WIRTSCHAFTS
UNIVERSITAT
WIEN VIENNA
UNIVERSITY OF
ECONOMICS
AND BUSINESS

EQUIS

CCREDITED

ePub"V Institutional Repository

Stefan TheuBl and Uwe Ligges and Kurt Hornik

Prospects and Challenges in R Package Development

Working Paper

Original Citation:

TheuBl, Stefan and Ligges, Uwe and Hornik, Kurt (2010) Prospects and Challenges in R Package
Development. Research Report Series / Department of Statistics and Mathematics, 102. Institute
for Statistics and Mathematics, WU Vienna University of Economics and Business, Vienna.

This version is available at: http://epub.wu.ac.at/866/
Available in ePub™Y: July 2010

ePub™Y| the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

http://epub.wu.ac.at/

https://core.ac.uk/display/11007067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epub.wu.ac.at/866/
http://epub.wu.ac.at/

Prospects and Challenges
in R Package Development

Stefan TheuBl, Uwe Ligges, Kurt Hornik

Institute for Statistics and Mathematics
WU Wirtschaftsuniversitiat Wien

Research Report Series

Report 102
June 2010

http://statmath.wu.ac.at/

WIRTSCHAFTS
UNIVERSITAT

&

EQUIS

ACCREDITED

Prospects and Challenges in R Package Development

Stefan Theufll! Uwe Ligges? Kurt Hornik!

23-06-2010

! Institute for Statistics and Mathematics, WU Wirtschaftsuniversitit Wien, Austria
2 Department of Statistics, Technische Universitit Dortmund, Germany

Abstract

R, a software package for statistical computing and graphics, has evolved into the lingua
franca of (computational) statistics. One of the cornerstones of R’s success is the decentral-
ized and modularized way of creating software using a multi-tiered development model: The R
Development Core Team provides the “base system”, which delivers basic statistical function-
ality, and many other developers contribute code in the form of extensions in a standardized
format via so-called packages. In order to be accessible by a broader audience, packages are
made available via standardized source code repositories. To support such a loosely coupled
development model, repositories should be able to verify that the provided packages meet
certain formal quality criteria and “work”: both relative to the development of the base R sys-
tem as well as with other packages (interoperability). However, established quality assurance
systems and collaborative infrastructures typically face several challenges, some of which we
will discuss in this paper.

1 Introduction

R (R Development Core Team, [2010a)), the prime open source environment for statistical computing and
graphics, is nowadays present worldwide in many fields of applications within business, education, and
research. Since more than a decade the R Development Core Team (R Core) has been responsible for
the sustainable improvement and advancement of the base system of R, which delivers basic (statistical)
functionality. It consists basically of the R interpreter, the base packages (base, stats, graphics, etc.),
and several other packages which are recognized as recommended (Hornikl 2010). To enrich this basic
infrastructure with additional functionality people located all around the world contribute source code in
the form of extensions, so-called packages, which meet certain formal quality criteria.

When we think of packages as “products” and potential users as “customers” then the Comprehensive R
Archive Network (CRAN, http://CRAN.R-project.org)—the prime repository for R related material—
and other package repositories can be seen as warehouse-like storage areas from which products can be
delivered. Modern views are driven by the understanding that customers are extremely heterogeneous with
individual needs and preferences. 2417 packages (June 09, 2010) are available from CRAN reflecting many
different areas of interest in the community. If the “right” product is not available, then it is rather easy
for customers to become contributors by creating a new package possibly filling a gap. This decentralized
and modularized way of creating software not only for the statistics but also a broader community is one
of the reasons why the language R has become increasingly successful.

However, there are fundamental differences between the coordinated implementation of monolithic code
in a software project on the one hand and a rather loosely coupled system of community contributions
in a multi-tiered environment on the other hand. Looking at the fundamental development structures we
find that there are several challenges to face but also prospects to see.

