse tree.

shift or reduce. In a shift operation, the input symbol is removed from the sentence and

a new tree representing just this symbol is added to the right frontier of the forest. For

instance, the first shift operation in our example removes ‘The’ from the sentence and

creates its DT-labelled tree to the forest. In a reduce operation, a new node is created

and this becomes the direct ancestor for a number of trees at the right frontier of the

forest. In the reduce operation in our example, we can see that a new noun phrase

(NP) node was created which spans ‘The president’ since there is an English grammar

rule which says that an NP can be composed of a determiner followed by a noun. Only

nodes at the right frontier are candidates for reduce operations.

Since both operations take place solely at the right frontier of the forest, it can be

implemented using a push-back stack.

When the shift-reduce algorithm is LR(1) only one symbol is read from the sentence

at a time. In such a framework, a sentence is always read from left to right without

look ahead or backtrack. Therefore, LR(1) can be implemented with a queue whose
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elements are symbols in the language. This is the typical implementation of shift-reduce

parsing, though such a model is limited to deterministic context-free grammars and,

therefore, can not fully model natural languages. Despite this limitation, we take LR(1)

as the basis for developing our novel algorithm for coreference resolution with the

goal of exploring how well it is able to model the task. With this as the baseline, future

work could consider if introducing a k-mention look-ahead affords substantial gains.

In our cognitive interpretation of our model, look-ahead would model the ability of

humans to scan ahead when resolving reference, which is supported by eye-tracking

experiences (for a review, see Rayner, 1998).

To develop our algorithm,wedrawan analogy between how sentences are processed

in parsing and how we would like to process sequences of mentions in coreference

resolution. In particular, we see mentions as the symbols of our reference ‘language’

and their coreference relationships as the structure we would like to predict. As such,

the queue data structure should store the mentions extracted from a document; that

this is read exactly once without look ahead is linguistically meaningful since this

is what a human reader of a document does. Similarly, the forest should store the

entity clusters which emerge incrementally as a document is processed. In this way,

a document may be processed with a series of two operations: mentions can either

shift into the forest if they are the first mention of a new discourse entity, or reduce

with an emerging cluster if it corresponds to its discourse entity. These operations are

represented in Figure 4.2.

With this analogy established, we now need to decide howmuch of the shift-reduce

specification can be applied directly to coreference, and which aspects require reformu-

lation. Firstly, where it makes sense for elements of the forest to be trees in syntactic

parsing, the desired output of coreference resolution is clusters of mentions, which

need not have internal structure. While there have been models which do propose

internal tree structure for coreference clusters (Fernandes et al., 2012; Björkelund and

Kuhn, 2014), we do not feel it is necessary; furthermore it is not at all clear whether
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Forest Operation Queue

Initialise ‘The President’, ‘he’, ‘his wife’, ‘his’ ...
[‘The President’] Shift ‘The President’, ‘he’, ‘his wife’, ‘his’ ...
[‘The President’], [‘he’] Shift ‘he’, ‘his wife’, ‘his’ ...
[‘The President’, ‘he’] Reduce ‘his wife’, ‘his’ ...
[‘The President’, ‘he’], [‘his wife’] Shift ‘his wife’, ‘he’ ...

Figure 4.2: Series of shift and reduce operations creating a collection of emerging

entity clusters.

such structure is linguistically meaningful. The elements of the forest in our system

therefore contain lists of mentions, extended with linguistic attributes and other entity

level information we will define.

A key difference between the structure of syntactic and anaphoric relationships is

that the latter cannot be written as a context-free grammar. This is problematic since

it is the grammar rules of a language which dictate what reduce operations will take

place. We instead formulate this as a machine learning problem, and define a classifier

to fill this role in Section 4.2. Lastly, unlike syntactic rules, coreference relationships are

not projective: where syntactically related elements appear close to one another in a

sentence, entities increase and decrease in salience throughout a discourse. Therefore,

we cannot limit our attention to the rightmost frontier of the forest and this cannot

be implemented with a push-back stack. To decide how to implement the forest, we

consider theories of cognitive science.

4.1.2 Cognitive Insight

Both Centering (Grosz et al., 1995) and Accessibility (Ariel, 2001) theories model human

cognitive processing with a simple collection of entities which are stored and tracked

as a discourse develops. We have seen that both theories associate each entity in this

container-type store with a degree of salience relative to the other contained entities.

This degree of salience is inherently non-uniform and dynamic: at any given point in a
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discourse, entities differ from one another in their degree of salience, and the salience

of a given entity increases and decreases as it comes in and out of topic.

In the local-level of Centering theory, each utterance within a discourse segment is

associated with a list of entities, of centers, about which the utterance concerns. These

lists are, in later formulations of the theory, ordered by the salience of each entity and

they in turn populate a stack-like store; the most recent entity list is pushed onto the

stack, and related to other lists on the stack via anaphoric links.

We therefore propose that the forest data structure from the shift-reduce algorithm

should reflect the salience of the entities it contains. The data structure we propose

is a self-ordering list. In this way, accessible entities will tend to be found to the right

of the list, repeatedly promoted if they are central to the discourse. In the same way,

incidental entities will drop away from the right frontier as the discourse progresses

without referencing them further. This develops from the entity store described in

Centering theory, by flattening the list of lists structure into a single list. It also makes

concrete the idea that entities are more accessible if they are salient.

In Accessibility theory, it is not specified how entities are stored, though its de-

scription of how their relative salience is rated is more detailed than that of Centering

theory. Among the many factors which impact accessibility, a key one is proximity:

entities which have been mentioned recently are more salient than entities which have

not been. We therefore order the forest data structure by recency as an approximation

of salience. While we expect the correct ordering to take into account topicality and

other factors, we only use depth in the forest of discourse entities via coarse-grained

bucketing and relative positioning. In this way, we expect any small inaccuracies in

entity ordering to have minimal impact on the models we derive.

4.1.3 Entity-Centric Design

The analogy between shift-reduce parsing and coreference resolution offers us a neat

way to incorporate entity-level modelling into a best-first clustering framework. Entity-
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level modelling is straightforward: the self-ordering entity list contains incrementally

growing entity clusters similar to the discourse entity objects described in Faucon-

nier’s (1994) Mental Space theory and Recasens et al.’s (2011) development of the

theory in their near-identity proposal.

We incorporate non-local decoding by requiring that, in the case of a reduce opera-

tion, classification select the best target cluster among the candidates in the forest, rather

than the rightmost compatible entity cluster. The implication of this is that we must

search the entire forest to determine the correct target for any reduce operation, not just

the right frontier as was the case for syntactic parsing. While enforcing a full search

gives our process worst case O(n2) time complexity in the number of mentions, this

worst case only occurs in incoherent document in which each entity cluster contains

exactly one mention. We anticipate this not to occur in real world data, particularly

OntoNotes data, where entity clusters have average size around four mentions. In the

average case, exhaustive forest search still represents a time saving compared to full

mention-pair models which compare each mention against all candidate antecedents.

4.1.4 Anaphoricity Determination

Anaphoricity determination is the task of classifying mentions according to whether

they are coreferential with a previous mention. It is related to, but distinct from,

coreference resolution which requires systems to decide which candidate is the correct

antecedent of an anaphoric mention. In our framework, it is the task of classifying

whether the next move should be a shift or a reduce.

Ng and Cardie (2002a) presented a supervised approach to anaphoricity determi-

nation which used features similar to those used for coreference resolution, including

a mention’s type, whether it had a head match with any other mentions, as well its

position in the document. While the system achieved 86.1% and 84.0% accuracy on

muc-6 and muc-7, incorporating its decisions into their coreference system as a filter

on which mentions an antecedent would be sought resulted in a drop in performance
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by 0.1% and 3.2% on the datasets. The authors found that this drop was from recall

and resulted from the anaphoricity classifier erroneously labelling anaphoric men-

tions non-anaphoric. By bypassing the anaphoricity classifier on mentions which are

aliases of or have a string match with another mention in the document, anaphoricity

determination realised a performance gain, of 2.0% and 2.6% on muc-6 and muc-7.

Ng (2004) expanded this work, identifying two dimensions which influence the im-

pact of anaphoricity determination on coreference resolution. Specifically, the output of

an anaphoricity classifier can either be included in a coreference system as a constraint

(as above), or as an extra feature to the coreference classifier. Also, anaphoricity deter-

mination can be a modular component, optimised independently of coreference, or can

be jointly learned along with coreference. He finds that the jointly-optimised resolver

using as a constraint outperforms the other three possible frameworks, improving

performance on ACE by up to 4.5%, 3.2%, and 2.8% on broadcast news, newspaper,

and newswire. The most informative features are found in analysis to be among those

used by Ng and Cardie (2002a): head match, string match, and mention type. More

recently, CherryPicker (Rahman and Ng, 2009) finds that joint anaphoricity determina-

tion outperforms a pipelined filter by 0.6%, 2.2%, and 2.9% muc, B3, and ceafe on

ACE 2005.

Related to anaphoricity determination for the OntoNotes corpus is the task of

singleton detection. Singleton detection requires a system to predict whether a mention

is coreferential with any other mention in the document, not just whether it has a

backward looking reference to a previous mention. Given that singleton mentions

are not annotated in OntoNotes, singleton detection is the task of labelling mentions

as reportable or not. Recasens et al. (2013) analyses how certain linguistic properties

of mentions impact the mention’s likelihood of being a singleton and finds that the

strongest indicators of singletohood are inanimacy, indefiniteness, quantification, and

a high degree of modification. A classifier trained on the observed tendencies achieves
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an F score of 80.7% on the task of identifying singletons in OntoNotes, and affects an

improvement of 0.47% CoNLL score on CoNLL-2012.

Durrett and Klein (2013) jointly learn coreference and singleton detection by imple-

menting a high recall mention extraction component and relying on relevant features

to be down-weighted if a given mention is not reportable. This approach has the

advantage of being agnostic as to whether singletons are annotated in the input data,

and is reasonable given the similarity between anaphoricity and coreference features

sets, and the reliance of important anaphoricity features (i.e. head and string match)

on coreference-like comparisons. We therefore employ it in our work below, though

extend the ideas in Recasens et al. in our lifespan score features (cf. Section 4.3.1) and

revisit the problem of how best to model anaphoricity determination and singleton

detection in Chapter 6.

4.2 System Design

Following this motivation, we implement our system around two key data structures,

a queue of mentions and a self-ordered list of entity clusters. Initialising our system

involves extracting mentions from a document and populating the queue and is de-

scribed in Section 4.2.1. We learn a classifier which is jointly trained to decide whether

the next operation should be a shift or a reduce and, if a reduce, which cluster the

mention should merge with. Inference is described in Section 4.2.2 and training in

Section 4.2.3.

4.2.1 Initialisation

For our system to be comparable with the current state of the art, mention extraction

needs to be designed to suit the OntoNotes guidelines (Pradhan et al., 2012). We ignore

verbs since they represent a small proportion of annotated mentions, and we expect

their linguistic behaviour to be substantially different from that of nouns. We follow
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Durrett and Klein (2013) and aim to extract a mention for each noun phrase annotated

in a document. By maximising recall in this way we learn a model that is robust

to spurious extraction in preprocessing: missing an extraction labelled in the gold

standard will always yield a recall penalty, but a classifier can be designed to learn that

certain mentions should not be reported.

To populate the queue, extracted mentions are sorted into top-to-bottom, left-to-

right reading order: mentions with spans starting earlier are ordered first; in the

case of mentions starting on the same token, longer mentions precede shorter ones.

OntoNotes guidelines stipulate that in the case where candidate mentions share the

same head word, the candidate with the longest span is annotated. To implement

this, we simply search for noun phrases (nodes labelled NP or NML) by traversing the

provided constituency parse trees from their root, extracting a mention from the first

indicated node seen with a given head. Since noun phrase annotations are typically

flat, we also extract as mentions any tokens pos tagged as pronouns, as well as any

token sequences labelled as entity names by named entity (ne) annotations, if their
span is not already seen as a noun phrase, or only differs from an extracted mention by

a known honorific or possessive marker. Entity name extractions exclude QUANTITY,

CARDINAL, and PERCENT spans, following (Raghunathan et al., 2010).

The mentions we extract will not have a perfect mapping with the mentions anno-

tated in the gold standard. We use a three-stage back-off processing to align the two sets.

We started development using just two stages: first, we aligned any (gold, extracted)

pair where the mentions have the same span, then we aligned any remaining (gold, ex-

tracted) pair where the mentions have the same head subject to the constraint that

head-matched pairs contain the same number of conjuncts. The number of aligned ex-

tracted mentions using these two stages, as well as the number of missed gold mentions

and spurious system mentions, are given in Table 4.1.

We can see that, as expected, the proportion of missed mentions is indeed small,

especially for the dataset with gold standard annotations for the preprocessing layers of



4.2. System Design 87

Aligned Missed Spurious

Gold train 152294 3266 230438

Gold dev 18733 423 29279

Auto train 149963 5597 234301

Auto dev 18361 795 29846

Table 4.1: Number of mentions extracted from the train and dev portions of

OntoNotes 5, using two-stage mention extraction.

part-of-speech, named entities, and parse structure (cf. Section 2.1.3). Also, the number

of spurious extractions is very high. We anticipate that the large number of spurious

mentions will impact the profile of our system, but not the quality of its output: having

more mentions to process will increase runtime, and introduce substantial bias into

the training sample, but training can be designed to be robust to this signal.

Categorising the 423 mentions missed in processing Gold dev, 30% (127) are

single token verbs while the remainder form a long tail of assorted problem cases.

On automatically preprocessed documents, there is almost twice as many reportedly

missed mentions. While we expect the number of missed mentions to be higher than

for gold preprocessed documents due to noise, a substantial amount of this gap is due

to mentions being sub-optimally aligned. We therefore introduced a third stage in

which remaining (gold, extracted) pairs are aligned if all of the following conditions

are met. The statistics for the three-stage back-off process are given in Table 4.2

• neither have length 1; and

• both spans start at the same token; and

• the extracted mention covers at least half the tokens of the gold mention; and

• the extracted mention is the candidate which maximises overlap with the gold
mention.

While the statistics do not change substantially for documents with gold prepro-

cessing, the number of missed mentions for automatically preprocessed documents

has greatly reduced. Surveying the cases which remain unable to be aligned, we find
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Aligned Missed Spurious

Gold train 152349 3211 230383

Gold dev 18742 414 29270

Auto train 150965 4595 233299

Auto dev 18517 639 29690

Table 4.2: Number of mentions extracted from the train and dev portions of

OntoNotes 5, using three-stage mention extraction.

that most correspond to single token verb mentions, parse errors (no phrasal unit exists

from which the mention could be extracted), and named entity recognition errors (no

named entity span exists from which a mention could be extracted).

4.2.2 Inference

The inference algorithm used to achieve our shift-reduce inspired processing of a

document is given in Algorithm 1. By design, this algorithm is simple since we wish to

avoid the complex algorithms applied by others to the task in favour of a more intuitive,

linguistically motivated solution.

initialise queue;

initialise forest;

for mention : queue do

prediction = classify(mention, forest);

cluster = apply(mention, forest, prediction);

promote(cluster, forest);

end

report();

Algorithm 1: limeric’s inference algorithm.
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To process each document, we read the enqueued mentions exactly once, in reading

order without look ahead, and execute three key steps: classify, apply, and promote.

The predicted entity clusters are then prepared for output, in report.

classify The task our classifier is given is to decide whether the next operation should

be a shift or a reduce operation; in the case of it being a reduce operation, the classifier

additionally needs to output which is the best candidate entity cluster among those

in the forest. We choose an averaged perceptron classifier (Collins, 2002) due to its

successful application to the task (e.g. Bengtson and Roth, 2008; Stoyanov et al., 2010a,b,

2011).

To do the classification, we generate a score for the likelihood of the next operation

being shift and scores for each of the possible reduce operations, one for each cluster in

the forest. Since the discourse properties of first mentions is qualitatively different than

that of subsequent, anaphoric mentions, we do this using separate weights vectors for

the two operations:

scoreshi f t = fshi f t.φshi f t

scorereducei = freducei .φreduce

Where fshi f t and freducei are the feature vectors extracted for the shift and a given

reduce operation, and φshi f t and φreduce are the independently maintained weight

vectors for the two operations. Features are generated on-the-fly to reduce memory

requirements, and because the state of the system is determined by each move made.

All features are binary valued. Shift is selected if scoreshi f t is greater than the scorereduce,

where scorereduce is the maximum candidate reduce score. If reduce is selected, the

target cluster is the one which maximises scorereducei :

targetreduce = argmax
i

(scorereducei)
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Since we are using our classifier to decide between a shift and reduce operations,

it is learning anaphoricity; since we are also using it to decide between candidate

targets for reduce operations, it is learning coreferentiality. That is, we jointly learn

anaphoricity and coreferentiality, rather than pipelining the two processes.

apply In apply, the current mention joins the proposed entity cluster, or starts a new

one. To achieve entity-level modelling, we want the cluster to have attributes which

reflect all mentions it contained to facilitate making globally consistent decisions. That

is, we want membership in an entity cluster to, in itself, be meaningful: a cluster may

contain a mention which, in isolation, is underspecified with respect to some attribute

but another for which that information is known. For instance, a mention like ‘it’ cannot

be assigned a coarse-grained semantic class but, if it is in a cluster with ‘The battered US

Navy destroyer Cole’, we can use this clustering to know that it refers to a PRODUCT. To

achieve entity level attributes, we pool the following properties among the clustered

mentions:

• animacy

• gender

• grammatical number

• coarse-grained semantic class

• if a pronoun, its normalised1 form

• lifespan score

• text of all tokens in a mention span

• text of all premodifier tokens in a mention span

• text of the head of a mention span

• if a conjunction, the number of conjuncts

1nominative
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promote To ensure that the forest is self-ordering by recency, the target of a reduce

operation needs to be removed from its position in the forest and moved to the right

frontier. This is a crucial implementation detail given the cognitive interpretation we

give to the forest of clusters. However, it is potentially a costly step: using a standard

Python list means that the cluster must be first located before it may be removed, giving

the operation O(n) in the number of seen entities. To counter this, we implement a

custom doubly-linked list, giving this step constant time complexity.

report The generated entity clusters are postprocessed according to OntoNotes an-

notation guidelines. Specifically, singleton clusters are removed, along with clusters

containing only bare plural mentions and those containing an indefinite nominal after

the first mention.

4.2.3 Training

initialise queue;

initialise stack;

for i : n_iterations do

for mention : queue do

prediction = classify(mention, forest);

gold = correct_classification(mention, forest);

if prediction != gold then

update(prediction, gold);

end

cluster = apply(mention, forest, gold);

promote(cluster, forest);

end

end

Algorithm 2: limeric’s learning algorithm.
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The learning algorithm we use to train our classifier is given in Algorithm 2. Again,

we see that processing a document involves reading the enqueued mentions exactly

once, in reading order without look ahead. As each mention comes to head the queue,

we generate a training instance in which the classifier decides whether it is more likely

that the mention shift into the forest as the first mention of a new discourse entity or

reduce with the cluster of an already active one. If the classification is incorrect, the

relevant weight vectors are updated toward the correct classification.

Although spans for gold mentions are available in training, we opt to train on

automatically extracted mentions to match the conditions as far as possible between

training and testing. This is especially important given the alignment statistics we

observed in Table 4.2.

classify The classification procedure follows as described for inference, with only

one point of difference. After Fernandes et al. (2012), we implement a large-margin

interpretation of the perceptron algorithm. The aim of a large-margin classifier is to

increase the margin of separation between positive and negative training instances. We

achieve this by augmenting the scores of all non-gold classifications by a set amount so

that any prediction has to win by at least this amount to satisfy the no-update condition.

In our experiments we set this margin parameter to be 1.

correct classification Weread the correct classification for an (automatically extracted)

mention from its alignment with a gold mention. If the mention has not been aligned,

it is a spurious extraction and the correct decision is to for it to shift into the forest,

where it can remain a singleton cluster for later filtering.

On the other hand, if the mention has been aligned, the correct classification is

found by looking at the cluster to which the gold mention belongs. In particular, if the

aligned gold mention is cluster initial (Figure 4.3a), the correct classification is shift.

Otherwise, the correct classification is to reduce with the entity cluster in the forest

containing mentions aligned to the same gold cluster. For instance, in Figure 4.3b,
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the correct classification is for ‘the ship’ to reduce with the cluster [‘The battered US

Navvy destroyer Cole’, ‘its’, ‘its’]. If there is no such cluster (see Figure 4.3c), the correct

classification is shift since this corresponds to the case of a missedmention in automatic

extraction. Since spurious extractions will never be a reduce target (since they have

no gold links), their entity clusters will remain singletons. By learning that spurious

mentions should remain singleton clusters, we develop a system in which we jointly

learn singleton detection with coreference resolution.

update If the classifier mis-classifies the instance, we update the weight vectors

toward the correct classification. That is, we increase the weights of all features cor-

responding to the gold classification, and decrease the weights of all features corre-

sponding to the incorrect prediction. For instance, if a mention triggers an incorrect

shift prediction, weights in φshi f t for that mention will be decreased while weights in

φreduce for the comparison with the correct target entity will be increased. In order

to balance the impact of our negatively-biased training sample, we do not adjust the

weights corresponding to any other comparisons.

In a standard perceptron, the change in feature weights is uniformly 1; we make

two adjustments to this. A common adjustment to standard perceptron updates is

to use the Margin Infused Relaxed Algorithm (MIRA; Crammer and Singer, 2003) to

determine the update value. The aim of this algorithm is to determine the minimum

update values which are needed to bring the perceptron to a state where it will correctly

classify the instance. By updating the perceptron using MIRA, classifiers are less prone

to oscillate between bad states by applying too large an update, or converging too

slowly on a good state by applying too small an update.

We implement MIRA updates using the following to determine the update value, δ:

δ =
margin
|P|+ |G|
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Gold System
The battered US Navy destroyer Cole

its

its

the ship

the crippled ship

The battered US Navy destroyer Cole

(a) When an aligned gold mention is cluster-initial, the correct classification is shift.

Gold System

The battered US Navy destroyer Cole

its

its

the ship

the crippled ship

The battered US Navy destroyer Cole

its

its

the ship

(b) When an aligned gold mention is not cluster-initial, the correct reduce target is read from

mentions in the same gold cluster.

Gold System
The battered US Navy destroyer Cole

its

its

the ship

the crippled ship

(missing)

its

(c) When an aligned gold mention is not cluster-initial, but there is no previous aligned gold

mention, the correct classification is shift.

