41,480 research outputs found

    Dependencies in Formal Mathematics: Applications and Extraction for Coq and Mizar

    Full text link
    Two methods for extracting detailed formal dependencies from the Coq and Mizar system are presented and compared. The methods are used for dependency extraction from two large mathematical repositories: the Coq Repository at Nijmegen and the Mizar Mathematical Library. Several applications of the detailed dependency analysis are described and proposed. Motivated by the different applications, we discuss the various kinds of dependencies that we are interested in,and the suitability of various dependency extraction methods

    Large Formal Wikis: Issues and Solutions

    Full text link
    We present several steps towards large formal mathematical wikis. The Coq proof assistant together with the CoRN repository are added to the pool of systems handled by the general wiki system described in \cite{DBLP:conf/aisc/UrbanARG10}. A smart re-verification scheme for the large formal libraries in the wiki is suggested for Mizar/MML and Coq/CoRN, based on recently developed precise tracking of mathematical dependencies. We propose to use features of state-of-the-art filesystems to allow real-time cloning and sandboxing of the entire libraries, allowing also to extend the wiki to a true multi-user collaborative area. A number of related issues are discussed.Comment: To appear in The Conference of Intelligent Computer Mathematics: CICM 201

    Premise Selection for Mathematics by Corpus Analysis and Kernel Methods

    Get PDF
    Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. A good method for premise selection in complex mathematical libraries is the application of machine learning to large corpora of proofs. This work develops learning-based premise selection in two ways. First, a newly available minimal dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed,extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50% improvement on the benchmark over the Vampire/SInE state-of-the-art system for automated reasoning in large theories.Comment: 26 page

    Learning-Assisted Automated Reasoning with Flyspeck

    Full text link
    The considerable mathematical knowledge encoded by the Flyspeck project is combined with external automated theorem provers (ATPs) and machine-learning premise selection methods trained on the proofs, producing an AI system capable of answering a wide range of mathematical queries automatically. The performance of this architecture is evaluated in a bootstrapping scenario emulating the development of Flyspeck from axioms to the last theorem, each time using only the previous theorems and proofs. It is shown that 39% of the 14185 theorems could be proved in a push-button mode (without any high-level advice and user interaction) in 30 seconds of real time on a fourteen-CPU workstation. The necessary work involves: (i) an implementation of sound translations of the HOL Light logic to ATP formalisms: untyped first-order, polymorphic typed first-order, and typed higher-order, (ii) export of the dependency information from HOL Light and ATP proofs for the machine learners, and (iii) choice of suitable representations and methods for learning from previous proofs, and their integration as advisors with HOL Light. This work is described and discussed here, and an initial analysis of the body of proofs that were found fully automatically is provided

    Proof in Context -- Web Editing with Rich, Modeless Contextual Feedback

    Full text link
    The Agora system is a prototypical Wiki for formal mathematics: a web-based system for collaborating on formal mathematics, intended to support informal documentation of formal developments. This system requires a reusable proof editor component, both for collaborative editing of documents, and for embedding in the resulting documents. This paper describes the design of Agora's asynchronous editor, that is generic enough to support different tools working on editor content and providing contextual information, with interactive theorem proverss being a special, but important, case described in detail for the Coq theorem prover.Comment: In Proceedings UITP 2012, arXiv:1307.152

    HOL(y)Hammer: Online ATP Service for HOL Light

    Full text link
    HOL(y)Hammer is an online AI/ATP service for formal (computer-understandable) mathematics encoded in the HOL Light system. The service allows its users to upload and automatically process an arbitrary formal development (project) based on HOL Light, and to attack arbitrary conjectures that use the concepts defined in some of the uploaded projects. For that, the service uses several automated reasoning systems combined with several premise selection methods trained on all the project proofs. The projects that are readily available on the server for such query answering include the recent versions of the Flyspeck, Multivariate Analysis and Complex Analysis libraries. The service runs on a 48-CPU server, currently employing in parallel for each task 7 AI/ATP combinations and 4 decision procedures that contribute to its overall performance. The system is also available for local installation by interested users, who can customize it for their own proof development. An Emacs interface allowing parallel asynchronous queries to the service is also provided. The overall structure of the service is outlined, problems that arise and their solutions are discussed, and an initial account of using the system is given

    Learning-assisted Theorem Proving with Millions of Lemmas

    Full text link
    Large formal mathematical libraries consist of millions of atomic inference steps that give rise to a corresponding number of proved statements (lemmas). Analogously to the informal mathematical practice, only a tiny fraction of such statements is named and re-used in later proofs by formal mathematicians. In this work, we suggest and implement criteria defining the estimated usefulness of the HOL Light lemmas for proving further theorems. We use these criteria to mine the large inference graph of the lemmas in the HOL Light and Flyspeck libraries, adding up to millions of the best lemmas to the pool of statements that can be re-used in later proofs. We show that in combination with learning-based relevance filtering, such methods significantly strengthen automated theorem proving of new conjectures over large formal mathematical libraries such as Flyspeck.Comment: journal version of arXiv:1310.2797 (which was submitted to LPAR conference

    Prospects and Challenges in R Package Development

    Get PDF
    R, a software package for statistical computing and graphics, has evolved into the lingua franca of (computational) statistics. One of the cornerstones of R's success is the decentralized and modularized way of creating software using a multi-tiered development model: The R Development Core Team provides the "base system", which delivers basic statistical functionality, and many other developers contribute code in the form of extensions in a standardized format via so-called packages. In order to be accessible by a broader audience, packages are made available via standardized source code repositories. To support such a loosely coupled development model, repositories should be able to verify that the provided packages meet certain formal quality criteria and "work": both relative to the development of the base R system as well as with other packages (interoperability). However, established quality assurance systems and collaborative infrastructures typically face several challenges, some of which we will discuss in this paper.Series: Research Report Series / Department of Statistics and Mathematic
    corecore