In this paper we describe the current state of contribution and distribution channels by providing products
in repositories, see Section [2 Our main goal is to present corresponding challenges (cf. Section [3]) we see

http://CRAN.R-project.org

in R package development and their implications on possible solutions. Furthermore, we discuss related
aspects of package development in the R community including collaborative infrastructure and other
services that support such a loosely coupled development model.

The original publication is available at http://www.springerlink.comn/ (see Theu8l et al., 2010).

2 Contribution and Distribution Channels

2.1 Products

Besides the R base system managed by R Core there are many packages available which have been de-
veloped and contributed by the R community. Packages are standardized entities that allow for easy
distribution. They typically include meta-information (e.g. in the ‘DESCRIPTION’ file), R code and corre-
sponding documentation, possibly foreign code to be compiled/dynamically loaded (C, C++, FORTRAN,
etc.), or interpreted (Perl, Tcl, Shell, etc.), as well as package-specific tests, data sets, demos, etc. In
contrast to the rather monolithic code provided with the base system, the typically modularized code
contained in packages does not necessarily work without functionality featured in other packages. Rather
than reinventing the wheel, many package authors wisely reuse code of other packages that already exist.
This means that new packages might depend on other packages that again depend on some other packages.
Thus, there is a hierarchy of dependencies that could be broken by a simple bug in one of the packages.
According to [R Development Core Team| (2010b|) different “levels” of dependencies are declared in the
‘DESCRIPTION’ file:

Depends: package B depends on functionality in package A in such a way that package A is loaded in
advance of B,

Imports: package B imports (parts of) the namespace of package A into its own namespace,
LinkingTo: package B links to compiled code in package A,
Suggests: some functionality or examples in the documentation of package B depend on package A,

Enhances: package B enhances packages A functionality but works without A being present.

For illustration purposes suppose that B requires A to be loaded before B, i.e., the main functionality of
B is only given if A is loaded, then this dependency of B on A has to be declared as Depends. Packages
that have to be installed in order to successfully complete runtime checks have to be declared at least
as dependency level Suggests, e.g., if functionality of A is used in the examples of B or called from a
function in B. A package B declared as Enhances in A tells a user that functionality is provided by B
that could enhance functionality of A given the latter is installed. Thus, whereas Depends implies the
strongest relationship between packages, Enhances implies the weakest.

As a result some of the products cannot be used without acquiring other products.

2.2 Repositories

How do customers get their products? Almost all publicly available packages are usually downloadable
from “standard” repositories like CRAN, Bioconductor, and R-Forge. But customers still have to be
aware of the differences in the nature of the available products depending on where the products have
been delivered from.

CRAN is the prime repository for R related material, i.e., documentation, binaries and sources of the
base R distribution, and contributed packages. People usually submit their contributed source package
via ftp upload and additional notification of the CRAN maintainers (CRAN@R-project.org). Generally,
“incoming” packages are checked manually by the CRAN maintainers before they are included for provision.
This ensures that (1) they are consistent with the guidelines specified in |R Development Core Team
(2010b) and (2) they are consistent in their dependencies to other code provided in the current state of
the repository.

Bioconductor is the online repository of the Bioconductor Project (http://Bioconductor.org, Gentleman
et al.}2004), an open development software project acting as a platform mainly for the creation of extensible

http://www.springerlink.com
http://Bioconductor.org

software for computational biology and bioinformatics. It supplies the community with (peer-reviewed)
software, data and meta data, papers and training materials. A unique feature of Bioconductor is the
division of available packages into two main branches: a release branch and a development branch. Whereas
in the former branch only bugfixes and documentation improvements are allowed, the latter is used for
any other changes in the corresponding software. T'wice a year—coordinated with new releases of the base
R distribution—all Bioconductor packages in the development branch are approved collectively to move
to the release branch after ensuring that they are coordinated and work well together.