Figure 4.3: Determining the correct classification from gold standard annotations.
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Where margin is the difference between the winning score and that of the correct

classification, |P| is the number of features activated by the prediction, and |G| is the

number of features activated by the correct comparison.

As a result of how feature sets are typically defined for coreference resolution, many

more features are generated on a reduce comparison than on a shift comparison. During

development, we noticed that this difference was negatively impacting performance

by making reduce operations unfairly favourable. To grow the shift feature weights

faster, we introduced a scaling parameter on the update of these feature weights; we

found the ratio of the feature space sizes to works well. In particular, the value used to

update the weights of shift features is scaled up by the ratio of the (larger) number of

reduce features, divided by the (smaller) number of shift features, as represented in

Algorithm 3.

δ+ = margin / (|P| + |G|);

δ− = margin / (|P| + |G|);

if predict shift; gold reduce then

δ− *= |G| / |P|;

end

if predict reduce; gold shift then

δ+ *= |P| / |G|;

end

Algorithm 3: Algorithm for determining feature weight update value.

apply As the final stage, the system applies the decided move. In training, there are

two valid ‘decided’ moves, namely the correct transition, read from the gold standard,

or the (potentially incorrect) predicted classification. In this work, we train by following

the path of correct transitions, since we found the signal to be too noisy when following

predicted classifications.
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4.3 Features

As we saw in Chapter 3, feature development for coreference resolution has produced

a diverse range of features; in order to establish a baseline for our next feature develop-

ment chapters, as well as to understand the strengths and weaknesses of our current

modelling, we implement an extensive set of these features (Table 4.3). We find that

limeric is very good at learning discourse patterns, and that the impact of cohesion

features decreases as they broaden to capture fuzzier relationships.

4.3.1 Implementation

The impact of the mention-pair model on the evolution of coreference resolution has

resulted in the majority of documented features being factored over two mentions. In

using an entity-level model, we need to adapt these features for our system and we do

so by identifying a number of general-purpose feature transformations, described next.

We expand the set of objects over which features may be factored by including a novel

depth feature which is defined with respect to the current state of the forest. We also

introduce lifespan score as a novel way to incorporate Recasens et al.’s (2013) insights

into a joint framework.

Feature Transformations

We outline four strategies for transforming features factored over mention-pairs into

features which compare entity clusters (candidate antecedents) with a mention (the

anaphor).

cluster level attributes Since pooling attributes means that entity clusters have a

collection of properties previously only stored at the mention level, we are able to apply

mention-pair features using these attributes with minimal change. In particular, we

can use the same feature functions, only with a revised signature.
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Class Description
Grammar argument number of the anaphor

verb governing the anaphor
mentions have a common NP ancestor
mentions have a subject-object relationship
mentions have a span overlap

Surface Cohesion mentions have an exact string match
mentions have a relaxed string match (Björkelund and Farkas, 2012)
mentions have a substring match
mentions have a head match
mentions have a head substring match
edit distance between mentions’ head words
mentions are an acronym and its expansion
number of words in common
number of premodifier words in common
anaphor introduces new proper name modifier
mentions have the same length

Attribute Cohesion mentions agree on animacy
mentions agree on gender
mentions agree on coarse-grained semantic class
mentions agree on grammatical number
mentions disagree on pronoun normalised form
anaphor is a conjunction
number of conjuncts in anaphor
mentions disagree on number of conjuncts
anaphor length, in tokens

Lexical Cohesion Lin (1998a) similarity of mentions’ head words
mentions are synonymous in WordNet
mentions’ first shared sense in WordNet

Proximity distance between mentions, in number of sentences
distance between mentions, in number of mentions
depth of antecedent, counting all entity clusters
depth of antecedent, excluding singleton entity clusters
depth of antecedent, counting only ne entity clusters

Discourse / Topicality anaphor is indefinite nominal
antecedent size, in number of mentions
pairing’s lifespan score
(feature prefixing)

Lexicalised text (pos, shape) of anaphor’s (closest antecedent mention’s) head
text (pos, shape) of the first token of the anaphor (closest mention)
text (pos, shape) of the last token of the anaphor (closest mention)
text (pos, shape) of the token directly preceding the anaphor (closest mention) span
text (pos, shape) of the token directly following the anaphor (closest mention) span

Table 4.3: Baseline feature set of limeric.
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Where it does not make sense for attributes to be expressed at the cluster-level, we

evaluate features pairwise against each mention in a cluster. We then determine the

feature value from the results of these pairwise comparisons.

any Return True if any pairwise comparison returns True. This transformation should

maximise the observed compatibility of pairs, particularly where an indicator is ex-

pected to be sparsely attested.

best Use the most compatible pairwise comparison to determine the feature value.

count Return the number of pairwise comparisons which returned True. This feature

transformation is useful for strengthening the compatibility between mention-cluster

without yielding multiple features per positive comparison.

Grammar

Grammar comprises three traditionally mention-pair features, which are implemented

with the any transformation: a syntactic violation with any clustered mention should

count against the entity cluster as a whole. The features capturing whether mentions

share a common NP ancestor are defined using the constituency parse structures

included with the OntoNotes, and subject-object relationship using the predicate-

argument annotations.

Cohesion

We define cohesion features over three levels of information, the surface form of

mentions, their linguistic attributes, and the lexical semantic relationships of their

head words. Values for the linguistic attributes of animacy, gender, and grammatical

number are assigned heuristically using similar strategies to Raghunathan et al. (2010).

Coarse-grained semantic class is also defined using Raghunathan et al.’s heuristics for

pronouns, and Soon et al.’s (2001) WordNet method for nominals. Lexical semantic
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relationships are determined using the first sense of a nominal head word, since this is

typically a good baseline for word sense disambiguation.

Surface Form Cohesion As well as strict string match in which no normalisation is

performed, we incorporate the relaxed string match formulated by Björkelund and

Farkas (2012), in which punctuation and possessive markers are ignored. Björkelund

andKuhn additionally ignored determiners, butwe found better performance including

them in comparison strings.

Features over the number of words and premodifiers in common are defined over

the pooled word and premodifier lists to maximise the model’s ability to identify com-

patibility from sharing many words, or incompatibility from restrictive modification.

Features over the exact match of mentions’ string and head words are transformed

using the count transform, with a maximum value of 5, while those over relaxed forms

of matching use the any transformation. The one exception is head edit distance, which

uses the best transformation (with feature value capped at 5) since we would like to

return the edit distance of the most similar head words involved.

Attribute Cohesion We implement traditional features capturing the cohesion of

features based on animacy, gender, semantic class, and number. As a specialised variant

of grammatical number agreement, we include features over the number of conjunctions

inmentions, determined heuristically from the parse structure of amention. We include

these features since we found that mentions with more conjuncts were less likely to

participate in coreference. All are implemented with cluster-level attributes.

Lexical Semantic Cohesion There exist a range of metrics to gauge lexical semantic

similarity (cf. Ponzetto and Strube, 2006). Ng and Cardie’s (2002b) similarity feature

uses path length in the WordNet ontology, which is compromised from WordNet

granularity being not consistent throughout. We instead use (Lin, 1998a) similarity,

formulated with the best transformation such that the clustered mention which is most
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related to the active mention is used in feature generation. Similarity values are binned

[0.0, 0.2], (0.2, 0.6], (0.6, 0.8], (0.8, 1.0].

Proximity

We include two complementary ways to measure proximity.

distance Implementation of the common distance metrics, transformed using the

best transformation to give the distance between the mention and the closest mention

in the cluster. Distance is measured in two different features, and capped at 10.

Since depth from the right frontier of the forest in our model represents relative

cognitive accessibility, we introduce depth features as the cognitive analogues of dis-

tance.

depth Index with respect to the right frontier of the forest. Since this is inherently

a cluster level feature, no transformation function is required. We do, however, bin

the values; the bins we define represent the depths top = [0], upper = [1, 2, 3, 4, 5],

lower = [6, 7, 8, 9], bottom = [10, ..., ∞].

We define three variants of the depth feature, each designed to filter incidental

discourse entities which may not have decayed from the accessible portion of the forest

but are nonetheless likely to be outside the attention of the reader.

Discourse / Topicality

cluster size The number of mentions in a cluster is expected to reflect the topicality

of its referent, with large clusters corresponding to topical entities.

lifespan score We introduce lifespan score tomodelwhether amention is expected to

remain in a singleton cluster. Lifespan score is a numeric feature based on the regression

co-efficients presented by Recasens et al. (2013). To calculate lifespan features, each
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mention is assigned a score which is the sum of the regression coefficients for the

singleton indicators it satisfies. An alternative formulation could simply base each

mention’s score on the probability value given by Recasens et al.’s regression classifier;

however, we opted not to implement scoring in this way to allow for indicators to be

easily dropped from or added to future work.

By assigning mentions lifespan scores, we would like to learn that mentions with a

high score should remain as singleton clusters and mentions with low scores should

merge and form larger coreference clusters. When classifying a ‘shift’ operation, the

value of the lifespan feature is the value of the active mention’s score; when classifying

a ‘reduce’ operation, it is the sum of this with the lifespan scores of the mentions in

the candidate antecedent cluster. In both cases, lifespan score is binned by flooring the

resulting lifespan score from floating point to integer value. In this way, the feature will

disprefer large clusters, particularly those containing mentions which should remain

as singletons. We found that summing performed better than averaging lifespan scores

(which would counter the effect of cluster size on lifespan score) and attributed this to

averaging ‘blurring out’ differences captured in the scores.

Feature Prefixing After Durrett and Klein (2013), we generate ‘prefixed’ features:

multiple variants of each feature generated. Each time a feature from Table 4.3 is

generated, we activate three distinct features. The first is unadorned, the second is

specialised by the type of the current mention, and, for reduce operations, the third

is specialised for the discourse transition being proposed. Concretely, if a feature X

is activated on a reduce comparison between the mention ‘he’ and the cluster [‘The

President’], we would generate the three features <X>, <mention=pronoun, X>, and

<name->pronoun, X>, since ‘he’ has type pronoun and the transition from the last

mention in the cluster to the current mention is from proper name to pronoun.

While prefixing inflates the size of our feature set, the features generated are more

meaningful since we would expect many indicator functions to behave differently on,
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for example, a pronoun anaphorically referring to a mention in the same sentence, and

a proper name reintroducing an entity mentioned several sentences ago. Also, since

we use perceptron learning, feature weights are only tuned if the feature is useful in

making a decision during training.

We note that prefixing is not a feature type itself, but include it under the class of

discourse features since the prefix labels capture discourse transition patterns.

Lexicalised

We implement the data-driven features explored by Fernandes et al. (2012) and Durrett

and Klein (2013). For each of the following three variants, we include five distinct

feature types for the tokens mentioned in Table 4.3. The resulting fifteen feature types

are generated both for the anaphor mention as well as the closest antecedent mention

in the candidate entity cluster.

text The surface form of the given token. Since these features are, by design, sparse,

Durrett and Klein uses a frequency threshold on their generation. They found that only

generating text features for tokens which were seen at least 20 times in the training data

worked well in their system. We find a threshold of 50 works better for our system.

pos tag Durrett and Klein (2013) uses a back off to pos tags in the case where a

lexical item does not meet their lexical frequency threshold. We include this as an

independent feature.

word shape To generalise patterns in morphology, proper names etc. we define

analogous features to text and pos tags with the shape of the word, where shape

reflects the evaluation of:

• Is the token text allcaps? Title case? All lower case?

• Is the token text numeric?

• Does the token text contain a hyphen character?
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muc B3 ceafe CoNLL

limeric 73.24 61.29 59.07 64.53

- Grammar 73.04 60.99 58.56 64.20

- Surface Cohesion 69.92 56.64 54.81 60.46

- Attribute Cohesion 71.64 59.32 57.42 62.79

- Lexical Cohesion 73.06 60.97 58.72 64.25

- Proximity 65.98 53.45 50.14 56.52

- Discourse / Topicality 66.83 52.17 48.72 55.91

- Lexicalised 69.40 57.20 53.80 60.13

Table 4.4: Ablation analysis over CoNLL-2012 dev using gold preprocessing.

• Does the token text end with a known suffix2?

4.3.2 Analysis

We study our feature set in an ablation study as well as in feature weight analysis. To

understand the operation of our system, as well as to validate our novel depth features,

we profile the forest of discourse entities.

Ablation

Table 4.4 gives the performance of each model in our ablation study on the CoNLL-2012

dev portion of OntoNotes using gold preprocessing. We first run limeric with the

complete feature set described above, then remove features according to the classes

given in Table 4.3. Each model is retrained with CoNLL-2012 train.

The feature classes with the largest impact on system performance are proximity

and discourse / topicality, whose removal degrades the CoNLL score by over 8%.

Furthermore, discourse / topicality, along with lexicalised, is also the class which

accounts for the largest number of features via our prefixing strategy. That is, the

performance of limeric is strongly tied to its large feature set.

2-ed, -ing, -ion, -er, -est, -ly, -ity, and morphological -s
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Considering the impact of removing discourse / topicality and lexicalised features,

we can see that ceafe is the most sensitive of our metrics to these changes. Moreover,

these drops in ceafe stem from a larger drop in recall than in precision (11.54% and

6.27% compared to 8.81% and 4.01%). Given the algorithm used to calculate ceafe
(cf. Section 2.2.3), we can infer that these features stop our model from missing gold

entity clusters: cohesion features, the major focus of coreference research, are not yet

sufficient for making all decisions of coreference, especially in cases where there are

discourse cues such as proximity to inform the decision. Indeed, Accessibility theory

makes the stronger claim that cohesion features are inherently insufficient for resolving

reference and that all mechanisms it identifies are required.

Among the cohesion features, surface form cohesion is more important for system

performance than attribute cohesion which, in turn, is more important than lexical

semantic cohesion. This is consistent with the trend we noted in the last chapter

whereby the performance of systems plateaus as features broaden to include fuzzier

relationships.

Feature Weight Analysis

Since we use a linear model, it is possible to analyse feature weights to introspect system

performance. We do this by reporting the number of unique features in the complete

limeric model above with non-zero feature weight and their average magnitude. We

use the same feature classes described previously, and additionally subclass features

from surface cohesion, proximity, and lexicalised in order to understand the diversity

in these broad feature classes.

Exact surface form cohesion captures exact string and head match, as well as men-

tion length match; measured includes continuous-valued features: head edit distance

and number of words or premodifiers shared; relaxed takes in the remainder of the

surface form cohesion features, various forms of inexact match. We can see that the

relaxed subclass has the highest average feature weight of the three subclasses, as well
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Class Features Weight

Grammar 1746 0.119

Surface Cohesion 2713 0.131

exact 885 0.115

relaxed 808 0.148

measured 1020 0.130

Attribute Cohesion 8697 0.134

Lexical Cohesion 3326 0.068

Proximity 3363 0.113

distance 2093 0.110

depth 1270 0.117

Discourse / Topicality 4964 0.047

Lexicalised 371489 0.067

text 334497 0.063

pos tag 23246 0.104

word shape 13746 0.109

Figure 4.4: Number of distinct features and their average weight in limeric, by
feature class and subclass.
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as the fewest distinct features: it compactly provides a good model of surface form

cohesion. Comparing relaxed surface form, attribute, and lexical cohesion, we can see

that the average feature weight decreases from one to the next. This is again consis-

tent with our observation that performance plateaus as cohesion features broaden to

capture fuzzier relationships.

The two strongest feature classes from our ablation study, proximity and dis-

course / topicality, have very different average feature weights. On the one hand,

proximity is highly reliable, with both distance and depth features achieving weights

over 0.1 despite modelling similar phenomena. We note that depth has both the higher

average feature weight and smallest number of distinct features, suggesting, in the least,

that position in the self-ordering forest is meaningful for informing resolution. On the

other hand, discourse / topicality has a large number of low-weighted features. While

it could be that a large number of dimensions required to model these phenomena, it

would be instructive to investigate ways to compress the space, e.g. by binning. We note

that within this class, lifespan score performs well, having 441 features with average

weight 0.100, suggesting that modelling singletonhood is an important sub-task of

coreference resolution.

Despite its strength in our ablation study, lexicalised features have low weights

as a class. This is explained by feature set sparsity: text based features comprise 90%

of lexicalised features but have lower weight on average than the more compact pos
tag and word shape features. While removing text-based lexicalised features from

the limeric model results in a small performance decrease, they could be profitably

omitted from systems for which short computation time is vital.

Profile of the Forest

The above analysis demonstrated the importance of proximity features and suggested

that the cognitively-motivated depth was perhaps a better indicator than textual dis-

tance. Given the importance we give to the relative depth of an entity later in this thesis
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Figure 4.5: Depth in forest of correct prediction in CoNLL-2012 dev using gold

preprocessing.

(cf. Chapter 6), we explore its profile in Figure 4.5, which plots the depth from the

right frontier of the forest of the correct target of a reduce operation in CoNLL-2012

dev (gold preprocessing). The blue series represents the depth of this target when

clustering follows gold standard transitions and the red series depths when following

system predictions from the full limeric model above. We note a very long tail to this

distribution and plot up to depth 20, which cumulatively represents 88% and 89% of

the gold and system transitions data, respectively.

We can see that, consistent with our design to keep accessible targets at the right

frontier of the forest (depth 0), the majority of the correct targets are at small depth

values and the distribution decays quickly away from this point. However, the peak in

the distribution is at depth 0 for gold transitions but depth 1 for predicted transitions

and predicted targets tend to be deeper in the forest than gold targets.

This difference between the distribution in the two settings is discouraging given

thatwe tune featureweights based on gold transitions in training, while runtime follows

system predictions. While training on predicted transitions using beam search would

address this problem, Björkelund and Kuhn (2014) dismiss this approach since the

coreference feature set is not sufficiently informative to prevent the correct resolution

of a document quickly falling out of the beam, requiring it to be repeatedly re-seeded
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from the gold standard. We use these observations to motivate including both distance

and depth features in our feature set despite their similarity: if depth is imperfectly

tuned, its negative impact can be countered by distance.

4.4 Evaluation

We benchmark the performance of limeric against the current state of the art for the

CoNLL-2012 shared task guidelines (cf. Chapter 2). All experiments are run using the

standard splits of the OntoNotes 5 dataset, version 8.01 of the official scorer3 (Pradhan

et al., 2014), and evaluate performance using the CoNLL metric which averages the

muc F-score (Vilain et al., 1995), B3 (Bagga and Baldwin, 1998) and ceafe (Luo, 2005).

Gold and automatic pre-processing corresponds to the annotations provided for these

settings in the official dataset release (cf. Chapter 2). Error analysis follows using

Kummerfeld and Klein’s (2013) software release.

4.4.1 Benchmarking

We compare our performance against that of three systems which reflect the diver-

sity of state-of-the-art approaches introduced in Chapter 3. The performance of Lee

et al.’s (2011) multi-pass sieve architecture has been surpassed by more recent systems,

but is included as a reference entity-level approach. Fernandes et al. (2012), Björkelund

and Kuhn (2014), and Chang et al. (2013) all use structured prediction whose mention-

synchronous decoding incorporates global consistency constraints in a similar way to

best-first decoding in our mention-pair models. Fernandes et al. uses no entity-level

features and Björkelund and Kuhn’s software release can be used with or without such

features. We compare against both settings.

Table 4.5 presents our performance on the CoNLL-2012 test dataset, with gold and

automatic preprocessing. Models are trained on the concatenation of the train and

3http://conll.github.io/reference-coreference-scorers/
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Gold Auto

System G E muc B3 ceafe CoNLL muc B3 ceafe CoNLL

Lee et al. (2011) X - - - - 63.82 51.21 47.60 54.21

Fernandes et al. (2012) X 72.18 59.17 55.72 62.36 70.51 54.47 53.86 60.65

Björkelund and Kuhn (2014) X 72.65 59.98 57.94 63.52 69.25 56.14 54.19 59.86

Chang et al. (2013) X X - - - - 69.48 57.44 53.07 60.00

Björkelund and Kuhn (2014) X X 73.80 62.00 59.06 64.95 70.72 58.58 55.61 61.63

limeric X X 73.83 60.70 58.13 64.22 70.09 56.21 53.68 59.99

Table 4.5: Performance of limeric on CoNLL-2012 test.

dev portions of the dataset. G denotes where systems use non-local decoding and E

where systems use entity-level features.

We can see that, despite the simplicity of our learning and decoding compared to

structured predication, our system compares favourably with existing systems. In the

gold preprocessing setting, we outperform by at least 0.70% CoNLL score all systems

which use only global-consistency decoding or entity-level modelling, arguing for their

mutual benefit to the task. Furthermore, we are competitive with the contemporary

Björkelund and Kuhn (2014) system, which at the time of this work, was the best

reported performance on CoNLL-20124.

The transition fromgold to automatic preprocessing ismore problematic for limeric
than the other systems. While we compare favourably with Lee et al. and Björkelund

and Kuhn (without entity-level features), and Chang et al., we trail Björkelund and

Kuhn’s best system by 1.64%. We saw in the last section that our system assigns high

weights to grammatical, attribute cohesion, and pos tag features, all of which will

be noisy in automatically pre-processed data. We explore features to improve our

performance across both settings in following chapters.

4As noted in Chapter 3, the current best reported performance is Wiseman et al. (2015)
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4.4.2 Error Analysis

We explore system performance further in Figures 4.6 and 4.7. These plots show the

number of errors made by limeric, as well as both configurations of Björkelund and

Kuhn’s (2014) IMS system, in the seven error categories reported by the tool described

by Kummerfeld and Klein (2013). Local denotes where IMS does not use entity-level

modelling and global where it does.

Our first observation is that the error profiles of limeric and Björkelund and Kuhn

look similar: both systems make a large number of conflated entity and divided entity

errors, comparatively few missed mention and missed entity errors, and fewest span,

extra mention, and extra entity errors.