R-Forge (http://R-Forge.R-project.org) offers a central platform for the development of R packages,
R-related software and other projects (Theufll and Zeileis, [2009). In contrary to the software repositories
mentioned above developers organize their work in so-called projects. Every project on R-Forge has various
tools and web-based features for software development, communication and other services. Typically, a
project hosts one or more R packages committed to a subdirectory called ‘pkg’ of the project’s SVN (Pilato
et al., |2004) repository. Naturally, R-Forge offers a CRAN-style repository of R packages derived, i.e.,
built, from the committed source code. Usually, these packages have to be seen as development releases
due to their volatile character. They directly reflect the development progress made in the repository.

All of the repositories mentioned above offer a QA system for contributions based on R CMD check. Later
on, the packages are also regularly and automatically checked under various platforms. The results are
usually made publicly available. Packages passing the checks are also provided in binary form, at least for
Mac OS X and Windows.

Of course there are many other repositories typically with an emphasis on a narrower subject area available.
E.g., the Omega Project for Statistical Computing (http://www.omegahat.org), or Omegahat for short, is
a joint project with the goal of providing open source software (OSS) with a focus on web-based software,
Java, the Java virtual machine, and distributed computing.

2.3 Other OSS Repositories

Many major OSS projects offer similar contribution and distribution channels like the R project. These
projects include not only high-level programming languages like Perl or Python but also distributors of
the Linux operating system like Debian (http://www.debian.org), Red Hat (http://www.redhat.com)
or openSUSE (http://www.opensuse.org), and many more. E.g., the Debian project maintaining the
popular operating system Debian GNU Linux offers a very sophisticated package management system
(based on dpkg) and pursues a very similar approach as outlined in the above sections. Relationships
between Debian packages are declared in the package’s ‘control’ file (Depends, Recommends, Suggests,
Enhances, etc.) and packages are checked for certain formal quality criteria outlined in [Jackson et al.
(2010).

Although many popular OSS projects host their packages in a mirrored repository—e.g., Perl’s packages
can be obtained from CPAN (Ashton and Hietaniemi, 2007)—it is very hard to identify OSS projects
which are as diverse in terms of infrastructure for collaboration and quality assurance as the R project.
This diversity in the nature of the products and repositories may lead to challenges for developers and
repository maintainers as is described in the following section.

3 Challenges

3.1 How can Interoperability be Achieved?

Packages provided in the standard repositories may depend on others, or suggest other packages to be used
together with the submitted application. This has implications on the interoperability between packages.
One may think of a “dependency structure” where package A depends on some functionality in another
package B. Let us denote this formally as B € d(A), where d(A) entails all dependencies of A. Suppose
a new version of package B is released. Then one obviously has to verify whether the code in package
A still operates with the changes introduced in B. Evidently this has to be done for each of the reverse
dependencies of B denoted dil(B)7 i.e., all packages depending on B. Furthermore, we also have to
consider recursive dependencies of a given package A denoted by dr(A), i.e., the transitive closure of

http://R-Forge.R-project.org
http://www.omegahat.org
http://www.debian.org
http://www.redhat.com
http://www.opensuse.org

grDevices

graphics
utils—=MASS bitops
cluster
ved Stats o grid caTools
colorspace gplots
gclus gtools
gdata
methods;
TIMP.
teltk
spam
P fields
. odesolve
splines .
minpack.lIm
nnls

Figure 1: Recursive dependencies of CRAN package TIMP, dr(TIMP)
(based on dependency levels Depends, Imports and LinkingTo)

all dependencies of A. Thus, if B € dr(A) and C € dr(B) then C € dr(A). From a computational
point of view this poses challenges in resolving such reverse dependency structures since all the reverse
dependencies, including recursive reverse dependencies (e.g. for a package A € d*(B) and C € d(B) we
also know that A € dz'(C)), have to be considered for re-checking interoperability.

With the (almost exponential) growth of CRAN it has become more frequent that updates of an arbitrary
package P lead to malfunction of one of its d~*(P) or even d'(P). Recently, reverse recursive dependency
checks have been introduced on CRAN and it is quite surprising that unrecognized problems have not been
harmful before. In addition to regular checks, it might be necessary to provide updated (i.e., recompiled)
binary versions of all d5'(P) as well, in particular if certain kinds of definitions (such as S4 classes) or
linked (to be compiled) code are involved.

As indicated in Section package maintainers specify dependencies in the ‘DESCRIPTION’ file. The
dependency levels Depends, Imports and LinkingTo must be fulfilled at installation time of a package,
and, additionally, packages declared as Suggests must typically be available when a package is checked.
Thus, usually two different types of dependency graphs have to be calculated. First, graphs have to be
calculated needed for the generation of the correct installation order of the packages. Figure [[]shows such
a graph for the CRAN package TIMP. Note that the dependency levels Depends, Imports and LinkingTo
are used in the examples, figures and tables for non-reverse (recursive) dependencies, whereas the level
Suggests is added to these levels for reverse (recursive) dependencies. Second, graphs representing the
recursive reverse dependencies of a package are needed in every new check attempt of the given package.
Figure [2| shows such a graph for the CRAN package clue (all graphs have been created with the help of
package igraph, |Csardi and Nepusz, 2006)).

The function .package_dependencies() from package tools, introduced with R-2.10.0, can be used to
retrieve all relevant information for constructing the graphs of involved (reverse) dependencies of packages.
Table [1f shows the binary dependency matrix of all CRAN packages: Although more than 800 packages
do not depend on any other package and more than 1600 packages are not used by another package, we
observe that many other packages show rather complex dependency structures. E.g., package Metabonomic
depends (recursively) on 33 packages, or package survival has 1141 recursive reverse dependencies on
CRAN (see Table . These extremely long lists of recursive reverse dependencies cause problems given
the computational effort of re-building and re-checking all involved packages. Especially, if several package

corrplot

gcExplorer
skmeans seriation
flexclust
clustTool
topicmodels clue biclust
isa2
relations rattle
kst DAKS

Figure 2: Recursive reverse dependencies of CRAN package clue, d;l (clue)
(based on dependency levels Depends, Imports, LinkingTo and Suggests)

Table 1: Number of CRAN packages with 0, 1, ..., and max. number of (recursive / reverse)
dependencies (all calculations based on dependency levels Depends, Imports and LinkingTo, plus
Suggests for flat and recursive reverse dependencies)

dependencies 0 1 2 3 4 5 6 max
flat 809 573 365 227 180 97 57 19
recursive 809 265 182 126 93 120 110 33
flat reverse 1614 336 132 83 33 37 20 313

recursive reverse 1614 245 106 66 52 25 20 1141

Table 2: Selected CRAN packages with extreme number of (recursive / reverse) dependencies (all
calculations based on dependency levels Depends, Imports and LinkingTo, plus Suggests for flat
and recursive reverse dependencies)

dependencies MASS survival Metabonomic —sisus
flat 4 4 19 18
recursive 4 4 33 31
flat reverse 313 127 0 0
recursive reverse 1065 1141 0 0

updates occur on a day, it is impossible to catch up with the development without allowing for parallel
checks and installations.

3.2 How can Growth be Handled?

The total number of available R packages is steadily increasing. Depending on combinations of different
flavors of R (i.e., the branches devel, patched, and release), platforms (usually Linux, Mac OS X, Solaris,
Windows), and architectures (SPARC, ix86, x86_64) building and checking of packages can become rather
time consuming. As described before, even reverse recursive dependencies need to be checked on these
different flavors of R on several platforms in order to provide reliable check results. Since the development
version of R changes over time, regular checks (up to daily) of all packages of a repository are desirable.

For example, roughly 50 CPU hours on a modern (single-core) CPU are required to install (5.8 hours)
and check (44.2 hours) all installable out of 2417 CRAN packages for 32-bit R-2.11.1 on Windows Server
2008 (x86_64). See http://CRAN.R-project.org/web/checks/check_timings.html for more information
on actual installation and check timings on CRAN. This shows that it is impossible to deliver meaningful
check results in a reasonable amount of time. Since it is desirable to get check results for development
processes early, we obviously need a build and check system that finishes at least within 24 hours for each
flavor of R in order to provide the check results when needed and make binaries available in time during
an R release cycle.