Despite IMS (global) outperforming limeric, we generate fewer errors in five out

of seven error categories: span, conflated entity, missed mention, extra mention, and

extra entity. However, the two error categories where IMS is stronger, divided entity

and missed entity, are shown in Kummerfeld and Klein to have the biggest impact

on standard evaluation metrics. These biases are reasonable given that the metrics

have been designed to measure how good produced clusters are and being overly

conservative means that document cohesion has not been understood.
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Figure 4.6: Errors made by limeric and the current state of the art, IMS, on

CoNLL-2012 test using gold preprocessing.
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Figure 4.7: Errors made by limeric and the current state of the art, IMS, on

CoNLL-2012 test using automatic preprocessing.
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4.5 Summary

In this chapter, we have designed and implemented limeric, an incremental corefer-

ence resolution engine based on insights from the LR(1) shift-reduce parsing algorithm

and cognitive models of human discourse processing. limeric processes a document

by reading extracted mentions in top-to-bottom, left-to-right human reading order,

without look ahead. Entity clusters emerge as a discourse progresses, with growing

clusters being stored in a self-ordering list which operates as a simple model of the

human mind. As well as being linguistically motivated, our formulation gives us a

natural way to encode both non-local decoding and entity-level modelling, and out-

performs all documented systems using just one encoding of global consistency in

isolation.

We implement a rich feature set based on our review of the literature. We formulate

general processes to convert existing mention-pair indicators into entity-level features,

and propose lifespan score and depth as novel, cognitively-aware ways to model

singleton detection and perceived proximity. Analysis validates the soundness of

these proposals and reveals that discourse patterns are particularly well-learned. We

therefore extend our discourse model in the next chapter, using insights from the

Accessibility hierarchy. Our analysis also illustrates that system performance gains

from cohesion features plateau as they broaden to capture fuzzier relationships. This

observation is studied in Chapter 6 and frame semantic inference features to address it

are explored in Chapter 7.

We benchmark our system against the contemporary state of the art and find that

despite its simplicity, it is competitive with such. Error analysis shows that it trails state

of the art from being more conservative.



5 Accessibility Hierarchy

Work described in this chapter forms part of the conference paper Kellie Webster and Joel Noth-

man. 2016. Using mention accessibility to improve coreference resolution. In Proceedings of

the 54th Annual Conference of the Association of Computational Linguistics.

In this chapter, we build a richer discourse model into limeric to capitalise on our

finding that our competitive performance is strongly associated with our ability to

learn discourse transition patterns.

We start by formalising our experimental questions before adapting theAccessibility

hierarchy to the written English data of OntoNotes 5.0. We then confirm the relevance

of the fine-grained typing scheme to annotations in the dataset in two ways. First, we

analyse discourse trends across OntoNotes through the lens of the hierarchy. Second,

we devise a series of experiments that extend the discourse modelling of limeric to

include the new fine-grained mention types.

Feature prefixes using type transitions boost the performance of limeric to be

as strong or stronger than the state of the art set by Fernandes et al. (2012) on the

shared task, achieving 64.96% and 60.58% on CoNLL-2012 using gold and automatic

preprocessing, respectively. We attribute our significant improvement to our modelling

of fine-grained trends in reference expression usage which cannot be formulated in the

commonly used, coarse-grained typology of mentions.

113
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Full name + modifier < Full name < Long definite description < Short definite description

< Last name < First name < Distal demonstrative + modifier < Proximate demonstrative + modifier

< Distal demonstrative + NP < Proximate demonstrative + NP < Distal demonstrative

< Proximate demonstrative < Stressed pronoun + gesture < Stressed pronoun < Unstressed pronoun

< Cliticised pronoun < Verbal inflections < Zero

Figure 5.1: Accessibility hierarchy of Ariel (2001).

5.1 Research Questions

In Chapter 3, we saw that the Accessibility hierarchy is one of two mechanisms used

by Ariel (2001) to explain human reference resolution. The hierarchy orders a series of

fine-grained classes of reference expression according to the level of activation their

discourse referent is expected to be. It is these mention types, via their position in

the hierarchy, which instruct hearers how to retrieve referent discourse entities, thus

guiding our resolution of coreference. The hierarchy given in Ariel, derived for spoken

Hebrew, is reproduced in Figure 5.1.

In this chapter, we analyse OntoNotes coreference annotations and design a prefix-

ing strategy to incorporate insights from the hierarchy into limeric’s discourse model.

Both of these contributions address two research questions about the applicability of

the Accessibility hierarchy to coreference resolution. Our research questions are:

1) Do the fine-grained classes of the Accessibility hierarchy provide a better descrip-

tion of English coreference than currently used coarse-grained classes?

2) Does the total ordering given in the Accessibility hierarchy describe coreference

patterns in English?

In this chapter, we find strong evidence for the applicability of the fine-grained

classification scheme, but only weak evidence for its proposed ordering. We suggest

that there is not strong evidence for the proposed ordering of reference forms since
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different forms have different functions in texts and it may be that ordering pertains to

functions only.

5.2 Experimental Setup

In this section, we describe our implementation of the Accessibility hierarchy and how

we use it to describe discourse transition pairs, which are the base unit of our analysis

of discourse trends in OntoNotes, and are used as prefixes in the feature development

experiments which follow.

5.2.1 Mention Classification

Our experiments start by classifying mentions as belonging to a particular class from

the Accessibility hierarchy. To do this, we first map the hierarchy to the simple ordinal

numbering scheme given in Table 5.1. In defining this mapping, we necessarily make

some changes to Ariel’s classes so that we can describe English text, but aim to keep

these minimal. Table 5.2 illustrates our classes by giving the most common mention

strings for each.

We have generalised last name and first name to single-word name (AR = 7) and

full name to multi-word name (AR = 2) to remove the implicit assumption that we

are only dealing with person entities. This mapping, however, does not account for

entities whose full name is one token long, such as some organisations and geopolitical

entities. Indeed, the most common mentions strings in AR = 7 are single-token entity

names. However, the full task of identifying canonical names would require named

entity linking, which is outside the scope of this work.

Ariel does not make a distinction between first, last, or full names with modifier,

so we similarly allow the AR = 1 class to incorporate single- or multi-word names

accompanied by modification. Modifiers to name mentions are any tokens not tagged

with the same ner label as the head token, disregarding determiners, possessive
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AR Description %

1 Name + modifier 5.1
2 Multi-word name 8.9
3 Long indefinite description 22.2
4 Short indefinite description 9.4
5 Long definite description 11.3
6 Short definite description 7.5
7 Single-word name 11.2
8 Distal demonstrative + modifier 0.2
9 Proximate demonstrative + modifier 0.01

10 Distal demonstrative + NP 0.7
11 Proximate demonstrative + NP 1.2
12 Distal demonstrative 0.8
13 Proximate demonstrative 0.6
14 Pronoun 21.0
- Zero -

Table 5.1: Accessibility rank values used in our experiments, with their base

distribution over extracted NPs.

AR

1 Mr. Keating; President Bush; President Clinton; Mr. Clinton; Mr. Papandreou

2 Hong Kong; New York; the United States; last year; Xinhua News Agency

3 real - estate; national service; program trading; many people; foreign capital

4 there; people; all; anything; everything

5 the SAR government; the same time; the Bush administration; our country ’s mainland;

the Korean peninsula

6 the world; the people; the president; the company; the market

7 Taiwan; first; Jesus; God; today

8 all that; those responsible; those who ‘S’

9 this : ‘S’ ; this : ‘S’; this to say; this , ‘S’

10 that time; those people; those days; that guy; that way

11 this case; this point; these things; this guy; these people

12 that; those

13 this; these

14 it; I; you; they; he

Table 5.2: Most common mention strings for each accessibility rank value.
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markers, and punctuation. Table 5.2 shows examples of person names with role and

title information, though modification can also include more complex structures such

as apposition. We therefore expect the distinction between AR = 1 and other proper

name classes to be clouded when using automatic preprocessing.

We have introduced classes for indefinite descriptions since definiteness is an

important grammatical distinction for English, though not for Hebrew. We opt to insert

indefinite descriptions above definite descriptions since indefinite descriptions are

more likely to introduce discourse entities than definite descriptions are in OntoNotes

(see Table 5.3). We label any mention started by the determiner ‘the’ or a possessive

pronoun as a definite description, and any nominal not started by one of these articles

or a demonstrative, including those started by the determiner ‘a’ or no determiner at

all, as an indefinite description.

We label descriptions as long or short by according to the number of tokens they

comprise when possessive markers, punctuation, and articles are excluded. Short

descriptions are those where only one token, the mention’s head, remains while long

descriptions are anything longer than this. In Table 5.2, we see the extra tokens can cover

noun compounding, adjectival pre-modification, and possessive constructions. Outside

these common examples, they also cover prepositional phrase post-modification.

Distal demonstratives are mentions starting with ‘those’ or ‘that’ and proximate

demonstratives are those starting with ‘these’ or ‘this’. Modification to a bare demon-

strative is called an NP (AR = 10 and 11) if the pos tag of its syntactic head starts with

‘N’ and a modifier (AR = 8 and 9) otherwise. The most common modifiers are clauses.

Also given in Table 5.1 is the base distribution over extracted mentions. Over

one-third of extracted mentions are indefinite descriptions, while proper names and

pronouns each make up roughly one-quarter of mentions. The remainder is mostly

definite descriptions, though the other mention types have scattered representation.
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5.2.2 Discourse Transition Pairs

Next, we would like to know what classes of mention tend to co-occur in coreference

relationships. In our analysis of OntoNotes, we do this by iterating over entity clusters

and tracking the classes of the mentions these cover. To form prefixes which reflect

co-occurrence tendencies, we consider the classes which would similarly be related if

the current mention were to join a given candidate antecedent cluster.

We define discourse transitions to be tuples of AR values over coreferential men-

tions. This means that trends will surface as commonly seen tuples. In the following

excerpt, we could generate the 3-tuple (1, 14, 14) for the discourse transition across the

cluster of the three coreferential mentions indicated in bold. Defining such arbitrarily

large tuples is problematic given that sparsity would increase with tuple length and

consistencies in regions of large clusters might not necessarily emerge. It also limits the

applicability of transitions to incrementally growing clusters. We therefore reduce tu-

ples to be pairs since mention-pair models have been important in coreference research,

and the entity-level modelling we use in this thesis is based implicitly on mention-pair

features.

Israeli Prime Minister Ehud BarakAR=1 called hisAR=14 cabinet into spe-
cial session late Wednesday , to discuss what heAR=14 called a grave esca-
lation of the level of violence in the Palestinian territory.

5.3 Trends in OntoNotes 5.0

Using our implementation of mention classification and discourse transition pairs,

we are now ready to explore trends in OntoNotes, specifically the CoNLL-2012 dev
portion of the dataset. The goal of this analysis is to identify any consistent trends in

the discourse behaviour of extracted mentions according to their assigned fine-grained

class. That is, we would like to find if there are any rules of thumb akin to “full

names introduce entities, pronouns are anaphoric” that we can formulate over our
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fine-grained types. We find that the discourse behaviour of proper names and nominals

shows systematic trends in our fine-grained typology which are not expressible in a

coarser-grained typology. While we find a tendency for referential forms to increase

in accessibility across clusters via pronominalisation, we also find a tendency for

accessibility to be retained. More problematically, we find no clear tendency for definite

descriptions to condition a reduction, retention, or even augmentation of accessibility:

their discourse behaviour is more complex than given in the Accessibility hierarchy.

We also consider tendencies in the AR values of extracted mentions which cannot

be aligned to gold mentions, since these correspond to discourse singletons, which

we would also like to characterise. We similarly find that a fine-grained classifica-

tion scheme is better than a coarse-grained one to describe tendencies in discourse

singletonhood.

5.3.1 Discourse Transition Trends

To extract discourse transition pairs over the coreference annotations in dev, we iterate

over the entity clusters; for each mention in each cluster, we generate up to three pairs,

one for each of its closest antecedents. For instance, for the third mention ‘he’ in our

example above, we generate the two pairs (1, 14) and (14, 14).

Extracting multiple pairs for each mention enables us to capture the insight de-

scribed of entity-level models that anaphoric links may be latent at the entity level.

Table 5.3 aggregates the relative frequency of these tuples, with AR(antecedent) on

the vertical and AR(anaphor) on the horizontal, with values less than 5% omitted for

clarity. The first column gives the proportion of cluster-initial mentions of each AR

type (e.g. 21% of gold clusters have a long definite description as their first mention).

Subsequent proportions in each row are normalised to sum to 1. No values are given

for AR = 9 due to its low count (9 instances).

Given the normalisation applied to the rows of Table 5.3, each row indicates the

probability distribution for the expected next mention of a cluster. In the representation
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XXXXXXXXXXXXXXXX
AR(antecedent)

AR(anaphor)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Name + modifier 1 0.12 0.22 0.06 0.15 0.48

Multi-word name 2 0.12 0.31 0.06 0.14 0.40

Long indefinite description 3 0.21 0.07 0.09 0.14 0.52

Short indefinite description 4 0.06 0.05 0.12 0.05 0.65

Long definite description 5 0.14 0.21 0.15 0.09 0.41

Short definite description 6 0.08 0.07 0.37 0.07 0.39

Single-word name 7 0.15 0.49 0.42

Distal demonstrative + modifier 8 0.01 0.05 0.05 0.05 0.79

Proximate demonstrative + modifier 9 0.01
Distal demonstrative + NP 10 0.01 0.07 0.10 0.13 0.54

Proximate demonstrative + NP 11 0.02 0.05 0.10 0.11 0.12 0.54

Distal demonstrative 12 0.00 0.05 0.05 0.34 0.43

Proximate demonstrative 13 0.00 0.08 0.05 0.05 0.71

Pronoun 14 0.08 0.09 0.82

Table 5.3: Accessibility transitions in CoNLL-2012 dev by accessibility rank value.

of Table 5.3, the rule of thumb “full names introduce entities, pronouns are anaphoric”

translates to an expectation that the rows of proper names (AR = 1, 2, and 7) will have

high probability mass in higher accessibility forms, while pronouns (AR = 14) should

have high probability mass down all rows.

Reading the rows for proper name types, we can see that modified and multi-word

names have a tendency to reduce to single-word names, and both reduce to pronouns.

Single word names retain their mention form and reduce to pronouns with roughly

equal probability. Both these observations are consistent with our expectations.

Pronouns similarly behave as expected. There is a band of dark shading in the

pronoun column indicating that all mention types reduce to be pronouns. That is,

pronouns can have the function of indicating coherence by making anaphoric reference

to any mention type. Furthermore, once reference has reduced to be pronominal, there

is a high likelihood (82%) that this form will be retained. We note also that this trend
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reflects the predictions of Centering theory, which says that topical entities tend to be

referred to with chains of pronouns, as their salience is retained throughout a discourse.

Since mentioning a discourse entity will increase its accessibility in the mind of a

reader, we might expect ARs to increase between antecedent and anaphor. If this were

the case, we should see more shading above the diagonal than below. Aggregating over

OntoNotes transition pairs, 22% of transitions increase AR while 14% of transitions

decrease AR. That is, while there is a preference for moving up in rank rather than

down, this preference is slight. 64% of transitions involve accessibility being retained.

Stronger evidence against a tendency for accessibility to increase over references is

the band of shading we see down the rows for AR = 5, 6, and 7. This shading means

that definite descriptions can validly refer to mentions of any type, as we saw for

pronominal reference. This is reasonable since in OntoNotes documents, particularly

those from the news domain, mentions like ‘the company’, ‘the nation’, ‘the city’, and

‘the X-year-old’ appear to have the same discourse function as pronouns, acting as

conventionalised quasi-pronouns, injecting extra facts about important entities in short

spans. This banding also adds to the list of reasons why definite descriptions have

been so problematic for modern resolution systems: as well as being semantically rich,

their discourse behaviour is complex.

Finally, we assess whether the transitions we see in Table 5.3 are expressible in

the traditional coarse-grained typology of coreference mentions. Our fine-grained

typology differs from this standard in at least two dimensions: mention classes reflect

the length of mentions, and nominal mentions are further classified by their article.

We see that both these dimensions are important for understanding the discourse

behaviour described in Table 5.3.

First, article is important. Long indefinite descriptions are more likely to start

coreference clusters than long definite descriptions (21% vs. 14%), which are in turn

much more likely to start clusters than demonstratives. Also, length is important

because short indefinite descriptions are more likely to reduce to pronouns than long
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definite descriptions. Also, short definite descriptions have a higher chance of being

retained throughout the discourse than long definite descriptions. When it comes to

whether the actual mention string is retained short definite descriptions have a higher

tendency for surface form to match than long definite descriptions do: 86% of short

definite descriptions are head matched, compared to 60% of long definite descriptions,

and 60% of short definite descriptions are string matched, compared to 27% of long

definite descriptions.

5.3.2 Anaphoricity Trends

We now consider extracted mentions which are not aligned to gold mentions. We

have seen previously (cf. Chapter 4) that these correspond to discourse singletons, first

mentions of an entity which are not mentioned again in a discourse. Given that we

learn coreference jointly with singleton identification, we would like to understand

any patterns in singletonhood by AR value, since these can potentially improve our

ability to label mentions as markable or not. Table 5.4 gives the proportion of unaligned

extracted mentions by AR value.

We can see that most mention types have a high proportion of singletons, presum-

ably due to our high recall implementation of mention extraction. Pronouns are the

mention type with the lowest likelihood of being singletons, which accords with our

expectation that their function is largely anaphoric. Where pronouns are in singleton

clusters, they tend to be second person (‘you’) and third person neuter (‘it’) or, less com-

monly, first person plural (‘we’) pronouns. This makes sense given that these pronouns

have a rhetoric, non-referential function which falls outside the scope of OntoNotes

annotation. We also remember that texts from new genres (e.g. telephone conversation)

were artificially sectioned in creating the OntoNotes corpus. At times, this sectioning

means that anaphoric pronouns are not annotated as such since their antecedent is not

in the same section as the pronoun.
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AR Description

1 Name + modifier 0.56
2 Multi-word name 0.65
3 Long indefinite description 0.89
4 Short indefinite description 0.92
5 Long definite description 0.75
6 Short definite description 0.54
7 Single-word name 0.44
8 Distal demonstrative + modifier 0.69
9 Proximate demonstrative + modifier 1.00
10 Distal demonstrative + NP 0.43
11 Proximate demonstrative + NP 0.41
12 Distal demonstrative 0.43
13 Proximate demonstrative 0.60
14 Pronoun 0.21

Table 5.4: Proportion of singletons in CoNLL-2012 dev by accessibility rank value.

Along with demonstratives, proper names are the type with the next lowest propor-

tion of singletons. Single word names are less likely to be singletons than modified

and multi-word names. This may be due to at least two different factors. The first is

the presence of non-markable names among our set of singletons. In particular, proper

names in an appositional phrase are not markable. The second is that the burden of

supplying disambiguating modification will be more worthwhile for entities which

are important in the discourse and mentioned multiple times. That is, our statistics

reflect common sense intuitions about language use, but are not expressible in a coarse

grained mention typology typically used in approaches to coreference resolution.

Both indefinite description types, as well as being the most common type of ex-

tracted mentions, show the highest proportions of discourse singletons. Exploring this

case further, we again find fine-grained patterns in mention length and article, though

they mirror the pronominalisation pattern described previous. We now see that the

likelihood for an indefinite description to form a singleton cluster is independent of its

length and is uniformly high. On the other hand, long definite descriptions are more

likely than short definite descriptions to form singleton clusters. This is consistent with
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the finding in Recasens et al. that indefinite NPs are more likely than quantified NPs to

form discourse singletons, and that the chance of an NP forming a discourse singleton

increases with the number of modifiers. Since length and article are the key sub-typing

factors in the Accessibility hierarchy, this is good evidence in favour of the hierarchy’s

fine-grained classification. That is, as well as helping us to understand the shape of

entity clusters, the fine-grained mention types in the Accessibility hierarchy are helpful

for understanding patterns in the anaphoricity of mentions.

In terms of our second research question on type ordering, we do not necessarily

anticipate any linear patterns according to the AR values of mention types.

5.4 Evaluation

In this section, we formulate novel features with reference to the preceding analysis

and test their usefulness by introducing them into limeric. In so doing, we find

further evidence in favour of the Accessibility hierarchy’s fine-grained typology, but

only marginally in favour of its ordering.

5.4.1 Feature Prefixes

In our discourse modelling for limeric, which we found was an important factor

contributing to our competitive performance, we used three variants of each extracted

feature: one unprefixed, one prefixed with the current mention’s coarse-grained type

(name, nominal, or pronoun), and one prefixed with the concatenation of the types

Gold Auto

muc B3 ceafe CoNLL muc B3 ceafe CoNLL

limeric 73.24 61.29 59.07 64.53 69.14 56.59 54.91 60.21

AR Transitions 73.80 61.98 60.26 65.35 69.60 57.06 55.53 60.73

AR Rankings 73.32 61.34 59.36 64.67 69.08 56.69 55.00 60.26

Table 5.5: Performance of AR feature prefixing on CoNLL-2012 dev.
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of the current and closest antecedent mention in the proposed entity cluster. In this

section, we test our research questions directly by introducing yet a fourth variant with

a prefix based on the richer model of the Accessibility hierarchy.

In particular, we experiment with two implementations of this prefix, namely AR

Transitions and AR Rankings. AR Transitions leverages the fine-grained classification

scheme of the hierarchy, while AR Rankings assumes its priority structure. We find

that AR Transitions outperforms AR Rankings in both gold and automatic preprocess-

ing settings. Furthermore, features learned in our AR Transitions model illuminate

interesting discourse patterns not modelled in our baseline limeric system. We there-

fore interpret our results in favour of our first research question, though assuming the

Accessibility hierarchy’s ordering does not diminish performance.

AR Transitions

In AR Transitions, this third prefix is a fine-grained version of our second, transition-

pair prefix. It is formed by concatenating the AR value of the current mention with that

of the closest antecedent in the candidate entity cluster. This means that our discourse

prefixes now represent three levels of generalisation: features can indicate whether

they describe coreference behaviour across of all comparisons (unprefixed), across

coarse-grained types (first and second prefixes), and, now, across fine-grained types

(our new third prefix). Since this prefix expands our possible feature set by a factor

of 142 = 196, we opt not to also introduce a fine-grained prefix analogous to the first

coarse-grained prefix, and instead allow limeric to learn such patterns sparsely via

our new transition-pair prefix.

We can see in Table 5.5 that, despite the potential for making our feature set overly

sparse, we gain 0.82% and 0.52%using gold and automatic preprocessing. This improve-

ment is from a simultaneous boost in precision and recall, with precision increasing

0.94% and 0.49% and recall increasing 0.71% and 0.53%. That is, AR Transitions make
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limeric AR Transitions Change

Class Features Weight Features Weight Features Weight (%)

Grammar 1746 0.119 3913 0.063 +2.2 -53

Surface Cohesion 2713 0.131 8381 0.067 +3.1 -51

Attribute Cohesion 8697 0.134 19982 0.063 +2.3 -47

Lexical Cohesion 3326 0.068 6935 0.033 +2.1 -49

Proximity 3363 0.113 8824 0.075 +2.6 -66

Discourse / Topicality 4964 0.047 9252 0.032 +1.9 -68

Lexicalised 371489 0.067 742385 0.034 +2.0 -51

Table 5.6: Number of distinct features and their average weight in our AR Transitions

model, compared to limeric.

the resolver more discriminative to make correct decisions, as well as promoting new

matches.

To understand the differences between our limeric and AR Transitions models,

we calculate the average weights by feature class, as we did in the previous chapter. We

reproduce the feature weights from limeric in the leftmost section of Table 5.6 and

compare those with those of our AR Transitions model from gold preprocessing. The

rightmost section then tabulates the change in number of features and average weights,

determined to be the percentage the new AR Transition weight is of the previous

limeric weight.

Firstly, we can see that the number of distinct features has only inflated by a factor of

between 1.9 and 3.1, rather than the potential factor of 196, indicating that fine-grained

modelling is only important for certain transitions. We can see thatmost feature families

have dropped in average weight by about half, as weight is spread across the extra level

of granularity we now have. We note two interesting cases. The number of surface

cohesion features increases threefold, yet the average weight of each is only roughly

half what it was in the limeric model: sub-typing by AR allows surface cohesion to

be a more important feature class overall. On the other hand, the number of proximity

features only reduces by a factor of 1.9 but the change in average magnitude is 68%:
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sub-typing is less important for learning patterns with mention distance, and themodel

changes minimally to reflect this.

We further explore these changes in Tables 5.7 and 5.8 show the ten most positively

andmost negativelyweighted of our new features. We can see that themost represented

mention type among the highly positive features is single word names (AR = 7).

This makes sense give that they were a mention type with a low likelihood of being

discourse singletons and, as an anaphor, were valid anaphors to almost all mention

types. Pronouns were another mention type with a high likelihood of being anaphoric

and were valid anaphors for all mention types. However, there are only two highly

weighted features for pronouns in Table 5.7. This is perhaps because they are mentions

for which proximity is a key indicator of reference resolution, which has diminished

performance in this model.

Interestingly, in the important pronoun features, the pronoun (AR = 14) is in the

antecedent position, which is not its canonical role according to our coarse-grained

rule of thumb. The example feature for the transition from pronoun to single-word

name says the link is likely when the pronoun is clustered with a name matching the

current mention. Such a feature crucially relies on our entity-level modelling of the

task, and its importance shows that accessibility should not be assumed to uniformly

decrease through a cluster.

While the features in Table 5.7 were commonly attested among coreferential men-

tions, all features in Table 5.8 are generally rare, and the examples in this table give us

some indicationwhy this is the case. Among proper namementions, multi-word names

(AR=2) which agree on only one word are unlikely to be coreferential. This feature

is particularly insightful for person names since it separates family members such as

Bill and Hillary who share a surname, Clinton, when mentioned as ‘Bill Clinton’ and

‘Hillary Clinton’. Coreferential instances which are ruled out by this heuristic include

entities with alternative names, or alternative spellings, of names. This valuable feature

crucially relies on the fine-grained classification of the Accessibility hierarchy, and is
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Transition Feature Weight Example

antec ana

14 7 1 common word 1.17 ‘President Kostunica ... He ... Kostunica’

5 7 1 common word 0.92 ‘the dominant republic of Serbia ... Serbia’

2 7 1 common word 0.88 ‘The Chicago Tribune ... Tribune’

1 7 next sentence 0.84 ‘Slobodan Milosevic met with Russian Foreign’

‘Minister Igor Ivanov. Ivanov says ...’

14 1 same sentence 0.82 ‘“Frankly, I missed my family,” said Mr. Rosenblatt.’

7 7 same sentence 0.79 ‘Then give to Caesar what belongs to Caesar’

2 7 acronyms 0.75 ‘the Socialist Party of Serbia ... SPS’

7 5 lengthana=3 0.69 ‘the Clintons ... the first couple’

3 1 first tokenantec ‘CD’ 0.68 ‘one Merc broker ... Mr Dubnow’

1 7 1 common word 0.68 ‘President Kostunica ... Kostunica’

Table 5.7: Ten most positively weighted features in our AR Transitions model.

not expressible when all proper names are considered equivalent. Indeed, single-word

and modified names sharing one token was a highly positive indicator for coreference

and collapsing all names would neutralise this polarity we see.

Within a sentence, there are multiple discourse transitions which are dispreferred:

Long definite descriptions (AR=5) are unlikely to be coreferential with other close long

indefinite descriptions, long definite descriptions (AR=3), or single-word names. The

former is presumably because such repetition is cumbersome, and one mention being

long should be sufficient to give readers any necessary information. Cases where this

dispreferred construction is licensed includes poly-clausal sentences, and when one

mention is embedded as a modifier in another reference expression. Again, single

word names in the same sentence was a highly positive indicator of coreference, where

single-word names and modified names behave polar to one another.

Overall, the discourse patterns described by our new features are complex and

their explanation requires the Accessibility hierarchy’s fine-grained classes. That is, by

including feature prefixes based on a mention typology, we are able to learn a richer
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Transition Feature Weight Example

antec ana

14 7 0 common words -1.01 ‘the Phillies ... their’

5 7 0 common words -0.97 ‘the Israeli state ... Israel’

3 5 same sentence -0.97 ‘When you have a malignant tumor, you’

‘may remove the tumor itself surgically.’

1 7 same sentence -0.90 ‘He promises to bring Mr. Milosevic to justice and’

‘rid the police and judiciary of Milosevic loyalists.’

5 5 same sentence -0.87 ‘it would pay attention to the situation on the Korean’

‘peninsula and sincerely hoped that the situation’

‘on the Korean peninsula would be relaxed ...’

2 2 1 common word -0.82 ‘Fitty Cent ... Fifty Cent’

2 7 0 common words -0.80 ‘National Ice Hockey League ... NHL’

3 3 lengthana=3 -0.78 ‘Miami Dade and Palm Beach counties ... both two counties’

7 7 prev wordantec=in -0.76 ‘There are 26 insurance companies now in China’

‘and more than one hundred overseas insurance companies’

‘that have established administrative organizations in China.’

5 7 same sentence -0.76 ‘The sales drop for the No. 1 car maker may have been’

‘caused in part by the end in September of dealer incentives’

‘that GM offered ...’

Table 5.8: Ten most negatively weighted features in our AR Transitions model.
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limeric AR Rankings Change

Class Features Weight Features Weight Features Weight (%)

Grammar 1746 0.119 1900 0.103 +1.1 -87

Surface Cohesion 2713 0.131 2920 0.118 +1.1 -90

Attribute Cohesion 8697 0.134 9541 0.115 +1.1 -86

Lexical Cohesion 3326 0.068 3959 0.056 +1.2 -82

Proximity 3363 0.113 3496 0.100 +1.0 -88

Discourse / Topicality 4964 0.047 5376 0.040 +1.1 -85

Lexicalised 371489 0.067 425335 0.055 +1.1 -82

Table 5.9: Number of distinct features and their average weight in our AR Rankings

model, compared to limeric.

model for coreference than is possible with just a coarse-grained mention typology, or

in a simple rule that accessibility should increase in certain environments.

AR Rankings

In AR Rankings, the third prefix takes one of three values on an anaphor-candidate

antecedent cluster pairing, with the choice reflecting whether the AR of the current

mention is greater than, equal to, or less than that of the closest mention in the cluster.

These features allow us to collapse the sparsity of AR Transition prefixes, but rely on the

Accessibility hierarchy being viewed as a priority structure, rather than a fine-grained

classification scheme of mention types. The AR Rankings model performs similarly

to limeric, boosting CoNLL by just 0.14% and 0.05% on the gold and automatic

preprocessing settings. The disappointing performance is consistent with our resource

analysis, which showed that AR values do not uniformly decrease throughout an

entity cluster, as might be expected if the hierarchy can be viewed as an overall ranking.

Instead, there was a strong tendency for certain mention forms to be retained, and

definite descriptions and single-word names were valid anaphors for most mention

types.
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Gold Auto

muc B3 ceafe CoNLL muc B3 ceafe CoNLL

Fernandes et al. (2012) 72.18 59.17 55.72 62.36 70.51 57.58 53.86 60.65

Björkelund and Kuhn (2014) 73.80 62.00 59.06 64.95 70.72 58.58 55.61 61.63

limeric Baseline 73.66 60.64 57.77 64.02 69.74 55.76 53.34 59.61

+ AR Transitions 74.34 61.81 58.74 64.96 70.33 56.71 54.52 60.52

Table 5.10: Performance of AR Transition prefixing on CoNLL-2012 test.

Looking at feature weights between limeric and AR Rankings in Table 5.9, all

feature types see an increase in the number of features and a decrease in the average

weight. Furthermore, these changes are roughly uniform over the feature classes, with

lexicalised features losing the most weight on average and surface cohesion retaining

themost. It appears that we have expanded our feature set to learn a roughly equivalent

model. Given the attractiveness of compact models, we interpret this result as evidence

against using AR Rank models.

5.4.2 Benchmarking

We benchmark the performance of limericwith this new prefixing strategy by compar-

ing against our limeric baseline, as well as the two strongest systems from Chapter 4.

Compared to limeric, introducing AR Transitions features yields a 0.94% and 0.91%

CoNLL score gain on the gold and automatic preprocessing settings, respectively. That

is, despite being simple to extract from only surface form information, AR Transitions

are a powerful feature because they allow us to improve limeric to within state-of-the-

art performance using gold preprocessing, and Fernandes et al. (2012) performance

using automatic preprocessing.

To assess whether this performance increase represents a significant improvement,

we use the bootstrap re-sampling sign test with 10,000 re-samples. Table 7.11 shows

where improvements are the significant with respect to the limeric baseline using

bold face for p-values<0.01 and italics for the standard p<0.05. These two thresholds
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Figure 5.2: Errors made by AR Transitions model compared to our limeric baseline

and IMS on CoNLL-2012 test using gold preprocessing.

are tested since the three models are not independent, meaning we would expect to see

relatively high confidence values for relatively small gains in score (see Berg-Kirkpatrick

et al., 2012, for a study).

Compared to the improved limeric baseline, our B3, ceafe, and CoNLL scores are

all significantly improved on both shared task settings. Interestingly, recall gains are

larger than precision gains on the link-based muc and B3 metrics. We therefore infer

that our significant improvements onceafe, which indicate thatwe are reporting closer

to the correct number of entities, derive from adding more links between coreferential

mentions.

5.4.3 Error Analysis

Figures 5.2 and 5.3 show the errors made by the AR Transition model on CoNLL-

2012 test. Analysis of these errors made by the system is consistent with the above

interpretation of standard evaluation metrics.

Comparing AR Transitions against limeric in Figure 5.2, we see that our gains

are in the delineation of clusters: the biggest changes are that we reduce the number of
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Figure 5.3: Errors made by AR Transitions model compared to our limeric baseline

and IMS on CoNLL-2012 test using automatic preprocessing.

conflated and divided entity errors. By correcting these errors, which were flagged

as problem cases for limeric in the previous chapter, we predict closer to the correct

number of clusters, hence our improvement in ceafe. Indeed, comparing against the

IMS system, limeric now has a noticeable edge on the IMS system, while making a

similar number of divided entity errors.

On automatic preprocessing in Figure 5.3, we see similar changes. Both conflated

and divided entity errors decrease when we introduction AR Transitions. Unfortu-

nately, we continue make more divided entity errors than IMS does. The number of

times we miss entities also decreases, consistent with our improvements on ceafe,
but again does not drop enough to achieve IMS performance.

5.5 Summary

In this chapter, we have extended limeric’s discourse model using the Accessibility

hierarchy, a key explanatory mechanism of Ariel’s (2001) Accessibility theory. To

do this, we devised a mapping of the hierarchy, originally formulated for spoken
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Hebrew, to the English text documents in OntoNotes 5.0 and used this mapping in

an analysis of the discourse patterns in OntoNotes. We found that the hierarchy’s

fine-grained classification scheme was useful for understanding the data, and indeed

highlighted trends not expressible in a coarser-grained typology, but that there was

only limited support for its proposed ordering. We described nuances in reference

expression usage in terms of the functions of mentions, for instance that nominals

can both indicate coherence by making anaphoric reference, but can also introduce

entities and constitute singleton clusters of tangential concepts. We suggest that this

multitude discourse functions is a factor in why we don’t see uniform transition toward

increased accessibility. Future work could investigate whether classifying mentions by

their function, rather than their form, affords improvement.

We then grounded this analysis by using our mapping to define discourse transition

prefixes. Mirroring the results of our corpus analysis, prefixes based on the hierarchy’s

classes performed strongly while those based on the hierarchy’s ordering made the

model sparser but not substantially better than that of limeric. Using AR transition

prefixes, we significantly boost our performance on CoNLL-2012 and show that this is

from reducing our two largest sources of error, conflated and divided entity errors.

In the next chapter, we consider how another of the explanatory factors of Ariel

(2001), competition, or, more generally, mutual information, can be used to extend the

state of the art for coreference resolution using limeric.



6 Mutually Informative Features

Work described in this chapter forms part of the conference paper Kellie Webster and James R

Curran. 2014. Limited memory incremental coreference resolution. In Proceedings of the

25th International Conference on Computational Linguistics, pages 2129–2139.

This chapter explores the impact of mutual information, which can be viewed as an

extension of Ariel’s (2001) competition that allow us to model the human ability to

use multiple pieces of evidence simultaneously to resolve coreference. Specifically, we

consider the mutual information between coreference indicators at two levels. First,

we study the association of features extracted on a given classification instance, to

understand how co-occurring features are meaningful when considered as pairs. We

find associations between features encoding cohesion and those encoding proximity

and topicality, consistent with the argument in cognitive theories that cohesion is

insufficient for modelling coreference. Second, we study how the features extracted

for one candidate resolution of a mention can influence those of the alternative candi-

dates. Despite being aligned with the motivation of competition learning, we find this

information useful for mediating anaphoricity determination.

To encode mutual information, we develop a series of secondary features and

implement competition learning in our framework. We find gains from both which are

complementary, adding to our CoNLL-2012 scores of 65.29% and 61.13% using gold and

automatic preprocessing. These scores are either better or not significantly different

from those of Björkelund and Kuhn (2014).

135



136 Chapter 6. Mutually Informative Features

6.1 Motivation

While our high-level motivation for this chapter is to model competition, we extend the

notion substantially from Ariel (2001). In this way, we build a finer-grained understand-

ing of the factors which contend with one another in resolving coreference, one which

aligns with the developing arguments of feature non-independence from Chapter 3.

We see this direction as fruitful for two further reasons. Firstly, we have seen that

coreference is a complex phenomenon that humans resolve by considering evidence

from multiple indicators simultaneously. We would like to build this competency into

limeric. Also, given the rise of neural networks, whose strength comes in part from

modelling intricate interactions, and the difficulty interpreting their models, we expect

the analysis in this chapter to be useful for motivating future work in this space.

6.1.1 Antecedent Competition

Accessibility theory (Ariel, 2001) discusses the impact of competition in antecedent

selection on reference resolution: when there are multiple compatible resolutions of a

mention competing, the salience of each diminishes and this necessitates the use of a

lower accessibility mention type. This is equivalent to saying that a more informative

mention should be used when there is potential ambiguity about its referent. While

we agree that competition impacts coreference resolution, we feel that its formalisation

in Accessibility theory fails to capture some important insight.

Firstly, it is not clear what the grounding for having the salience of competing

resolutions diminish is, though it does predict that an informative mention type should

be used to address ambiguity. However, consistent with Versley (2008) and Recasens

et al. (2011) (cf. Chapter 3), we feel that ambiguity can exist at many levels, not just at

the high-level choice between entity clusters. We therefore break with Ariel to model

competition at the level of coreference indicators, rather than the entities themselves.

Our implementation of competition learning examines whether the relative salience of
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competing candidates impacts resolution, and whether this depends on which feature

the candidates match on.

Wemake a second break fromAriel and study the larger space ofmutual information

between features, in order to capture richer interactions than just direct rivalry. Intro-

ducing secondary features allow us to learn that pairs of features are informative when

considered together and that these pairings can equally contend with one another, as

well as standard coreference indicators, in resolving coreference. In our final system

with secondary features and competition learning, we examine whether feature pairs

and candidate salience interact in resolving ambiguous reference.

Our twoproposed breakswithAriel fitwith arguments of feature non-independence

in that both suggest benefit from modelling the interaction between features.

6.1.2 Feature Non-Independence

Each of the features implemented in Chapter 4 measure the compatibility of a mention

and candidate antecedent cluster in one dimension of our coreference model. Weights

for these features sum together independently to give the model’s prediction for their

likelihood of coreference. However, Björkelund and Farkas (2012) observed that sec-

ondary features which conjoin two features were vital to their system’s competitive

performance. This observation suggests that coreference features are not independent

of one another, but rather inter-dependent, and that allowing weights to reflect these

inter-dependencies can improve our model. We indeed observe feature associations in

this chapter, finding, for instance, that a conjoined feature overner match and sentence

distance improves limeric performance, since ner match is more informative when

mentions are in adjacent sentences than when they are in the same sentence.

We saw in Chapter 3 that competition learning approaches to coreference also

challenged the assumption of independence between features. In showing that rankers

improve modelling, these approaches demonstrated that features generated for the

available candidate resolutions of a mention were inter-dependent. For example, we
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would expect coreferring a mention and a ner-mismatched cluster, which is often

satisfactory, to be less favourable if there exists an ner-match alternative.

In this chapter, we assess the applicability of both methods for enriching our model

with feature mutual information. Secondary features are implemented and tested both

with and without the simultaneous introduction of competition learning to understand

the benefit of each approach to exploiting mutually informative features.

6.2 Secondary Features

In this section, we design and test a series of secondary features in the limeric
framework. Due to the already large size of limeric’s feature set, it is necessary to

hand select which feature conjunctions we test, rather than attempting an exhaustive

search. We use Chi-Squared (χ2) association statistics to understand patterns in feature

co-occurrence on classification instances inOntoNotes 5 andpropose secondary features

based on this analysis. That is, this section concerns our first level of study, between

features extracted on a given classification instance.

Our approach has the advantage of allowing us to discover interesting trends in

reference expression usage, and we discuss the association between features capturing

cohesion and those capturing proximity and topicality. We discover secondary patterns

in coreference indicators, and leverage these to affect an improvement of 0.35% and

0.37% on CoNLL-2012 dev. While this gain is not as strong as might be expected based

on the Björkelund and Farkas (2012) result, these experiments allow us to analyse

trouble cases for our system.

6.2.1 Association Statistics

Statistical tests which assess whether two events are dependent do so by attributing

their co-occurrence to either (1) a null hypothesis of chance coincidence, or (2) an

alternative hypothesis of dependence. To do this, they compare the probability of their
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co-occurring against the probabilities of each in isolation. Considering the contingency

table in Table 6.1, if the events x and y are dependent, we would expect the probability

of their co-occurrence, p(x, y), to be large compared to p(¬x, y) and p(x,¬y), when

one event occurs but not the other.

Feature x

True False
Feature True p(x, y) p(¬x, y)

y False p(x,¬y) p(¬x,¬y)

Table 6.1: Matrix of outcomes over two possible feature extractions.

In our case, we would like to understand whether two feature extractions are

dependent. Considering that our data is binary (a feature is either extracted or it

is not), with no apparent base distribution, two tests we could use are Chi-Squared

(χ2) and Pointwise Mutual Information (pmi). Correlation measurements such as

Pearson’s (1895) or Spearman’s (1904) coefficients are unsuitable since our variables

are not continuous or orderable, and co-occurrence statistics are less informative than

association statistics because they do not account for the expected distribution with

respect to non-co-occurrence events.

Both χ2 and pmi define test statistics whose increase in magnitude indicates an

increasing degree of association between a pair of variables. However, pmi suffers
from being simultaneously a function of dependence and entropy, becoming unstable

for low frequency events. We therefore choose χ2 as our test statistic. Below we discuss

calculation and interpretation of χ2, as well as its limitations.

Test Statistic

The χ2 test statistic is given by the following equation, in which N is the total number

of feature extraction events, and p(x) and p(y) the overall probability of x and y, i.e.

both its co-occurrence with its pair, as well as in isolation. This equation is derived
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by comparing the observed probabilities of the events in a contingency table against

expected values for these probabilities, calculated by assuming independence.

χ2 = N · p(x, y)p(¬x,¬y)− p(¬x, y)p(x,¬y)
p(x)p(y)p(¬x)p(¬y)

The χ2 test statistic is typically interpreted using a χ2 table, which relates a series

of confidence levels (e.g. p < 0.05, which we use in this chapter) and the degrees of

freedom in the test (1 in the case of a feature pair) with a threshold χ2 value. If the χ2

test statistic is greater than this threshold value, the result is statistically significant in

that it would be expected to occur by random co-incidence less than 5% of the time.

The scale and significance thresholds of χ2 are known to be affected by dataset

sparsity and size. On the one hand, these shortcomings are not overly problematic for

this study since we will only be using the magnitude of our χ2 statistics to indicate

the relative degree of dependence between different feature pairs, rather than testing

for strict statistical significance. However, we only report on pairings indicated to be

significant, and disregard results from contingency tables which contain an expected

frequency of less than five, which is a standard approach to limiting the impact of data

sparsity (Mooney and Jolliffe, 2003).

Calculation

In this study, we learn which feature pairs are mutually dependent on a given classi-

fication instance (i.e. mention-cluster comparison) by measuring their frequency in

processing OntoNotes data and applying the χ2 test statistic. That is, we will observe

feature probability empirically, according to the relative frequency p(x) = f requency(x)
N .

We extract χ2 over CoNLL-2012 dev by processing the dataset with limeric using

our development AR Transitions model from the last chapter, trained on train only.

Each comparison generates n features, and each of these contributes to the frequency

tally for that feature and each of the nC2 pairs adds to the frequency tally of that pair. N

is kept as a running tally throughout this process. We do not consider prefixed features
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in this analysis since doing so would inflate the number of feature pairs enormously,

and potentially cloud associations that do exist in the data.