As a possible solution parallel package installations and parallel checks have been introduced in R-2.9.0.
E.g., user level parallel installations from source packages are possible in the function install.packages()
which gained an additional argument Ncpus = getOption("Ncpus") to specify the number of packages to
be installed in parallel. To make this possible, the package dependency structure is calculated in R, written
to a ‘Makefile’, and finally resolved by make (Stallman et al., |2002). The latter ensures that all d(B)
are in place before the installation process of B is started. Once all packages have been installed, one
can check packages easily in parallel (e.g. also controlled by make) in a repository maintainers’ mode that
allows to omit a second installation step and just includes the logfile of the previous installation.

This reduces the install and check time on the aforementioned machine with its eight CPU cores almost
linearly from 50 (on a single core) to 6.4 hours—given a sufficiently fast hard disc array is connected.

3.3 How can the Release/Development Tension be Handled for Collab-
orative Infrastructures?

Since the advent of collaborative infrastructure for R package development we are confronted with new
types of challenges. On the one hand such platforms offer many advantages from a technological (efficient
source code management, web-based communication, etc.) but also a social networking point of view. On
the other hand this implies that typically such environments feature two versions of packages, a release and
a (current) development one. Depending on the underlying development model pursued this has different
consequences.

In view of the products and repositories offered in the R world (see Section [2)) we identified two models:
(1) a milestone driven approach and (2) a rather loosely coupled open development model.

The former approach typically involves creating software provided as monolithic code which delivers a
pre-specified (documented) set of features. E.g., the functionality of the base R system is defined in
(R Development Core Team| |2010c|), well tested, and the code base of the current “stable” branch does
not change significantly over a specific period of time. Usually, a new version of R is released twice a
year. Only bugfixes are provided between releases (the so-called “patched” flavor of R). Another example
is the Bioconductor project. Here, all packages in the stable branch are well tested to work with each
other. Although there are no formal contracting methodologies the creation of interoperable components
is emphasized by the Bioconductor project (designing by contract).

CRAN and R-Forge contributions on the other hand are typically developed using a rather loosely coupled
open development model. In this model developers submit their application typically by sending stan-
dardized archives of source code including documentation to CRAN or, alternatively, by providing the
source code in the corresponding SVN repository of the project on R-Forge. Developers typically need not
follow any design contracts except those given by the programming language and the package structure.

http://CRAN.R-project.org/web/checks/check_timings.html

Furthermore, contributors are allowed to upload their code without a specific schedule. As long as the
contribution delivers valid results in the quality verification step it is considered for provision. This has
several implications.

Suppose for example that R-Forge may also host development releases of packages already available from
CRAN (or other repositories) possibly with a higher version number. Let doran(P) and dr-rorge(P)
be the dependencies of a package P hosted on CRAN and R-Forge, respectively. How should we resolve
d(P) on R-Forge? Is it sufficient to resolve only dr-rorge(P)? Presumably not, since many of d(P) are not
(yet) hosted on this platform. On the other hand dcran(P) may not include packages already available
on R-Forge. Our current solution is to calculate the dependency structure in the following way: First all
deran(P) and then dr-Forge (P)\dcran (P) are installed. This allows that all d(P) are available but forces
the system to use doran (P) with higher priority. This decision reflects the fact that CRAN packages
are known to be stable and “work”. However, in certain circumstances developers may want the system
to use (some of) dr-rorge(P) instead. Suppose ved € d(TIMP) (see Figure |1)) provides a new function
for visualizing categorical data in the package on R-Forge. The maintainer of TIMP is now interested
in using this function in one of the package’s examples. How can this problem be solved? The answer is
not yet clear. One possible solution is to depend on the version of the corresponding package hosted on
R-Forge which is greater than the version number of the same package hosted on CRAN, thus using “>=" in
the fields of the ‘DESCRIPTION’ file described in Section[2.I] This approach seems to be promising but then
the calculation of the dependency structure has to be modified to take such “development dependencies”
into account.