Variants

To better quantify the problem, we keep parallel tallies to calculate three different

variants of our test statistic, namely all, div, and con. Specifically, any feature set

extracted on an instance consistent with the gold answer key always contributes to all

test statistics. In this way, all statistics indicate what features, when taken together, are

associated with coreference.

In the case where the prediction is incorrect, it may either cause an entity cluster to

divide (when the prediction is falsely new) or conflate (when the prediction is falsely

anaphoric or wrong link). In these error cases, the extracted feature set also contributes

toward the div and con test statistics, respectively. Therefore, div statistics will tell us

which feature associations tends to occur in error cases in which we miss a coreference

relationship, and con which of these occur in cases we propose spurious coreference

relationships.

Feature pairs with significant test statistics at p = 0.05 are interpreted as dependent.

We interpret an indicated dependence of a feature pair on all as a pairingwhich reliably

indicates coreference. Similarly, significant pairings on the div statistic also indicate

coreference, but are pairings which are not captured by limeric’s model. In contrast,

significant con pairings highlight pairs which appear to indicate coreference, but are

instead distractor mentions.

6.2.2 Observed Associations

We now give our qualitative impressions of the large volume of feature χ2 statistics

data, using the statistics as quantitative grounding of trends we highlight. We struc-

ture our discussion around our cohesion feature classes considering, for each, their

association with those of proximity and topicality. For surface form cohesion, we
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additionally consider the association of head match with lexicalised features, since we

observe interesting dependencies in this space. All reported χ2 values are significant

values on all. Significant pairings on the div and con statistics are indicated with the

superscripts d and c, respectively.

Surface Cohesion

Head Match vs. Lexicalised Features The association of head match features with

lexicalised features on all statistics tells us which head words are likely to participate

in cohesion-mediated coreference. Table 6.2 tabulates association statistics for different

values of our head match feature over the pos tag1 of the head word. We remember

that these surface form cohesion features take values up to 5 to reflect the number of

mentions in an entity cluster with the same head as the current mention.

Head nnp nnps nn nns
1 75620 18347d 3872
2 36736 4258 668
3 20580 1815
4 888
5 27758 730 126

Table 6.2: χ2 values for different pairings of head match and head pos tag features.

Comparing the columns, we can see that χ2 values are larger for head match where

the head word has pos tag nnp than when it has pos tag nn, and that these values

are in turn higher than those for pos tag nns. We interpret these statistics to indicate

that head match on proper names is a more reliable indicator of coreference than head

match on nominals, and that head match on singular mentions is more reliable than

on plural mentions. This makes sense: proper names pick out their referent with less

ambiguity than common nouns do (e.g. ‘Barack Obama’ vs. ‘the president’), and groups of
1OntoNotes uses Penn TreeBank pos tags (https://www.ling.upenn.edu/courses/Fall_2003/ling001/

penn_treebank_pos.html) in which nnp signifies a singular proper noun, nnps a plural proper noun,
nn a singular common noun, and nns a plural common noun

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
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Head Word Coref Total %

son 192 3358 5.7
market 796 1662 47.9
time 66 1584 4.2
law 1021 1574 64.9
man 647 1428 45.4
one 49 1277 3.8
father 167 958 17.4
government 487 937 52.0
city 594 909 65.3
world 549 880 62.4

Table 6.3: Proportion of head matched nominal mention pairs which are coreferential.

entities indicated by plural forms need to match exactly in composition to be annotated

as coreferential (e.g. ‘the protesters’ can equally refer to a subset of a given group as

the group itself, given the correct context). Interestingly, no head match features are

significantly associated with mentions headed by plural proper names, with pos tag

nnps. Perhaps head match on plural proper names is particularly sensitive to this

set-subset problem, given that proper names tend to pick out their referent with little

ambiguity (i.e. we can be more sure when similar groups are not identical).

Considering the case of head matched nominal mentions further, Table 6.3 gives

coreferentiality statistics for the ten most common words occurring as the head word

of a singular nominal mention. Specifically, all pairings of automatically extracted

mentions are generated and the number of times these match on head word are tallied

by head word. A second tally captures whether the aligned gold mentions, if they exist,

are annotated as belonging to the same entity cluster. These tallies respectively give

the counts in the third and second columns, while the fourth simply expresses these

statistics as a percentage.

We can see that the likelihood that head term matched mentions are coreferential

is distributed between 0 and 65.3%: although a highly trusted feature, head match



144 Chapter 6. Mutually Informative Features

Sentences exact relaxed head

0 99932
1 54633 132031d

2

(a) Sentence distance

Depth exact relaxed head

top
upper 26756 29438 147806d

lower
bottom 214402d

(b) Stack depth

Table 6.4: χ2 statistics for different pairings of surface form cohesion and proximity

features.

does not uniformly indicate coreference. Indeed, for the examples given, head match

indicates coreference atmost 65%of the time. Manual analysis of non-coreferential head-

matched mentions show that there are many factors at play, including the specificity

of a mention’s referent (e.g. ‘the president’ is markable when it refers to a particular

individual, but not when it refers generically to the role), the presence of restrictive

modification (e.g. ‘the junk market’ cf. ‘the stock market’), as well as genre preferences

(head match is more reliable among terms associated with the Biblical domain than

those of the financial). Perhaps due to these factors, limeric learns to be overly

conservative, and makes divided entity errors on nominal comparisons.

Surface Form Cohesion vs. Proximity Table 6.4 gives the χ2 values for pairs of our

various surface-level cohesion features with different values of the sentence distance

and depth features. These statistics allow us to read the scope over which cohesion

features reliably indicate coreference. Count based features (i.e. exact and relaxed

string match, and head match) are for a value of 1 (adjacent sentences), which is the

only value consistently significant for the pairs tested. No feature pairs for sentence

distances greater than 2 are significant, and the rise in χ2 in the bottom depth value of

the stack could be an effect of how the feature is defined, since this zone takes in all

depths greater than 9.
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Overall, we can see that positive evaluation of cohesion features is most strongly

associated with close proximity when there is a coreference relationship: these two fac-

tors indeed conspire as Accessibility theory permits them to. Specifically, the preferred

contexts for surface-form cohesion is when mentions are in adjacent sentences, or when

entity clusters are in the upper zone of the stack. While close-range string match is

not observed on pairs with sentence distance features, it is with depth features. We

suggest that this further supports the validity of our cognitive depth measure as an

indicator for reference expression distance.

Topicality vs. Surface Form Cohesion Looking at the association between surface-

form cohesion features and our topicality indicator, cluster length, only one feature

pair is significant. Head match with value 1 (i.e. the mention shares its head with one

mention in the candidate cluster) has a χ2 value of 402804 on our dev dataset with

cluster length of 1, and this pair is also significant on the div statistics. As well as on

nominals and in adjacent sentences, head match is often missed on comparisons involv-

ing discourse singletons. Given that all clusters grow incrementally from singletons,

this conservativeness is important to address.

Attribute Cohesion

In the following exploration of the association of attribute cohesion, we find that many

reviewed pairs are significant on the div statistic as well as all. This presumably reflects

attribute cohesion being a weaker indicator of coreference than surface-form cohesion,

and means that the associations discovered would seem to have good promise for

addressing limeric’s divided entity errors seen in the previous chapters.

AttributeMatch Pairs Tables 6.5a and 6.5b tabulate χ2 statistics over pairs of attribute

match features. Table 6.5a gives χ2 when both features in the pair are positive (i.e.

both attributes have matches) while Table 6.5b gives χ2 when one attribute is positive

(horizontal) and one is negative (vertical).
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ner gender number

gender 140474
number 322613d 663526d

animacy 511968d 553513d 1361641dc

(a) Positive attribute match features
HH

HHH
HHH

HH
False

True
ner gender number animacy

ner 401641d 1103286dc 1105318dc

gender 338144d 787887dc 1061948dc

number 175338 255661d

animacy 65804d

(b) Positive and negative attribute match features

Table 6.5: χ2 statistics for pairs of attribute match features.

Looking at Table 6.5a, we can see that all pairings of positive attribute match feature

are associated on the all statistic. This is reassuring, since all attributes are expected to

indicate coreference. We can also see thatner behaves differently to the other attributes

in that associations of positive non-ner attribute matches have higher χ2 values. We

suggest this might be due to the raw number of matches seen given the dependencies

between different attributes: number matches are the broadest filter, with number

matched mentions possibly animacy or gender matched, and ner is the finest-grained

filter with animacy and gender matched mentions possibly ner matched. For instance,

‘the spokesman’ and ‘the spokeswoman’ are number matched (singular) but not gender

matched, and ‘the company’ and ‘the stock’ are number (singular), animacy (inanimate)

and gender (neuter) matched, but not ner matched. In this way, we would expect

number, animacy, and gender to co-occur more frequently in coreference data.

Looking now at Table 6.5b, the strongest associations on the all statistic are for

attribute pairs without an ner match. This is consistent with our observation that

ner match will occur less frequently than matches on the other attributes. Addition-
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Sentences ner gender animacy number

0 27880 133962 480693d 448027d

1 176350d 233191 584613d 510626d

2 168930d 137129d

3 87485 77344

(a) Sentence distance features

Stack ner gender animacy number

top 188656d 175840d

upper 83062d 284792d 811060d 746818d

lower 200402d 165137d

bottom 439781d 132008 411352d 330605d

(b) Stack depth features

Table 6.6: χ2 statistics for different pairings of attribute cohesion and proximity

features.

ally, these pairings also correspond to both divided and conflated entity errors. This

also makes sense: the evidence from the broader attributes is not strong enough for

limeric to make the correct decision. On the other hand, cases without animacy or

number match are either not significantly or only weakly associated with coreference

on all: these attributes are, to some extent, necessary but not sufficient to determine a

coreference relationship.

Attribute Cohesion vs. Distance Tables 6.6a and 6.6b give the χ2 values for pairs of

positive attribute cohesion features with our proximity features. Comparing against

Table 6.4, we find that attribute matches can operate over longer ranges than surface

form matches, with both the upper and bottom depths of the stack associated with

attribute-mediated coreference and animacy and numbermatch significantly associated

with sentence distances up to three.
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Cluster ner Gender Animacy Number

1 167389d 106658d 393294dc 409618d

2 74161 241624d 215218d

3 165668 139919
4 116455d 99566
5 90513

Table 6.7: χ2 statistics for the association of topicality and our various cohesion

features.

Interestingly, attribute match is more strongly indicative of coreference when men-

tions are in adjacent sentences than when they are in the same sentence and this

preference is particularly strong for ner and, to a lesser extent, gender match. Examin-

ing non-coreferential intra-sentence instances manually reveals that they correspond to

entities of the same type related by a predicate, e.g. two people reported as participating

in the one event.

Inspecting instances of animacy or number agreement in the same and adjacent

sentence contexts shows that these cases are very hard to resolve. Instances in adjacent

sentences are mostly cases where a definite pronoun needs to be resolved to a proper

name or description based on inference about the entities from their verb frame. For

example, in the following sentence, coreference between the indicated mentions is

cued in the fact that ships are unloaded from carriers, thereby making ‘the ship’ the best

antecedent for ‘it’. Such challenging cases of coreference are the target of the Winograd

Schema Challenge (Rahman and Ng, 2012), which we consider in the next chapter.

It will be welded to the ship before it is unloaded from the carrier.

Attribute Cohesion vs. Topicality Table 6.7 gives the χ2 values for pairs of attribute

cohesion and cluster length features. Where we saw that surface form features were not

strongly associated with any particular length of cluster, attribute match, particularly
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Class Features
Surface Cohesion + Depth head match (T/F) + depth (raw)

relaxed string match (T/F) + depth (raw)
Head Match head match (T/F) + both specific

head match (T/F) + cluster length
head match (T/F) + document genre
head match (T/F) + head word

Attribute Cohesion Pairs ner + animacy agreement
ner + gender agreement
ner + number agreement
animacy + gender agreement
animacy + number agreement
gender + number agreement

Attribute Cohesion + Distance ner agreement + sentence distance
animacy agreement + sentence distance
gender agreement + sentence distance
number agreement + sentence distance

Attribute Cohesion + Topicality ner agreement + cluster length
animacy agreement + cluster length
gender agreement + cluster length
number agreement + cluster length

Table 6.8: Secondary feature set of conjunctive features.

animacy and number match, is. We suggest this is related to larger clusters tending to

comprise chains of pronouns, for which attribute information can be reliably assigned.

We can also see that each of our attribute cohesion features ismost reliably associated

with single-mention clusters on both the all and div statistics. This is probably due to

all clusters being built incrementally from single- to multi-mention clusters.

6.2.3 Secondary Features

Using the above analysis, we design and test secondary, conjunctive features in limeric.
Table 6.8 summarises the features we introduce and Table 6.9 their impact on system

performance.

We can see that, while secondary features improve system performance on both

the gold and automatic preprocessing settings, their impact on our strong baseline

is modest compared to what might be expected given the Björkelund and Farkas

result. The gains follow the same trends in both gold and automatic settings, but the

impact of individual feature classes tends to be greater using automatic preprocessing.

Unfortunately, the gains from single feature classes is not highly additive, despite being
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Gold Auto

muc B3 ceafe CoNLL muc B3 ceafe CoNLL

AR Baseline 73.80 61.98 60.26 65.35 69.55 56.99 55.35 60.63

Surface + Depth 73.76 61.76 60.04 65.19 69.67 56.93 55.29 60.63

Head Match 74.14 62.29 60.48 65.64 69.75 57.29 55.60 60.88

Attribute Pairs 73.97 62.12 60.27 65.45 69.69 57.25 55.66 60.87

Attribute + Distance 73.84 62.19 60.18 65.40 69.73 57.40 55.56 60.90

Attribute + Topicality 73.79 61.95 60.06 65.27 69.77 57.37 55.69 60.94

All (no Surface + Depth) 74.22 62.42 60.47 65.70 69.88 57.52 55.60 61.00

Table 6.9: Performance of secondary features on CoNLL-2012 dev.

based on different aspects of the above analysis. This is particularly the case on the

automatic setting where each class except surface cohesion + depth affects at least a

0.26% performance boost, but together add 0.37% to system performance. While we

would not expect perfect complementarity, it could also be that the large number of

features now in our model is approaching the bounds of what is learnable given the

amount of training data in OntoNotes.

Surface Cohesion + Depth

The above analysis indicated that surface cohesion matches were associated with depth

in the stack, but not the number of sentences between mentions. We therefore conjoin

depth with each of relaxed string match and head match features. Unfortunately, this

feature class performs poorly and to understand why, we tabulate the weight of each

of the unprefixed versions of these features in Table 6.10, as well as the CoNLL score of

a model trained with just relaxed string or head match.

For good performance, we would expect a large margin between the weights of

surface form match (True) and no surface form match (False). We indeed see this at

all depths for the relaxed string match secondary features, and for non-top depths of

head match conjunctions. Indeed, at the top depth, not having a head match is learned

to be a better indicator of coreference than having a match.
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String Match Head Match
True False True False

Gold 65.27 65.43
top 0.25 -0.04 0.20 0.36
upper 0.56 0.02 0.74 0.18
lower 0.53 0.10 0.74 0.15
bottom 0.60 0.01 0.66 0.04

Table 6.10: Weights of unprefixed surface form cohesion and depth secondary features

in the Surface + Depth model.

We note in particular that this margin is wider in the important upper depth (which

the above analysis associated with coreference) for our head match secondary feature;

this favourable outcome bears out in the head match secondary feature model having

stronger performance than our relaxed string match model. Despite the satisfactory

performance of the head match secondary feature, we opt to exclude this as a feature

class in the work following.

Head Match

Within surface cohesion, head match was an interesting target for investigation. While

a highly trusted feature in limeric’s model, head match was shown above to not be

uniformly trustworthy, but instead its association with coreference is a function of the

head word itself, its part of speech, the specificity of the mention, as well as the genre

of its document.

The Head Match feature class comprises four secondary features conjoining head

match with mention specificity, cluster length, document genre, and head word. This is

the strongest feature class on the gold setting and performs similarly well on automatic

preprocessing.
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Genre Weight

Telephone conversation 0.45
Bible text 0.43
Broadcast conversation 0.43
Broadcast news 0.41
Newswire 0.07
Magazine text -0.00
Web text -0.15

Table 6.11: Weights of unprefixed features conjoining document genre and head word

match, in the Head Match model.

HeadMatch + Both Specific OntoNotes guidelines that markable units should make

specific reference (or be coreferential with another unit which does). We therefore

conjoin head match with an indicator of whether the head matched mentions (the

closest head matched antecedent, with the current mention) are both started by either

the definite determiner or a possessive or demonstrative pronoun.

Head Match + Cluster Length Head match was the only surface cohesion feature

associated with topicality on the all statistic, preferably applying between a mention

and a new (singleton) discourse entity. We therefore encode a feature conjoining head

match with the cluster length, capped at size 3.

Head Match + Document Genre To allow the preference for anaphoric head match

according to the six genres represented in OntoNotes, we conjoin positive head match

features with document genre, as indicated from OntoNotes document names. Given

that genre preference was merely a qualitative impression above and not quantified,

we give the weight assigned to the unprefixed features in this class in Table 6.11. These

weights show that document genre indeed is used by the learner, with head match

importance being boosted in four out of the seven OntoNotes genres.
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Interestingly, despite the genre’s importance in the development of shared task

conditions, head match is not learned to be a reliable feature in newswire. Reviewing

newswire documents, we see that for many common head words (such as markets,

economies, and companies), multiple entities will be referred to using the word as a

nominal head. In these cases, the different entity references are indicated, in the first

two instances, by modifiers and by anaphoric reference to previous organisation names

in the latter.

Head Match + Head Word The association that head match can be trusted more

between proper names than nominal mentions is already captured in our discourse

transition prefixes. To instead introduce the finer-grained patterns we saw in Table 6.3,

we introduce a conjunctive feature between positive head matches and the head word

of the mention, or its pos tag if the word occurs fewer than 50 times in the training

data.

Attribute Match Pairs

For each of the seven pairs of the four attributes gender, number, animacy, and semantic

class, we conjoin the agreement features, allowing us to learn that, for instance, number

or animacy disagreement in ner matched mentions is not associated with coreference.

That is, we re-implement the attribute agreement conjunctions of Culotta et al. (2006).

Even on our strong baseline, these simple secondary features perform well. Despite

this, we present feature weights in Table 6.12 since it reveals some interesting anomalies

when compared to Table 6.5.

We would expect to see higher feature weights learned where χ2 association statis-

tics were greater and, overall, this is what we see. However, the weight for gender

+ animacy match in Table 6.12a is lower than expected given their high association.

We suggest this could be because the attribute value determinations for gender and

animacy are correlated, and their match is learnable without secondary features. Also,
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ner gender number

gender 0.52
number 0.72 1.21
animacy 0.97 0.69 1.11

(a) Both positive matches
HH

HHH
HHH

HH
False

True
ner gender number animacy

ner 0.70 0.96 0.64
gender 0.79 0.92
number 0.59 0.50
animacy 0.53 0.56

(b) Positive and negative matches

Table 6.12: Weights of the unprefixed paired attribute match features on

Attribute Pairs model.

the weight for gender agreement + animacy disagreement in Table 6.12b is higher than

we expect, which we interpret to mean that animacy mismatch is highly informative

when gender matches (i.e. on neuter gendered entities). Finally, the weight for animacy

agreement and ner class disagreement is lower than expected. This is unfortunate

given that this pair was highly associated for coreference above, and was associated

with instances where limeric makes divided and conflated entity errors. Given that

we assign ner mismatch in cases where ner cannot be determined, improving the

lexical semantic classification of nominal mentions should therefore be a target for

future work.

Attribute Match + Distance

We conjoin each attribute match feature with the distance in sentences between the

current mention with a feature indicating whether the current mention and the closest
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len ner gender animacy number

1 0.44 0.47 0.55 0.52
2 0.58 0.56 0.64 0.59
3 0.66 0.67 0.69 0.68

Table 6.13: Weight of the unprefixed features conjoining attribute match with cluster

length in our Attribute + Topicality model.

antecedent in the candidate entity cluster are within a sentence distance of two from

one another.

Attribute Match + Topicality

We conjoin each of the attribute agreement features with cluster length, capped at

length three. Topicality improves performance on automatic preprocessing, but there

is a small drop on the gold setting; given our weak performance on automatic relative

to gold preprocessing, we see this result to be an acceptable compromise, particularly

given the small magnitude of the drop in CoNLL score on gold.

The feature weights in Table 6.13 show that limeric has learned to trust attributes

more for larger clusters. While this is contrary to the modelling in our association statis-

tics, it is intuitively sound given the motivation for cluster-level modelling to improve

confidence of cluster-mention comparisons by pooling properties across mentions in

an entity cluster.

6.3 Feature Competition

In this section, we explore how the features extracted for competing candidate res-

olutions are mutually informative. In Chapter 3, we saw that such modelling has

been useful in competition models of coreference resolution; we extend this here by

incorporating candidate salience, approximated by its position in the forest of entities,

in competition feature extraction.
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We identify two complementary ways in which competition can be implemented:

competition in the stack and anaphoricity competition. We find that anaphoricity

competition, which exploits competition features on the shift, or discourse-new, clas-

sification, thereby mediating anaphoricity determination, is particularly successful.

Using automatic preprocessing, these features boost performance on CoNLL-2012 dev
by 0.51% without secondary features and 0.45% against their stronger baseline.

6.3.1 Experimental Setup

Our experimental design relies on our discourse entities being stored in a self-ordering

data structure according to their relative accessibility. We profiled this forest in Chap-

ter 4 and found that correct choices for antecedent tend to be located near the top of

this data structure. Therefore, we expect that if there are multiple compatible entities

competing, the most accessible of these should be, on average, the best choice.

We design a series of experiments to model competition between antecedents

directly in our feature set, giving the most accessible of a group of compatible entities

enhanced prominence compared to lower ranked matches. Implementing this in

limeric is straightforward, and we do so by including a key-value store whose keys

are feature functions and values are booleans reflecting whether the given function

has had a positive value extracted for it thus far in processing. Feature functions which

return boolean or integer values are acceptable keys, and values of True or values> 0

are taken to indicate compatibility. In this way, it is possible to flag on which candidate

a particular feature function is first satisfied and prefer this candidate accordingly.

6.3.2 Forms of Competition

The information captured in this key-value store is used to define our two variants of

competition, competition in the stack and anaphoricity competition, as well as their

combination, full competition.
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Competition in the Stack

In stack competition, each comparison between the current mention and a given entity

cluster generates two features, as shown in Figure 6.1. The first feature is the standard

feature, while the value of the second reflects whether the cluster is above or below

the first compatible entity, as indicated by that feature. The above feature value is

intended to inform the learner that despite the negative evaluation, this candidate

is more accessible than the best choice. On the other hand, the below feature value

captures the diminished prominence of the candidate with respect to what the feature

considers to be the best choice.

For the cluster of interest itself, ‘Aden Harbor’ in our example, we experiment with

three different feature values for the second feature. The cluster could either be labelled

with one of the existing tags above or below since it is indeed in the above zone inwhich

entities have yet to be matched on that feature, and in the below zone since it marks

when this feature value should start to be used. Webster and Curran (2014) report

on the below-match variant. Table 6.14 shows the performance of these two choices.

Using above-match to model feature competition allows is to improve our CoNLL score

when using automatic preprocessing and does not compromise our performance on

the gold setting. Interestingly, switching to below-match yields a 0.35% drop on the

gold setting, with minimal increase on the automatic setting. We interpret these results

to indicate that resolution is more sensitive to entities high in the discourse stack (i.e.

salient entities) than those lower than the first compatible cluster.

Perhaps the most satisfying solution is to introduce a third feature value, first,

which labels this uniquely as the best candidate on the given feature function. This

variant performs remarkably similar to the below-match variant. We can then infer

that the important information provided by our competition features is in identifying

the depth at which candidates can start to be considered amenable to coreference.
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NEW the location

Norwegian transport vessel

Aden Harbor

US destroyer Cole

Yemen

<ner match:False><ner comp:above>

<ner match:True><ner comp:below>

<ner match:True><ner comp:below>

(a) below match

NEW the location

Norwegian transport vessel

Aden Harbor

US destroyer Cole

Yemen

<ner match:False><ner comp:above>

<ner match:True><ner comp:above>

<ner match:True><ner comp:below>

(b) above match

NEW the location

Norwegian transport vessel

Aden Harbor

US destroyer Cole

Yemen

<ner match:False><ner comp:above>

<ner match:True><ner comp:first>

<ner match:True><ner comp:below>

(c) first match

Figure 6.1: Example of stack competition feature extraction.
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Gold Auto

muc B3 ceafe CoNLL muc B3 ceafe CoNLL

AR Baseline 73.80 61.98 60.26 65.35 69.55 56.99 55.35 60.63

Stack - above match 73.89 62.11 60.14 65.38 69.82 57.29 55.52 60.88

Stack - below match 73.75 61.44 59.80 65.00 69.53 57.07 55.43 60.68

Stack - first match 73.98 61.86 60.33 65.39 69.77 57.18 55.71 60.89

Anaphoricity Competition 73.86 61.85 60.41 65.37 69.85 57.55 56.02 61.14

Full Competition 73.98 62.20 60.52 65.57 69.96 57.71 56.25 61.31

Table 6.14: Performance of competition features on CoNLL-2012 dev.

Anaphoricity Competition

limeric’s feature set (cf. Chapter 4) does not include any features specifically designed

to capture anaphoricity determination or singleton detection. Instead, for a mention

to be labelled anaphoric, its score with a particular entity cluster needs to be greater

than the score for shift. Error analysis has shown that limeric is overly conservative

in making this decision.

Anaphoricity competition allows amention’s classification as anaphoric or discourse-

newbemediated explicitly in the feature set. Competition is implemented by generating

an extra set of features on the shift comparison. Specifically, for all feature functions

in our new key-value store, we generate a feature indicating whether it has been sat-

isfied by any candidate in the discourse stack. Such features, for instance, allow the

discourse-new comparison to know whether any cluster has an exact string match with

the current mention, in which case we would not typically expect the mention to be a

discourse singleton, regardless of how well the string-matched entity cluster scores on

classification overall.

Table 6.14 shows that anaphoricity competition is successful in improving system

performance on automatic preprocessed data, improving CoNLL by 0.51%. This gain

on automatic preprocessing is particularly seen on B3 and ceafe. On B3, recall and

precision both increase (by 0.57% and 0.52%, respectively), while on ceafe the recall
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Competition Feature True False Diff.

Indefinite Mention 0.21 5.62 5.41

Shared Sense 0.00 5.83 5.83

Acronym 1.25 4.58 3.33

Possessive Match 1.85 3.98 2.14

Relaxed String Match 2.33 3.51 1.18

String Match 2.52 3.31 0.79

Head Match 2.68 3.15 0.47

Overlap 2.73 3.10 0.37

Words Match 2.79 3.05 0.26

Head Substring 2.88 2.95 0.13

Mention Substring 2.90 2.93 0.03

Mention Length Match 2.96 2.88 -0.08

Head Edit Distance 2.98 2.85 -0.13

Gender Agree 2.49 3.34 0.85

ner Agree 2.88 2.95 0.07

Animacy Agree 2.97 2.86 -0.11

Number Agree 3.06 2.77 -0.29

Table 6.15: Average weight of anaphoricity competition features.

gain (1.11%) far outweighs the precision gain (0.11%). We can infer that anaphoric-

ity competition is effective in recalling entity clusters, whose presence and absence

particularly impacts ceafe.

To explore this further, Table 6.15 tabulates the average weights of unprefixed

anaphoricity competition features. Since the True column indicates when there is a

compatible cluster in the discourse stack, and False, when there is no match in the

stack, we can interpret a high value on False relative to True as evidence that a feature

is particularly strong for forcing a coreference relation. Surface form heuristics, in the

upper section, and attribute agreements, in the lower, are therefore ordered by the

magnitude of this False to True difference.

Our first observation is that, compared to the average feature weights for previous

limeric models, the feature weights here are quite high. This means that our learner
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trusts these features as reliable indicators of anaphoricity and coreference. Next, we

can see that relaxed string match is a more robust indicator of coreference than exact

string match. Other surface form cohesion statistics follow expectations, being ordered

by how readily they can be satisfied on a particular comparison. This is consistent

with work on anaphoricity determination described in Chapter 4 which found that

string and head match were powerful features in their models. We note that the

robustness of anaphoricity competition to automatic preprocessing makes sense given

this importance of surface form competition features since these features do not depend

on ner or syntactic analysis.

On attribute cohesion, gender and, to a lesser extent ner, are robust indicators that
a coreference relationship exists. As on our above analysis, animacy and number do

not provide our learner strong enough evidence to force coreference.

Full Competition

On full competition, we generate stack competition features as we iterate over dis-

course entities and additionally generate anaphoricity competition features on the

discourse-new comparison. Table 6.14 shows that, while neither stack competition nor

anaphoricity competition improved performance on gold preprocessing in isolation,

full competition affords a 0.22% CoNLL score gain. However, their impact on perfor-

mance is more prominent on the automatic setting, giving complementary gains which

sum to a 0.68% improvement above baseline.

Secondary Feature Competition

Of the secondary features introduced above, all of the attribute pairs features are

suitable for competition features in that they are boolean valued. Table 6.16 shows

the performance of limeric with feature mutual information encoded with both

secondary features and competition. Secondary features exclude Surface + Depth and

stack competition uses the ‘first match’ implementation.
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Gold Auto

muc B3 ceafe CoNLL muc B3 ceafe CoNLL

Second Order Baseline 74.22 62.42 60.47 65.70 69.88 57.52 55.60 61.00

Competition in the Stack 74.37 62.51 60.39 65.76 69.93 57.52 55.79 61.08

Anaphoricity Competition 74.08 62.25 60.89 65.74 70.06 57.92 56.36 61.45

Full Competition 74.35 62.40 60.46 65.74 70.11 57.70 56.03 61.28

Table 6.16: Performance of secondary (AR Transitions) and competition (Mutual

Information) features on CoNLL-2012 dev.

Introducing competition into our stronger secondary feature baseline gives improve-

ments on both settings and for all forms of competition. But where full competition

was superior to anaphoricity competition above, the reverse is true here. On gold

preprocessing, the two achieve the same CoNLL score, but on the automatic setting,

both B3 and ceafe are stronger on anaphoricity competition and muc is little different

between the two. We therefore choose this configuration with secondary features and

anaphoricity competition as the best implementation of how limeric can leverage the

mutual information in feature extractions to enrich its model.

6.4 Evaluation

We evaluate the performance of our system enhancedwithmutual information features

against our models from the previous chapter in using the same setup described there.

6.4.1 Benchmarking

In Table 6.17, we can see that the performance of our mutual information system does

not change appreciably using gold preprocessing compared to the baseline set using

AR Transition prefixes. However, our performance has improved using automatic
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Gold Auto

muc B3 ceafe CoNLL muc B3 ceafe CoNLL

Fernandes et al. (2012) 72.18 59.17 55.72 62.36 70.51 57.58 53.86 60.65

Björkelund and Kuhn (2014) 73.80 62.00 59.06 64.95 70.72 58.58 55.61 61.63

limeric Baseline 73.66 60.64 57.77 64.02 69.74 55.76 53.34 59.61

+ AR Transitions 74.34 61.81 58.74 64.96 70.33 56.71 54.52 60.52

+ Mutual Information 74.73 61.72 59.43 65.29 70.72 57.40 55.26 61.13

Table 6.17: Performance of secondary and competition features on CoNLL-2012 test.

preprocessing to a point where we are strongly competitive with the state of the art set

by Björkelund and Kuhn (2014)2.

The results of our statistical significance testing reflect these same observations.

Specifically, none of the changes using gold preprocessing are significant, even at the

permissive level of p = 0.05. On the other hand, our improvement on CoNLL using

automatic preprocessing is significant at the conservative level of p = 0.01, and the

improvements in B3 and ceafe are additionally significant at p = 0.05. Buoyed by

these positive results, we further test whether there is any actual difference between us

and the apparently stronger IMS system on automatic. We find that it is not statistically

better on any metric, with B3 being the closest call: there is just a 7% probability that

chance accounts for IMS outperforming our Mutual Information model.

Our improvement on the automatic setting arises from increases in both recall and

precision. On B3, precision increases more than recall (0.98% vs. 0.50%), but on ceafe
we get the opposite and recall increases more than precision (0.81% vs. 0.63%). That is,

we appear to recall more correct entity clusters by better delineating the bounds of the

clusters themselves.

2As noted in Chapter 3, the current best reported performance is Wiseman et al. (2015)
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Figure 6.2: Errors made by our Mutual Information model compared to our previous

models and IMS on CoNLL-2012 test using gold preprocessing.

6.4.2 Error Analysis

Figures 6.2 and 6.3 show the error distributions of each of our models against the

benchmark Björkelund and Kuhn (2014) system. On both settings, we see a further

drop on conflated entity errors. Using gold preprocessing affects a drop in extra entity

errors while automatic preprocessing improves the trouble case on divided entity

errors. Given that the impact of anaphoricity determination was largely limited to the

automatic setting, we expect the changes on gold to largely be affected by our novel

secondary features. These, it would appear, act to rule out spurious links, perhaps

from more accurate modelling of when cohesion should be trusted. On automatic

preprocessing, our model is now able to force more correct links when there is a

strong cohesion indicator; this prevents entities being divided and results in the output

showing a greater recall of correct clusters.

Considering the errors made by our system and IMS, it is not clear that one system

is clearly better than the other. On gold, our Mutual Information model makes 44 more

divided entity errors and 17 more missed entities than IMS, but fewer errors on the

remainder of categories. On auto, wemake 109more divided entity errors, 5 more extra
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Figure 6.3: Errors made by our Mutual Information model compared to our previous

models and IMS on CoNLL-2012 test using automatic preprocessing.

mention errors, and 71 more missed entities but outperform IMS on the remaining four

error categories. Our conclusion is that while we achieve a higher CoNLL score on gold

preprocessing and IMS achieves a higher CoNLL score on automatic preprocessing,

neither system can be said to be better. Rather, we merely trust gold information more,

and are more conservative on the automatic setting, than IMS. We therefore expect the

performance of limeric to improve with advances in upstream processing.

6.5 Summary

This chapter introduced a means of studying the mutual information between features

in a coreference system using the χ2 distribution. We presented an analysis of the

mutual information of limeric’s feature set and used this analysis both to motivate a

series of secondary features, as well as to highlight areas requiring further study.

The mutual benefit from our secondary competition features and the incorporation

of anaphoricity competition into our framework outperformed our AR Transitions

model by 0.33% and 0.61% on CoNLL-2012 using gold and automatic preprocessing.

Our improvement on the automatic setting was significant at the conservative level of
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p = 0.01 and resulted in a system which was not significantly different from the strong

baseline set by Björkelund and Kuhn (2014).

In terms of further study, we highlighted an important shortcoming of our current

feature set: while cohesion appears to be a necessary condition for coreference, it is not

sufficient. Difficult cases had contextual cues of coreference, which we use to motivate

our exploration of frame semantic inference in the next chapter.



7 Frame Semantic Inference

This chapter extends from our analysis in the last, exploring the problem of how to

use contextual information, specifically frame semantic knowledge, to improve the

resolution of linguistically compatible mentions. While designated by Accessibility

theory as a key factor in mediating reference resolution, inference is difficult to encode

computationally and we analyse the particular challenges here.

The main contribution of this chapter is our characterisation of frame semantic

inference as a two stage process, involving predicate clustering and argument selection.

This characterisation allows us to describe the different challenges for coreference

resolution in the general task of OntoNotes and the specialised task of the Winograd

Schema Challenge. We find that predicate clustering is particularly a challenge for

OntoNotes, since we must account for a full document context and available resources

have limited coverage and additionally may not capture narrative structure. However,

syntactic parallelism works as a reasonable baseline approach to argument selection

given OntoNotes’ natural discourse settings.

We use our analysis to propose Brown clusters as a suitable, and readily available,

alternative to traditional frame semantic resources. The gains we see with Brown

cluster features open the possibility of exploring frame semantic features for coreference

resolution in under-resourced settings.

167
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7.1 Background

By focusing on the problem of frame semantic inference, the related task of the Wino-

grad Schema Challenge (WSC; Levesque, 2011) becomes relevant. While our aim

remains to improve our understanding of the standard coreference task of OntoNotes,

the WSC is an interesting complementary benchmark since it targets challenging reso-

lutions which depend crucially on contextual cues. Systems competing on this task

typically augment coreference feature sets by consulting external resources such as

FrameNet (Baker et al., 1998) and Narrative Schemas (Chambers and Jurafsky, 2010)

and we test and adapt these features in our experiments over OntoNotes. Novel to this

work, we additionally consider Brown clusters (Brown et al., 1992) as a potential source

of frame semantic knowledge, and motivate this decision below.

7.1.1 Winograd Schema Challenge

The Winograd Schema Challenge was introduced by Levesque (2011) as an alternative

to the Turing test (Turing, 1950) for assessing whether a computational system has

achieved human-level intelligence. The challenge is formulated via a series of sentence

pairs with properties demonstrated by the following example.

The trophy would not fit in the suitcase because it was too small.
The trophy would not fit in the suitcase because it was too large.

In this pair, the resolution of the anaphor ‘it’ is ambiguous between the two preced-

ing antecedent choices, one of which is indicated contextually. The correct antecedent

in each sentence is indicated in bold and resolution relies on the understanding that

containment requires a larger object to enclose a smaller one.

Common Sense Reasoning1 organises shared tasks testing theWSC, but the primary

dataset evaluated in the coreference resolution literature is that of Rahman and Ng

(2012). The dataset comprises 943 sentence pairs following the format above composed
1http://commonsensereasoning.org/winograd.html

http://commonsensereasoning.org/winograd.html
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by 20 students in an undergraduate computing class. Each sentence contains an am-

biguous pronoun with two candidate antecedents. All systems discussed below, which

form our benchmark of current approaches to the WSC, are tested on the same train
and test splits of this dataset.

7.1.2 Frame Semantic Resources

Frame semantic information was important in early theorising of language under-

standing (e.g. Schank and Abelson, 1977) since it encodes inference decisions made by

humans processing discourses about developing events.

FrameNet

FrameNet (Baker et al., 1998) is a collection of manually annotated frames: predications

with parallel syntactic-semantic constructs. Predicates (typically verbs) are arranged

into equivalence classes called frames wherein each unit templates equivalent events.

For instance, ‘attack’ and ‘bomb’ co-occur in the ‘Attack’ frame since both involve a

sentient ‘Assailant’ injuring a sentient ‘Victim’. ‘Assailant’, ‘Victim’, and other semantic

roles are annotated for all frames, though there is no simple mapping from grammatical

argument to semantic role.

Consistent with predictions of grammatical parallelism, Rahman and Ng (2011)

suggest that FrameNet data may be relevant to coreference since coreferential mentions

should fill the same role throughout a discourse. To model role using grammatical

arguments, Rahman and Ng defines a sparse feature whose values are triples with

the first element being whether or not the governing verbs of two mentions are in

the same frame, and the second and third being the grammatical arguments of the

two mentions. This feature increases B3 and ceafe by 0.4 and 0.3 on the newswire

documents common between OntoNotes 2 and ACE 2004/2005.
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Narrative Cloze

The Narrative Cloze task was introduced by Chambers and Jurafsky (2009) to assess

how well computational systems can model consistency in narrative structure. In

particular, the task measures how well a missing verbal predicate can be predicted by a

system with access to its document context. Narrative Cloze is relevant to coreference

resolution in that it requires systems to infer that chains of verbal predicates with

coreferential arguments are related to one another. That is, while Narrative Cloze uses

coreference to find chains of verbal predicates, we would like to use knowledge of

related predicates to inform the coreference of mentions.

The dataset used has been that of Chambers and Jurafsky (2010) which was auto-

matically extracted from the New York Times (NYT) portion of Gigaword2. The release

comprises two types of datasets. For ease of exposition in describing these, we will

refer to the pair of a mention’s grammatical argument and its governing verb as its

predicate frame. For instance, the predicate frame for ‘the attack’ mention in ‘the attack

killed 17 American soldiers’ is ‘kill-s’ since ‘the attack’ is the subject of the predicate ‘killed’.

Schemas are defined to be sets of predicate frames related by narrative structure.

For instance, the set {‘raise-s’, ‘cut-s’, ‘increase-s’, ‘lower-s’, ‘reduce-s’, ‘boost-s’} constitutes

a schema since each of these verbs are related by tending to take arguments (in this

case, subjects) which are coreferential with one another. schema datasets are given for

schema sizes 6, 8, 10, and 12, with larger schemas consuming smaller ones, expanding

the set of related predicates, but being based on fewer instances in NYT.

The release also contains a verb-pair dataset which is intended to assist with

inferring a natural ordering over predicate frames in schemas. Verb pairs are ordered

pairs of verbal predicates (i.e. not predicate frames) with a frequency count, where the

count indicates how often a trained classifier predicted the given ordering reflected

the true temporal ordering of the predicated events. In this way, if the count of a pair

2https://catalog.ldc.upenn.edu/LDC2003T05

https://catalog.ldc.upenn.edu/LDC2003T05
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(a, b) is much greater than that of (b, a), it can be said with reasonable confidence

that a precedes b temporally.

Irwin et al. (2011) use this data for their CoNLL-2011 system in a feature encoding

whether mentions’ predicate frames co-occur in a schema3. Unfortunately, this feature

is not analysed in their ablation study. Rahman and Ng (2012) also use the schema data

in their approach to the Winograd Schema Challenge. Like Irwin et al., their feature is

based on whether two mentions’ predicate frames co-occur in a schema, but inference

is extended. Specifically, if a candidate antecedent’s partner frame (i.e. with ‘-s|-o’

replaced by ‘-o|-s’) also co-occurs with that of the mention in any schema, no feature

is generated.

Although not documented in Rahman and Ng (2012), their reported results for

Narrative Schema were also based on lexicalised features as well as one using the

verb-pair dataset (personal communication with the authors). Their verb-pair

feature is boolean valued to indicate whether the verbs governing two mentions are

more likely in the document order or reversed, based on the provided frequency counts.

Removing this collection of features in ablation showed a drop of 4.8% accuracy and

a decision tree trained over just these features correctly resolved 30.67% of sentences

in the Winograd test dataset, incorrectly resolved 24.47%, and was unable to make a

prediction on the remaining 44.86%. The system was not tested on OntoNotes.

Peng et al. (2015) explore using the confidence values assigned to schemas as features

for modelling competition between candidate antecedents. When two antecedents of

a mention are related via a schema, they incorporate the corresponding confidence

values into their system in two ways. Firstly, they add the values themselves, weighted

by a manually tuned parameter, to the classifier score. Secondly, they use a constraint

term in their integer linear programming formulation which says that if the confidence

of one schema pairing is higher than another pairing, coreference cannot be resolved

between the lower confidence pair without also being resolved for the higher confidence

3Irwin et al. (2011) and Rahman and Ng (2012) both use schema-size12.
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pair. These measures improve precision on the Winograd schema Challenge by 23%,

but diminish performance on CoNLL by 0.3%.

7.1.3 Brown Clustering

Brown clustering (Brown et al., 1992) is an approach to hierarchically clustering words

according to either their semantic or syntactic similarity. Each node in the produced

(binary) tree is associated with a set of words which are functionally equivalent to

one another, with respect to the partitioning. Nodes which are close to each other in

this tree, such as siblings, are so placed because their word sets have high pairwise

information. For instance, in the Turian et al. (2010) release of Brown clusters, ‘said’

and the mis-spellings ‘siad’ and ‘ssaid’ are in the same cluster, and this cluster has a

sibling cluster containing the related terms ‘insists’, ‘conceded’, and ‘reasserts’.

Each word is given an identifier which represents a path of left and right child

transitions from the root to the node it has been assigned to. Identifiers are typically

given as bitstrings whose 1s and 0s represent the two parent-to-child transitions. In this

way, nodes which are close to one another will have similar identifiers and this can be

exploited for determining the similarity of words. Given the hierarchical nature of the

clustering, neighbourhoods of related nodes are typically defined by taking prefixes of

cluster identifiers: a prefix gives a path to non-leaf node and all terms in nodes under

this target node will have the same prefix.

There has yet to be a study exploring whether their encoding of distributional

semantic means that Brown clusters implicitly encode frame semantic information.

However, this seems reasonable given that verbs which tend to take similar arguments

should be assigned to nearby clusters. We explore the Brown clusters in Turian et al.’s

(2010) release, which includes 1000 and 3200 cluster outputs, as automatically extracted

sources of semantic frame data.