4 Discussion

The prospects of such a loosely-coupled development approach are diverse, among them rapid development,
diversity, alternative approaches facing different aspects of implementations such as speed vs. accuracy.
But there are also many challenges we have to face. Many of them have solutions that have been imple-
mented or are shortly before being implemented, such as (recursive / reverse) dependency calculations
and parallelized checks. Unfortunately, there are also some open issues. Given that a package is updated,
all its reverse dependencies are re-built for a binary repository and distributed through all the CRAN
mirrors. These are sometimes more than 300 packages on a single day, while just a few of them really need
to be re-built in binary form. The infrastructure that supports calculation of the necessity of a binary
re-built is not yet in place but is planned to be implemented for one of the next releases.

One of the solutions for the distributed development approach of packages, namely R-Forge, has been
described in the previous section. Another solution supports package developers who do not have Windows
machines for building or testing purposes available. This special service called win-builder is available from
http://win-builder.R-project.org. It allows to upload source packages and provides corresponding
Windows binaries and check results after a short amount of time.

Beside all computational work, the automation, and parallelization, we should not forget that there is still
a lot of manual work to do for maintainers of huge package repositories, for example: Maintaining and
adapting the scripts themselves, maintaining the hardware of devoted machines, setting up repositories for
new versions of R, handling errors that were not covered by the scripts, answering questions of developers
and users, and notifying package maintainers about recently broken packages. In other words, quality
management can be improved by moving as many tasks as possible from human to computational resources.
This provides the maintainers with time to improve the quality management even more.

References
E. Ashton and J. Hietaniemi. CPAN FAQ, 2007. URL http://www.CPAN.org/misc/cpan-faq.html.

G. Csardi and T. Nepusz. The igraph software package for complex network research. InterJournal,
Complex Systems:1695, 2006. URL http://igraph.sf.net.

R. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge,
J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Machler,
A. J. Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J. Y. Yang, and J. Zhang. Bioconductor:

http://win-builder.R-project.org
http://www.CPAN.org/misc/cpan-faq.html
http://igraph.sf.net

Open software development for computational biology and bioinformatics. Genome Biology, 5(10):R80,
September 2004.

K. Hornik. The R FAQ. R Foundation for Statistical Computing, Vienna, Austria, 2010. URL http:
//CRAN.R-project.org/doc/FAQ.

I. Jackson, C. Schwarz, et al. Debian Policy Manual, 2010. URL http://www.debian.org/doc/
debian-policy/. version 3.8.4.0.

C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick. Version Control with Subversion. O’Reilly, 2004.
Full book available online at http://svnbook.red-bean.com/\

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2010a. URL http://www.R-project.org. ISBN 3-900051-07-0.

R Development Core Team. Writing R Extensions. R Foundation for Statistical Computing, Vienna,
Austria, 2010b. URL http://www.R-project.org. ISBN 3-900051-11-9.

R Development Core Team. The R Language Definition. R Foundation for Statistical Computing, Vienna,
Austria, 2010c. URL http://www.R-project.org. ISBN 3-900051-13-5.

R. M. Stallman, R. McGrath, and P. D. Smith. GNU Make: A Program for Directing Recompilation. Free
Software Foundation, 2002. URL http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/gnu-make.
pdf.

S. TheuBl and A. Zeileis. Collaborative software development using R-Forge. The R Journal, 1(1):9-14,
May 2009. URL http://journal.R-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.pdf.

S. Theufil, U. Ligges, and K. Hornik. Prospects and challenges in R package development. Computational
Statistics, 2010. doi: 10.1007/s00180-010-0205-5. URL http://www.springerlink.com. To appear.

http://CRAN.R-project.org/doc/FAQ
http://CRAN.R-project.org/doc/FAQ
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://svnbook.red-bean.com/
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/gnu-make.pdf
http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/gnu-make.pdf
http://journal.R-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.pdf
http://www.springerlink.com