7.2. Frame Semantic Resources 173

7.2 Frame Semantic Resources

In this section, we compare the three resources we exploit for frame semantic infor-

mation with the goal of understanding their similarities and differences for feature

development. We are particularly interested in exploring how they differentiate be-

tween the Winograd Schema Challenge and OntoNotes datasets, since we would like

to understand how to leverage the strengths of WSC features for OntoNotes.

We guide our analysis by considering frame semantic inference to be a two-stage

process. In particular, we see all features reviewed above to comprise the stages predicate

clustering and argument selection. For a feature to indicate coreference between two

mentions, their governing predicates must first be considered related by a resource,

then the mentions must appear as related arguments. That is, deriving frame semantic

features can be thought of as a filtering process: relationships between mentions

with incompatible governing relationships are ruled out, before those in incompatible

grammatical positions. The remainder are suitable candidates for coreference.

7.2.1 Predicate Clustering

In predicate clustering, groups of textual predicates are identified as related for inferring

coreference relationships. Rahman andNg (2011) use FrameNet co-occurrence to cluster

predicates describing similar events, while Rahman andNg (2012) and Peng et al. (2015)

use schema co-occurrence, thereby clustering predicates related by narrative structure.

We propose having the same Brown cluster identifier (or prefix thereof) should likewise

cluster predicates as related. We note that relating predicates means that there is likely

to be a coreference relationship among certain of their arguments; it does not tell

us which arguments are coreferential. Argument selection applies after predicate

clustering to make these decisions.

In order for two predicates to be clustered by a resource, both predicates need to

be covered by that resource and the pair need to be marked as related. We quantify
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PropBank Dependencies
Resource Gold System Gold System

Mentions 19156 47335 19156 47335
Predicated 53.6 40.7 55.2 44.2
schema-6 30.8 24.0 31.6 25.2
schema-8 32.1 24.5 32.9 25.7
schema-10 31.9 24.2 32.7 25.4
schema-12 30.9 23.6 31.8 24.8
verb-pair 49.8 37.4 46.5 35.9
FrameNet 30.7 23.1 32.0 24.8
Brown 52.8 40.2 55.7 43.5

(a) OntoNotes 5

Dependencies
Resource Gold

Mentions 3762
Predicated 99.1
schema-6 66.7
schema-8 65.8
schema-10 64.5
schema-12 63.3
verb-pair 77.6
FrameNet 55.5
Brown 93.7

(b) WSC

Table 7.1: Coverage of mentions by the proposed frame semantics resources.

coverage via mentions: a mention is covered if it is the argument of a predicate which

is described by a given resource. For FrameNet and Brown clusters, this simply means

that the predicate appears in at least one frame or appears in a Brown cluster4. For

schema it additionally requires the mention to have the correct grammatical argument

given the predicate frames described by the resource. To get a coarse-grained idea

of coverage for verb-pair, we label a mention as covered if its governing verb is a

member of any given verb pair, noting that this may overestimate the rate at which the

resource can actually be applied.

We identify two ways of establishing predicate argument structure. First, PropBank-

style annotations (Kingsbury and Palmer, 2002) are provided with OntoNotes; while

these are not complete, Hovy et al. (2006) expect them to have good coverage of rela-

tionships between noun arguments (mentions) and their verbal predicates. However,

PropBank annotations are not available for WSC and Rahman and Ng (2012) and Peng

et al. (2015) instead use dependency annotation for predicate argument structure over

the dataset. We compare coverage from the PropBank annotations against using Stan-

4We use the 3200 cluster data of Turian et al. (2010).
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ford dependency labels produced automatically with CoreNLP5 (Chen and Manning,

2014). Mentions are labelled as covered by a resource if their head is linked by an

‘nsubj’, ‘dobj’, ‘nsubjpass’, or ‘agent’ dependency arc to a token described in the resource.

Coverage statistics for gold and system mentions are summarised in Table 7.1.

The first line gives the raw number of mentions considered and the second gives the

proportion of thesementionswhich are aligned to either PropBank or a dependency arc,

as an upper bound of coverage. Considering the OntoNotes data first, we can see that

our upper bound is higher when we use dependencies compared to PropBank, though

the difference is small and diminished when we consider the coverage of resources

themselves. Therefore, we expect PropBank annotations to be sufficient for defining

coreference features for OntoNotes, though dependencies may offer slight benefits

in coverage. In development, we found PropBank-based features almost consistently

outperformed dependency-based ones and analysis suggested this was due to noise

from incorrect grammatical structures in the dependency annotation.

Across the resources, coverage ranges from almost complete with Brown clusters

to just over half with schema. The low coverage of schema and FrameNet is our first

limit on the applicability of frame semantic features for OntoNotes: features cannot be

defined for mentions if they are not even considered in predicate clustering.

Looking now at the WSC data, we can see that almost all mentions are linked

to a predicate, which is reasonable given that these sentences tend to be short and

have simple syntactic structure. With the exception of Brown clusters, which again

has almost complete coverage, frame semantic resource cover around two thirds the

predicates seen. That is, based purely on coverage, we expect frame semantic resources

to be less informative for OntoNotes than WSC.

Next, we quantify how well the relationships between predicates covered in our

resources translate to clustering mentions that are coreferential. We expect a resource

is good at describing coreference relationships if most coreferential mention pairs

5http://nlp.stanford.edu/software/corenlp.shtml

http://nlp.stanford.edu/software/corenlp.shtml
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Coreference Non-Coreference
Resource Pairs Covered Pairs Covered

schema-6 3301 15.7 5349 2.2
schema-8 3505 21.2 5589 3.0
schema-10 3479 21.5 5555 3.5
schema-12 3361 25.1 5377 4.4
verb-pair 6273 48.6 8955 26.5
FrameNet 3386 29.6 5339 6.5
Brown 6744 31.2 9530 7.4

(a) OntoNotes 5

Coreference Non-Coreference
Resource Pairs Covered Pairs Covered

schema-6 515 7.0 518 6.4
schema-8 497 9.3 506 8.9
schema-10 484 10.5 498 9.6
schema-12 469 11.9 474 10.5
verb-pair 743 38.1 739 38.3
FrameNet 363 17.9 370 17.0
Brown 1113 16.9 1111 16.2

(b) WSC

Table 7.2: Coverage of mention-pair links by the proposed frame semantics resources.

are related by that resource and most non-coreferential pairs are covered but not

related. For FrameNet and the Brown cluster data, we label two mentions as related

if their governing verbs belong to the same frame or have the same cluster identifier.

Relatedness in the Narrative Schema dataset requires mentions’ predicate frames or

governing verbs to co-occur in a schema or verb-pair.

To assess the margin distinguishing coreference and non-coreference instances, we

first collect all (gold) mentions labelled as covered above using PropBank annotations.

For entity clusters with two or more mentions covered, we iterate over each covered

mention, tallying whenever there is a resource link between the mention and any of

the mentions preceding it in the cluster. For each mention, including cluster-initial

mentions, we additionally tally whether it and its closest non-coreferential antecedent

in the document share a resource link.

Table 7.2 shows us that, similarly for mention coverage, the coverage of links is low

across all resources and both datasets. For instance, among the 19156 gold mentions

in OntoNotes, respectively, only around 30% (~5700) were covered by a schema. Of

these 5700 mentions, only ~3400 coreference pairings exist and only 20% or fewer of

these pairings have predicate frames which co-occur in schema. Such low resource
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coverage acts as a strict filter on how applicable frame semantic features can be to

OntoNotes. However, the filter is reasonably precise. On OntoNotes, all resources have

a 20% or greater margin distinguishing coreferential and non-coreferential instances.

This suggests that predicate clustering over the context of a whole document is itself

informative, and that the presence of a resource link can potentially add information

to a coreference model.

This is not the case on WSC, for which we see link coverage to be relatively even

between the coreferential and non-coreferential instances. That no margin is seen

for this dataset makes sense since the two candidate antecedents are typically sibling

arguments of the same predicate. However, it does mean that predicate clustering

alone cannot be used for the difficult dataset, necessitating sophisticated reasoning for

argument selection.

7.2.2 Argument Selection

Once mentions are identified as candidates for coreference resolution by predicate

clustering, their grammatical role is used to make the final decision about which should

be related. Rahman and Ng’s (2011) learned to select between arguments of clustered

predicates by concatenating the argument numbers of candidate mention pairs. On the

other hand, argument selection in Rahman and Ng (2012) leverages the grammatical

information encoded in the predicate frames of schema: their schema features only

triggered for mentions in grammatical positions precisely identified as related by the

resource.

While complex reasoning appears necessary for resolving ambiguous pronouns in

the Winograd Schema Challenge, we would expect syntactic parallelism to account for

a larger proportion of cases in natural discourse settings, such as those in OntoNotes.

That is, without any other information, we expect two subject mentions or two object

mentions to have an increased chance of being coreferential with one another based on

their grammatical position.
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Arguments
Resource ss oo so os

schema-6 313 204 0 0
schema-8 500 238 1 5
schema-10 502 241 2 3
schema-12 578 255 4 8
verb-pair 1927 355 361 404
FrameNet 712 217 31 41
Brown Clusters 1136 809 75 86

(a) OntoNotes

Arguments
Resource ss oo so os

schema-6 219 56 182 58
schema-8 210 57 175 55
schema-10 204 56 169 55
schema-12 194 56 165 54
verb-pair 328 71 275 69
FrameNet 143 45 128 47
Brown Clusters 485 90 447 91

(b) WSC

Table 7.3: Number of subject and object mentions in pairs related by the proposed

frame semantic resources.

To test how well syntactic parallelism works as a simple inference strategy for

related predicates, we take the pairs related via PropBank annotations above, and tally

the grammatical arguments of the coreferential mentions. The columns of Table 7.3 are

labelled by concatenating the labels of the mention (first) and the antecedent (second).

In Table 7.3a, we can see that, as expected, there is a strong tendency for corefer-

ential mentions related by schema, FrameNet, and Brown clusters to share argument

number. schema and FrameNet particularly relate subject mentions, while Brown

clusters relate mentions of both grammatical positions. We therefore expect simple

syntactic parallelism features, enriched with predicate clustering information from

these resources, to help coreference resolution on OntoNotes.

The tendency for syntactic parallelism is also attested, though less prominently, in

pairs from verb-pair. With its higher coverage, it could be expected to encompass

a wider range of discourse phenomena than schema and FrameNet and therefore

benefit from hand-coded or learned inference rules. That Brown clusters appear not

to necessitate this inference is interesting, and potentially a byproduct of how the

resources were created.



7.2. Frame Semantic Resources 179

FrameNet schema pair Brown

FrameNet - 0.6 11.2 5.4
schema 1.6 - 21.7 16.9
pair 0.1 0.4 - 20.8
Brown 0.0 0.0 6.4 -

Table 7.4: Overlap between proposed frame semantic resources.

On the other hand, Table 7.3b shows syntactic parallelism cannot be assumed for

WSC mentions governed by related predicates. This again seems reasonable, given the

aim of the dataset to be a collection of particularly difficult instances of coreference,

and licenses the sophisticated inference features proposed for the dataset.

7.2.3 Inter-Resource Comparison

We have seen that each of our target resources is different in its coverage both of indi-

vidual predicates in the OntoNotes and WSC datasets, as well as the links required to

cluster predicates for inference. We now compare the coverage of our resources directly

against one another to shed light on whether they are overlapping or complementary.

We also do this with the goal of finding further validation to the statistics above that

Brown clusters encode similar information to that in traditional resources.

Table 7.4 measures the overlap between two resources, A (vertical) and B (horizon-

tal) by iterating over the terms of predicates labelled as related in B and counting how

frequently they are also labelled as related in A. schema values are given as ranges of

minimum and maximum similarity across the four sizes of schema released. We see

that 5.4% of terms related via their Brown cluster identifier are labelled as related in

FrameNet. This low number makes sense: Brown clusters cluster a large proportion of

the English vocabulary where FrameNet targets a class of predicates.

Our first observation is that the overlap between the resources is low overall. Com-

paring FrameNet to schema, as gold and silver standard datasets, overlap is low in
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both directions.We see this complementarity as a good thing: FrameNet describes

relationships between similar terms, while schemas find dissimilar terms which tend

to be related via a chain of developing events. Their complementarity opens the door

for each to model separate aspects of frame semantic inference. Between schema and

verb-pair, there is reasonable overlap, presumably from their generation from the

same corpus.

We can also see that terms related by Brown clustering are unlikely to be related

in FrameNet or Narrative Schema, though these low probabilities may be due the

larger vocabulary in Brown clusters. Indeed, terms related by the traditional frame

semantic resources are likely to be in related Brown clusters, and the proportion of

overlap reflects the relative sizes of these resources. That is, the information encoded

in both FrameNet and Narrative Schemas is at least partially also encoded in Brown

clusters, despite these clusters not being explicitly designed to capture this information.

7.2.4 Summary

We have decomposed frame semantic inference into two steps, predicate clustering and

argument selection which act as filters for feature generation. In this scheme, we find

thatWSC represents one extremewhere predicate clustering is artificially simplified but

argument selection is difficult and requires sophisticated inference strategies. On the

other hand, predicate clustering is more difficult on OntoNotes, where full document

context is available, but the simple heuristic of syntactic parallelism works better for

modelling argument selection.

We used our scheme to study the resources and features proposed for theWinograd

Schema Challenge. We found predicate clustering to be constrained by resources

having low coverage on OntoNotes. One key aim of feature development is therefore

to boost coverage and observe the impact of this on system performance. Our analysis

highlighted the promise of Brown clusters for deriving frame semantic features.
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7.3 Feature Development

In this section, we implement features based on our analysis of frame semantic in-

ference as a two stage process of predicate clustering and argument selection. The

implementation details below are for mention-pair features; in our entity-level model,

feature generation is based on the current mention and its closest antecedent in the

candidate antecedent cluster covered by a resource.

By comparing the performance of our reviewed and novel features, we find that the

coverage, as well as the precision, of a resource are important for effective predicate

clustering. We also see that it is important not only to encode the similarity of predicates,

but also the notion of narrative structure, or which predicates tend to follow one another

in a cohesive narrative. For these reasons, our strongest performing features are based

on Brown clusters and these features dominate the performance of our combined

model. We also confirm the validity of syntactic parallelism for argument selection,

via our three feature variants.

7.3.1 Feature Variants

Our three feature variants generalise the role of grammatical structure for argument

selection with frame semantic features. We denote the variants sparse, collapsed, and

dense according to the level of grammatical argument structure captured. Sparse

features are defined as described for Rahman and Ng’s (2011) FrameNet features.

Specifically, sparse features are defined in three dimensions, whether the predicates are

linked in the relevant resource, the argument number of the current mention and that

of the closest covered antecedent in the candidate entity cluster: <resource result> +

<arg number>i + <arg number>j, e.g. match:True+arg0+arg1. In contrast, collapsed

features are defined in two dimensions <resource result> + <arg comparison>,

where the argument comparison reflects whether the two mentions have the same
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grammatical argument number, e.g. match:True+args:diff, and dense features in

just one, <resource result>, e.g. match:True.

Interpreting the three variants, <resource result> allows us to model predicate

clustering, while the remaining dimensions are used for argument selection. If complex

inference is required for argument selection, this should be learned using our sparse

feature variants. On the other hand, we would expect collapsed feature variants to be

most informative in cases where syntactic parallelism can be assumed. Dense variants

are included to reduce sparsity given the large number of features limeric is already

learning and the poor coverage of frame semantic resources. Models denoted all below

are trained on all three variants. We report on single variants for our Brown cluster

experiments where performance increases are larger, but not on our FrameNet and

Narrative Schema experiments, where all perform similarly to each other and to the all

variants models.

7.3.2 FrameNet

Table 7.5 summarises the performance of our three features based on FrameNet, de-

scribed below. We can see that each feature improves performance marginally, with

our novel frame concatenation and schema clustering features yielding stronger gains

than Rahman and Ng’s (2011) same frame when using automatic preprocessing.

The impact of FrameNet features is to improve the link-based muc and B3 scores

at the expense of the entity-based ceafe score, netting the modest improvements on

CoNLL we see. These changes reflect recall increasing on muc and B3 and decreasing

on ceafe, with precision staying relatively constant on all three metrics. Given the

increase in link-based recall, we infer that FrameNet features are good at informing

the links that they do cover, but this is at the expense of missing entity clusters overall,

resulting in the decrease in ceafe recall.
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Gold Auto

muc B3 ceafe CoNLL muc B3 ceafe CoNLL

AR + MI 74.08 62.25 60.89 65.74 70.06 57.92 56.36 61.45

Same Frame (all) 74.42 62.51 60.71 65.88 70.19 57.85 56.20 61.41

Concat Frame (all) 74.34 62.62 60.69 65.88 70.38 58.06 56.31 61.58

schema-6 Clustering (all) 74.42 62.63 60.69 65.91 70.29 57.99 56.30 61.53

Table 7.5: Performance of FrameNet features on CoNLL-2012 dev with respect to our

strongest system from Chapter 6 (AR Transitions + Mutual Information).

Same Frame Re-implementation of Rahman and Ng (2011), whose description de-

scribes the sparse variant of this feature. As such, predicate clustering reflects whether

the verbs governing two mentions are in the same FrameNet frame. This feature im-

proves system performance by just 0.14%, but only when gold preprocessing is used.

Moving to automatic, performance is just weaker than baseline.

Our B3 increase of 0.26% on gold preprocessing is comparable with the 0.4 and

0.3% improvements reported in Rahman and Ng despite our evaluation being over

a stronger baseline. As would be expected given our feature set, this suggests our

baseline improvements are not capturing the frame semantic regularities of FrameNet.

Frame Concatenation Where same frame captures parallelism in grammatical frame,

we actually expect that documents in OntoNotes will often describe the progression

of a narrative in which multiple events are predicated. We use the concatenation of

frame identifiers as the <resource result> of this feature, in order to allow frame

compatibilities to be learned. This feature subsumes a sparse version of same frame in

that a concatenation is allowed to be between two identical identifiers.

Frame concatenation outperforms same frame by 0.17% using automatic preprocess-

ing. This is encouraging given the sparsity we expect in this feature: with 1020 distinct

frames, there are 10202 = >1M possible frame pairs. This promising result shows
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Gold Auto

muc B3 ceafe CoNLL muc B3 ceafe CoNLL

AR + MI 74.08 62.25 60.89 65.74 70.06 57.92 56.36 61.45

Same schema-10 (all) 74.51 62.56 60.61 65.89 70.24 57.69 56.38 61.44

verb-pair Order (all) 74.29 62.43 60.69 65.80 70.20 57.84 56.22 61.42

Same verb-pair (all) 74.52 62.50 60.96 65.99 70.35 57.87 56.31 61.51

Table 7.6: Performance of Narrative Schema features on CoNLL-2012 dev with respect

to our strongest system from Chapter 6 (AR Transitions + Mutual Information).

the importance of capturing narrative structure in defining effective frame semantic

features.

Schema Clustering

A less sparse way to encode frame transitions, and to leverage the complementary

coverage of FrameNet and Narrative Schemas, is to use schema relatedness to further

cluster FrameNet predicates. All predicates in schemas6 are mapped to frames (where

possible) and frame clusters are grown incrementally according to the rule that {A, B,

C} is included as a cluster iff all of {A, B}, {B, C}, and {A, C} are. Clusters of the form {A,

A} are also included. Co-occurrence in a cluster is used for <resource result> here.

We find that schema clustering offers similar improvement above same frame as frame

concatenation did, despite its denser representation.

7.3.3 Narrative Schema

The performance of our three features based on the Chambers and Jurafsky (2010)

datasets are given in Table 7.6. Comparing against our FrameNet results, the gains we

see here are similarly modest. However, performance on automatic preprocessing is

particularly weak and only our novel feature same verb-pair outperforms baseline.

6Experiments here use schema6.
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Same verb-pair affects increases on all three metrics on the gold setting, but particu-

larly muc and B3. That is, as for FrameNet features, the effect of using the verb-pair

data is to better inform our model at the level of individual links. For ceafe, recall
again falls but precision now increases by 0.26%: using verb-pair features does not

compromise our ability to delineate clusters as FrameNet features did.

Same schema

Based on Irwin et al. (2011) and Rahman and Ng (2012), we use the co-occurrence of

two predicates in a schema as the <resource result> in this feature. In development,

we found schema-10 gave the strongest results, where previous studies use schema-12.

We expect the choice between schemas to depend on the relative importance resource

coverage and precision in a given setting. That schema-10 outperforms schema-12

here shows that our system is sensitive to non-coreferential instances being falsely

indicated.

While not tabulated, the dense formulation of the feature is strong, outperforming

the all variants model on automatic preprocessing (CoNLL = 61.54). This is implicitly

consistent with Irwin et al. (2011) who devise the feature in this same way. That our

dimensions for the grammatical arguments of mentions are not required is presumably

due to the fact that matching predicate frames already requires mentions to be in

compatible grammatical positions. Adding these extra dimensions merely allows us to

learn whether subject or objects are more likely to be related by schema matches.

verb-pairOrder

Re-implementation of the feature used in Rahman and Ng (2012), based on personal

communicationwith the authors. For this feature, <resource result> reflectswhether

the textual order of the twomentions’ predicates is consistent with the frequency counts

in verb-pair.
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While this feature is crucial to the success of narrative schema features in Rahman

and Ng (2012), it is actually our weakest surveyed feature. It is possible that this

is a coverage effect: the check whether textual order in consistent with the given

frequency counts reduces the number of mention-pairs which evaluate positively,

which means the effective coverage of the resource will be lower than what is estimated

in Table 7.2. Given that this coverage was already quite high, we do not expect this to

be a full explanation. We suggest that the coherence of the OntoNotes documents also

acts as a constraint, naturally guiding the verb pairs we see, making the order check

unnecessarily limiting. Additionally, the frequency counts given in verb-pair reflect

whether the pair is consistent with temporal ordering in the real world, rather than

document ordering, which is subject to discourse and pragmatic preferences. To test

whether ordering constraints are actually necessary, we formulate our next feature,

same verb-pair.

Same verb-pair

We use as <resource result>whether two mentions’ governing verbs appear at all

as a verb-pair. We do not check their relative frequency, only imposing a threshold

frequency of at least 50 occurrences, where we found best performance. While simple,

we find the performance of this implementation is strong, particularly using gold

preprocessing. The strength of same verb-pair above same schema and same frame

is consistent with our above analysis: verb-pair has both better coverage than both

other resources. Furthermore, the resource explicitly aims to capture consistencies in

the development of narratives, rather than the inherent similarity between predicates.

7.3.4 Brown Clusters

Brown clusters have yet to explored as a source of frame semantic information for

coreference resolution, though we have demonstrated their promise above. As a more

direct test, we formulate a feature whose <resource result> indicates whether the
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Gold Auto

muc B3 ceafe CoNLL muc B3 ceafe CoNLL

AR + MI 74.08 62.25 60.89 65.74 70.06 57.92 56.36 61.45

Same 4-Prefix 74.42 62.61 60.61 65.88 70.30 58.10 56.30 61.57

Same 8-Prefix 74.51 62.77 61.05 66.11 70.49 58.16 56.62 61.76

Same 12-Prefix 74.53 62.83 60.87 66.08 70.51 58.35 56.59 61.82

Table 7.7: Performance of Brown cluster features (using sparse representation over

3200 cluster data) on CoNLL-2012 dev with respect to our strongest system from

Chapter 6 (AR Transitions + Mutual Information).

governing verbs ofmentions has the same Brown cluster identifier, or prefix thereof. We

identify three parameters which require exploration: prefix length, degree of clustering,

feature variant, and feature variant. To analyse the impact of each on our coreference

model, we tune each parameter in turn while holding the other two constant.

Prefix Length

Table 7.7 shows the performance of sparse features over Turian et al.’s (2010) 3200

cluster dataset; feature values are true if the governing verbs of two mentions have the

same Brown cluster identifier up to the prefix lengths given and false otherwise. Using

a prefix length of 12 corresponds to the full Brown cluster identifier being used.

Our first observation is that already our Brown cluster features perform better than

those we have seen so far for FrameNet andNarrative Schemas. Using the whole cluster

identifier, we are 0.20 and 0.24% stronger than frame concatenation and 0.07 and 0.31%

stronger than same verb-pair with gold and automatic preprocessing. That Brown

cluster features are so strong compared to schema and FrameNet features confirms that

a high coverage of coreferential instances is required to model frame semantics. That

they outperform features based on the similarly high-coverage verb-pair resource

confirms that minimising the number of falsely indicated non-coreferential instances is
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Gold Auto

muc B3 ceafe CoNLL muc B3 ceafe CoNLL

AR + MI 74.08 62.25 60.89 65.74 70.06 57.92 56.36 61.45

Same 12-Prefix (3200) 74.53 62.83 60.87 66.08 70.51 58.35 56.59 61.82

Same 12-Prefix (1000) 74.67 62.80 61.06 66.18 70.47 58.09 56.59 61.72

Table 7.8: Performance of Brown cluster features (using sparse representation over

length 12 prefixes) on CoNLL-2012 dev with respect to our strongest system from

Chapter 6 (AR Transitions + Mutual Information).

also important. That is, both the recall and precision of a resource need to be taken

into account when selecting frame semantic resources.

We note that this result is also consistentwith our suggestion that encoding narrative

structure is important for frame semantic features: our analysis indicated that Brown

clusters capture aspects of FrameNet and Narrative Schema simultaneously, making

them a compact representation of both predicate similarity and narrative structure.

On automatic preprocessing, we see a uniform increase in system performance

with increasing prefix length. Since longer prefixes capture more information about

word usage, we would expect these features to have higher confidence about related-

ness and to minimise noise. Indeed, while precision and recall both increase on all

experiments in Table 7.8, the balance shifts from recall to precision as prefix length

increases. For instance, the precision increases are 0.17, 0.06, and 0.24% greater than

the recall increases on muc, B3, and ceafe moving to 12-prefixes from 8-prefixes.

Prefix lengths of 8 and 12 both perform well, with the shorter, higher recall prefix

giving better results using gold preprocessing and the longer, higher precision prefix

giving better results using automatic preprocessing. That is, neither is clearly better

but instead make different trade offs between precision and recall.
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Degree of Clustering

We next explore the degree of clustering on performance by comparing features imple-

mented over the 1000 and 3200 cluster datasets of Turian et al. (2010). We use prefix

length 12 since this means we are using full identifiers in both instances and the sparse

feature variant. As would be expected, the results for the 1000 cluster data in Table 7.8

are similar to what we would expect for 10-prefixes given the results in Table 7.7.

Table 7.8 shows us that, again, neither choice is clearly better. Using a higher degree

of clustering (smaller number of clusters) is better when using gold preprocessing,

where shorter, higher recall prefixes performed well. Similarly, using a lower degree

of clustering (larger number of clusters) is better for automatic preprocessing, where

longer, higher precision prefixes performed well. That is, if you have trustworthy pre-

processing, a higher degree of clustering, and therefore higher coverage of coreferential

instances, can be helpful. Interestingly, the difference in between the two choices in the

automatic setting is largely restricted to the B3 metric, which gives harsher penalties to

larger clusters: the drop in performance when moving to the high recall setting derives

from errors on topical entities.

Feature Variant

We consider the impact of feature variant in Table 7.9 using length 12 prefixes over

the 3200 cluster dataset. Consistent with our observation that coreferential mentions

related by Brown cluster identifiers tended to either be both grammatical subjects or

both objects, we find that collapsed is the strongest variant, even outperforming our

all variants model. This provides further evidence for the applicability of syntactic

parallelism to argument selection in OntoNotes.

The improvement in using the collapsed variant compared to sparse derives from a

slight boost on muc and a larger boost on ceafe, particularly on precision. Given that

ceafe aims to capture whether a system has returned the right number of entities, we
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Gold Auto

muc B3 ceafe CoNLL muc B3 ceafe CoNLL

AR + MI 74.08 62.25 60.89 65.74 70.06 57.92 56.36 61.45

Same 12-Prefix (all) 74.55 62.54 60.79 65.96 70.66 58.34 56.65 61.88

Same 12-Prefix (sparse) 74.53 62.83 60.87 66.08 70.51 58.35 56.59 61.82

Same 12-Prefix (collapsed) 74.63 62.82 61.03 66.16 70.57 58.35 56.83 61.92

Same 12-Prefix (dense) 74.55 62.79 60.83 66.06 70.41 58.12 56.39 61.64

Table 7.9: Performance of Brown cluster features (using length 12 prefixes over 3200

cluster data) on CoNLL-2012 dev with respect to our strongest system from Chapter 6

(AR Transitions + Mutual Information).

infer that the mention-pair links corrected by Brown clusters prevent limeric from

proposing spurious clusters in this high precision setting.

7.3.5 All Resources

The best performing of our features are schema clustering, same verb-pair and same

Brown cluster identifier. While frame concatenation performs similarly to schema

clustering, the features were designed to encode similar information and we prefer the

compactness of schema clustering. We test whether the information encoded in these

features above is complementary by first learning a model over the three, and then

performing an ablation study. Table 7.10 summarises the results of these experiments.

All resources is the weakest of all the combined models. This is perhaps not unex-

pected given the very large size of the feature set we now have and our analysis of that

the resources overlap, meaning that features defined over them are not independent.

Removing schema clustering, we can see that performance is not very different to using

just Brown cluster features, though is stronger than our same verb-pair experiments by

0.06% and 0.28%. That Brown cluster features dominate performance here is again not

surprising given how well it performs when introduced alone.
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Gold Auto

muc B3 ceafe CoNLL muc B3 ceafe CoNLL

AR + MI 74.08 62.25 60.89 65.74 70.06 57.92 56.36 61.45

All Resources 74.50 62.63 60.65 65.93 70.53 58.29 56.55 61.79

verb-pair + Brown 74.57 62.60 60.97 66.05 70.56 58.21 56.59 61.79

verb-pair 74.52 62.50 60.96 65.99 70.35 57.87 56.31 61.51

Table 7.10: Performance of combined model using all frame semantic resource features

on CoNLL-2012 dev with respect to our strongest system from Chapter 6 (AR

Transitions + Mutual Information).

However, our dual-resource model does not quite achieve the performance we saw

in Table 7.9. While the small difference may be due to chance effects in training, we

manually examine the learned feature weights to investigate any additional factors.

We see that between the verb-pair + Brown model and their corresponding single

resource models, features achieve remarkably similar weights. That is, in the dual

model, we are learning to assign twice the relative importance to frame semantic

information.

In cases when only one resource covers a mention pair, it is straightforward that

this is the correct solution. For cases in which both resources indicate a match, the

model will sum the evidence from both, which results in the match being trusted more.

While higher trust is reasonable given that the match is found in two resources, the

weight summight be too highly weighted. Given that only 33% of covered coreferential

pairs are related both by verb-pair and Brown clusters, the learned weights are likely

to be more correctly tuned for single match than double.

We experimentwith combining themodels using a featurewhose <resource result>

is true if a match is indicated by either verb-pair or same 12-prefix, but find that per-

formance is lower again, 65.97% and 61.79% using gold and automatic preprocessing.

We expect the correct solution will involve modelling the non-independence of these

features, potentially via secondary feature conjunctions. For these reasons, as well as
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the Brown cluster model still being the strongest of all we have seen in development,

we benchmark system performance using just our novel Brown cluster features.

7.4 Evaluation

This section benchmarks the performance of our novel frame semantic features using

Brown clusters. While Brown clusters are derived from unlabelled text, we can not

fairly compare against systems developed for the closed version of the shared task

since this definition does not allow reference to any external knowledge sources.

7.4.1 Benchmarking

We saw above in development of Brown cluster features that there is a recall-precision

trade off when using different prefix lengths and, similarly, different degrees of cluster-

ing. We therefore submit two systems to testing, a high recall version based on length

8 prefixes and a high precision version based on length 12 prefixes. Table 7.11 shows

that, unlike in development, our 8-prefix model outperforms our 12-prefix model on

both gold and automatic settings.

Our performance on the different evaluation metrics reveals why our high precision

12-prefix model is not the strongest of our two models. Using gold preprocessing,

Gold Auto

muc B3 ceafe CoNLL muc B3 ceafe CoNLL

limeric 73.66 60.64 57.77 64.02 69.74 55.76 53.34 59.61

+ AR Transitions 74.34 61.81 58.74 64.96 70.33 56.71 54.52 60.52

+ Mutual Information 74.73 61.72 59.43 65.29 70.72 57.40 55.26 61.13

+ Frame Semantics (12-prefix) 74.75 62.00 59.75 65.50 70.92 57.38 55.39 61.23

+ Frame Semantics (8-prefix) 74.95 62.16 59.89 65.67 70.92 57.45 55.45 61.27

Table 7.11: Performance of Brown cluster features on CoNLL-2012 test with respect to

our strongest system from Chapter 6 (AR Transitions + Mutual Information).
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we achieve F score gains of 0.28% and 0.32% on B3 and ceafe, but muc does not

change appreciably. This is because, while muc precision increases, as expected, recall

decreases. That is, our high precision Brown cluster features make our system even

more conservative, adding to this major source of error. With length 12 prefixes on

automatic preprocessing, we see a muc performance gain since precision and recall

both increase. We expect the recall gain here is impacted by our previous models for

this difficult setting already suffering missing links.

Our 8-prefix model achieves performance gains of 0.38% and 0.14% on CoNLL: the

performance gains we saw in development carry over with almost identical magnitude

for gold preprocessing. Indeed, we achieve a weakly significant improvement on

CoNLL, with p = 0.023. The gains are across all three metrics, on recall and precision.

7.4.2 Error Analysis

Compared to our initial baseline set in Chapter 4 (limeric), we have now achieved

performance gains of 1.65% and 1.66% using gold and automatic preprocessing. In

previous chapters, we saw that our improvements from incorporating cognitive insights

largely derived from reducing the number of conflated and divided entity errors.

Figure 7.1 shows the number of errors made by our same 8-prefix model on CoNLL-

2012 test using gold preprocessing. We can see that frame semantic features continue

to reduce the number of times we conflate entities, as well as miss entities, but other

error categories largely are not impacted. The number of divided entity errors we make

is only marginally decreased and remains a key source of error.

The error profile in Figure 7.1 also suggests why we found B3 to be particularly

sensitive to modelling changes above (cf. Tables 7.7 and 7.8). Kummerfeld and Klein

(2013) demonstrate that the number of conflated errors impacts B3 precision score more

than errors in any other of their categories, but have no impact on B3 recall. Therefore,

we suggest the increases we see in B3 when optimising for precision above arise from

the reduction we now see in conflated entity errors.
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Figure 7.1: Errors made by Same 8-Prefix model compared to our previous baselines

on CoNLL-2012 test using gold preprocessing.

On the automatic setting in Figure 7.2, we again see that frame semantic modelling

has reduced the number of conflated entity errors wemake compared to our previously

best model. However, this time, we also see slightly more missed mention, extra

mention, and missed entity errors. That is, frame semantic features allow us to improve

our delineation of entity clusters on both gold and automatic settings, but doing so

with automatic preprocessing simultaneously degrades other aspects of our link-based

decision making. This accounts for the lower performance gain we see in this setting,

and we highlight addressing this problem for future work.
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Figure 7.2: Errors made by Same 8-Prefix model compared to our previous baselines

on CoNLL-2012 test using automatic preprocessing.

7.5 Summary

The importance of frame semantic inference to coreference resolution is demonstrated

by the specialised task of the Winograd Schema Challenge (WSC). In this chapter, we

analyse the relevant differences between the WSC and general-domain coreference

in OntoNotes. In doing this, we decompose frame semantic inference into predicate

clustering and argument selection in order to understand the current challenges. We

find, for features on predicate clustering in OntoNotes to be effective, they need to be

based on a resource which encodes narrative structure and has good coverage. Good

coverage, in turn, requires high coverage of coreferential instances and low coverage

of non-coreferential instances. We additionally show that, in the natural discourse

settings in OntoNotes, syntactic parallelism appears to be a satisfactory approximation

to argument selection.
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These findings are supported by our experimental results. We develop methods

for modelling frame semantic inference, adapting previously documented features

and proposing novel variants. For the reasons highlighted by our analysis, our novel

use of Brown clusters to mine frame semantic information perform particularly well,

achieving 65.67% and 61.27% on CoNLL-2012. While marginal, these gains in perfor-

mance, particularly on the gold setting, are encouraging given that Brown clusters

are straightforward to derive from unlabelled text, and open the possibility to explore

frame semantic modelling in under-resourced settings.



8 Conclusion

Coreference resolution is a complex capability that is an active area of research in both

the cognitive and computational literatures. Centering (Grosz et al., 1995) and Acces-

sibility (Ariel, 2001) theories offer cognitive models for understanding how humans

resolve reference in natural language, proposing a hierarchy of referring expression

types and highlighting the role of cohesion, proximity, parallelism, topicality, competi-

tion, and inference automaticity in resolution. Existing computational models leverage

some of this insight: systems are typically built around rich sets of cohesion features,

but a more limited range of features aimed at the remaining factors.

In this thesis, we design and implement limeric, a state-of-the-art coreference

resolution engine. Despite its simple model, a baseline feature set achieves the highly

competitive performance values of 64.21% and 59.99% using gold and automatic pre-

processing on the CoNLL-2012 benchmark task. As well as strong performance, a key

contribution of this work is a reconceptualisation of the coreference task. We draw

an analogy between shift-reduce parsing and coreference resolution to develop an

algorithm which naturally mimics cognitive models of human discourse processing.

Leveraging the self-ordering forest of discourse entities as a simple model of the human

mind, we propose and validate stack depth as a cognitively aware measure of proximity

and use its order directly in our features modelling competition in antecedent selection.

Extending from this strong baseline, we enrich our model using a range of insights

offered by cognitive theories. Each contribution yields statistically significant improve-

ments and sum to gains of 1.65% and 1.66% on the CoNLL-2012 benchmark using gold

197
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and automatic preprocessing. Our analysis shows that our final system is either better

or not significantly different from the strong baseline set by Björkelund and Farkas

(2012). That is, limeric is at once a platform for exploring cognitive insights into

coreference and a viable alternative to current systems.

Each novel feature proposed is based on a thorough analysis of its applicability

to English OntoNotes. In this way, this thesis contributes to our understanding of

the mechanisms underlying reference resolution in real language data. We find fine-

grained usage trends that are not expressible in currently used coarse-grained mention

typologies, and show that cognitive insights beyond cohesion are required to fully

model coreference. We additionally analyse the challenges in applying frame semantic

knowledge to coreference resolution.

8.1 Future Work

We develop limeric to be highly adaptable for further improvements and antici-

pate future work extending the ways in which cognitive insights are understood and

implemented in computational systems processing real language data.

8.1.1 Robust Models of Coreference

In Chapter 4, we presented the simple and intuitive algorithms limeric uses for

inference and training. We noted an imperfect but necessary decision to follow gold

transitions in training but system predictions at run time. This was because following

automatic predictions causes the system to wander off-course quickly and continually

re-seeding beams from gold becomes not very different from purely following gold

transitions. As feature sets for coreference resolution continue to improve, we expect

to see beam search as a means of learning robust models. We also note the cognitive

interpretation of such models: they can potentially model cases of ‘near’ coreference,

in which resolution may be delayed or corrected as new information is revealed.
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At least three other modelling decisions have the potential to be enriched beyond

their description here. Firstly, we left shift-reduce parsing with look-ahead to future

work; the promising results we show using the simple LR(1) algorithm suggest that

this will be a fruitful direction. Analysis in Chapter 4 demonstrated that the ordering of

our forest of discourse entities modelled their salience and that entity-level modelling

encodes global consistency constraints. However, we noted that only using proximity

to order entities is an approximation of the true ordering. An interesting approach to

defining order could be to pose it as a learning to rank problem and using features on

entity topicality and other insights from cognitive theories.

In entity-level modelling, we would like to see the number of attributes expressed

at the cluster level grow as new features are proposed. For instance, to improve lexical

cohesion features, word senses could be defined at the entity-level, also allowing

disambiguation to be informed by the types of named entities and pronouns in the

same entity cluster as a nominal mention with ambiguous head word.

8.1.2 Insufficiency of Cohesion

A key argument of this thesis is that, despite their prominence in the computational

literature, cohesion features are not sufficient for modelling coreference. In Chapter 4,

we see that the performance of cohesion features plateau as they broaden to capture

fuzzier relationships, while our feature association analysis in Chapter 6 demonstrates

that both surface form and linguistic attribute cohesion cannot be fully understood

without taking into account their interactionwith a range of conflating factors including

proximity and topicality.

Accounting for the factors that conflate and nuance head match, a commonly-used

and powerful indicator of coreference, was particularly challenging. We identified a

variety of factors including mention referentiality, restrictive modification, as well as

the head word itself and the genre of its document. While we designed second-order

features to target these subtleties, a more complete solution could be to build separate
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classifiers for a number of these decisions. We especially see the classification of a

mention as referential, vague, or generic as promising, particularly given that this is

related to the problem of singleton detection in OntoNotes.

An alternative research direction which arises from the analysis in Chapter 6 is

to explore how basing features on automatic preprocessing affects the associations

observed since, for instance, ner is core to how linguistic attributes are determined.

Such analysis would potentially shed light on how to design systems to be robust to

upstream annotation errors, which limeric appears to be more sensitive to than the

approaches of Fernandes et al. (2012) and Björkelund and Kuhn (2014).

8.1.3 Extending Frame Semantic Inference

We used our analysis in Chapter 6 to motivate our study of frame semantic inference in

Chapter 7. We had some success in these experiments, finding that the performance of

frame semantic features reflected the coverage of their resources, as well as their level

of noise and whether they encoded narrative structure. For these reasons, features

based on Brown clusters performed well. Given the ease in extracting Brown clusters

from unlabelled text, this promising result opens the possibility for exploring frame

semantic features in under-resourced settings.

However, there is certainly room for improvement. Foremost, despite their coverage

only partly overlapping, we were unable to find mutual benefit from using multiple

resources. We therefore leave as future work how best to combine different frame se-

mantic information so that they produce complementary benefits in sum. Additionally,

our most impactful features on test were high recall variants, arguing for the use of

higher coverage resources. While investing in larger hand-curated frame resources

will undoubtedly enhance our understanding of the inference we wish to capture, the

good performance of our Brown cluster features suggests that we should also explore

automatic, distributional methods for mining such information.
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8.1.4 Further Insights from Psycholinguistic Theories

We showed in Chapter 4 that a cognitive measure of proximity, depth, was both sound

and able to be learned by our system. Further to this, both Centering and Accessibility

theories emphasise the importance of discourse segmentation on perceived proximity.

We expect richer models of proximity to be especially relevant for newswire documents

comprised of squibs, and longer texts such as reports, essays, and novels.

Similarly, topicality is only explored insofar as mentions which are grammatical

subjects or members of large entity clusters are topical. Since entity clusters grow

incrementally, this means information on the topicality of entities is unreliable at the

beginning of documents. This underspecification could be complemented by document-

level or collection-level topicality measurements.

Additionally, frame semantics is only one of many cues on which humans base their

inference of reference expression referent. Others include world knowledge, discourse

relations, and pragmatic goals. All of these are promising directions for future research.

8.1.5 Languages Other Than English

Given that much of this thesis has been motivated by cognitive models of discourse

processing, we would expect it to be a useful foundation for studying coreference in

languages other than English. We have already identified that using Brown clusters to

mine frame semantic information is particularly powerful since they can be generated

for under-resourced settings, which includes under-resourced languages. We also see

the methodology we introduce in Chapter 6 for understanding feature interactions to

be completely language-independent: a coreference resolver trained for any language

can be studied using our techniques. Comparing association statistics across resolvers

for different languages would allow us to identify any universals in how languages

indicate coreference.
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The shift-reduce inspired algorithm we propose in Chapter 4 should similarly

require little update to apply to non-English corpora. This expectation is based on

the assumption that discourse develops in all languages by referring to previously

mentioned entities and concepts. Factorswhich could vary betweenmodels for different

languages could be the rate of singleton mentions and the expected depth in the

discourse stack of antecedents, both of which are learned during training (rather than

being manually specified).

Our work extending the Accessibility hierarchy from spoken Hebrew to written

English demonstrates that the approach is valid across languages, even those belonging

to different language families. While different mention classification schemes may be

required, our methodology for exploring systematic patterns is language-independent

once a classification scheme has been implemented.

8.2 Summary

Coreference resolution remains an active area of research and our work has provided a

simple alternative for approaching the task. We have addressed a number of shortcom-

ings in applying cognitive insights to computational models of coreference resolution,

but a number of challenges remain. We are excited by the promise of Accessibility

theory in formalising the challenges which remain. By expanding our understanding

of how best to model coreference, we improve our ability to understand the meaning

of natural language texts and to organise and leverage the information they express.
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