17,163 research outputs found

    Robust execution of service workflows using redundancy and advance reservations

    No full text
    In this paper, we develop a novel algorithm that allows service consumers to execute business processes (or workflows) of interdependent services in a dependable manner within tight time-constraints. In particular, we consider large inter-organisational service-oriented systems, where services are offered by external organisations that demand financial remuneration and where their use has to be negotiated in advance using explicit service-level agreements (as is common in Grids and cloud computing). Here, different providers often offer the same type of service at varying levels of quality and price. Furthermore, some providers may be less trustworthy than others, possibly failing to meet their agreements. To control this unreliability and ensure end-to-end dependability while maximising the profit obtained from completing a business process, our algorithm automatically selects the most suitable providers. Moreover, unlike existing work, it reasons about the dependability properties of a workflow, and it controls these by using service redundancy for critical tasks and by planning for contingencies. Finally, our algorithm reserves services for only parts of its workflow at any time, in order to retain flexibility when failures occur. We show empirically that our algorithm consistently outperforms existing approaches, achieving up to a 35-fold increase in profit and successfully completing most workflows, even when the majority of providers fail

    Towards QoS-Oriented SLA Guarantees for Online Cloud Services

    Get PDF
    International audienceCloud Computing provides a convenient means of remote on-demand and pay-per-use access to computing resources. However, its ad hoc management of quality-of-service and SLA poses significant challenges to the performance, dependability and costs of online cloud services. The paper precisely addresses this issue and makes a threefold contribution. First, it introduces a new cloud model, the SLAaaS (SLA aware Service) model. SLAaaS enables a systematic integration of QoS levels and SLA into the cloud. It is orthogonal to other cloud models such as SaaS or PaaS, and may apply to any of them. Second, the paper introduces CSLA, a novel language to describe QoS-oriented SLA associated with cloud services. Third, the paper presents a control-theoretic approach to provide performance, dependability and cost guarantees for online cloud services, with time-varying workloads. The proposed approach is validated through case studies and extensive experiments with online services hosted in clouds such as Amazon EC2. The case studies illustrate SLA guarantees for various services such as a MapReduce service, a cluster-based multi-tier e-commerce service, and a low-level locking service

    Dependable distributed OSGi environment

    Get PDF
    As the concept of Service Oriented Computing matures the need for well defined architectures and protocols to address this trend is essential if IT is going to properly embrace SOC. The SOC paradigm has several requirements to work properly such as service composition and cooperation in a loosely coupled fashion, ability to adapt autonomously to environmental and business changes and address concerns such as modularity, dynamicity and proper integration between services. The popularization of the OSGi platform its another effort towards the SOC paradigm by issuing key aspects such as modularity and dynamicity in its service oriented design. However there is much room for improvement namely on the creation of architectures and mechanisms to improve the dependability of the overall solution by strengthening key properties such as the availability, reliability, integrity, safety and maintainability of the platform. In this work we propose a middleware layer that offers the strong modular and dynamic properties required in an SOC environment by relying on OSGi while addressing dependability concerns. The starting point to achieve this is by instrumenting an OSGi implementation and providing means to monitor and manage it accordingly to business and environmental requirements. By relying on group communication facilities and some properties from the OSGi specification we are able to migrate OSGi environments between nodes thus minimizing service delivery disruption in the presence of faults and addressing, at the same time SLA properties by migrating (or shutting down) services that are consuming more resources than agreed/expected.(undefined

    Resilient Critical Infrastructure Management using Service Oriented Architecture

    No full text
    Abstract—The SERSCIS project aims to support the use of interconnected systems of services in Critical Infrastructure (CI) applications. The problem of system interconnectedness is aptly demonstrated by ‘Airport Collaborative Decision Making’ (ACDM). Failure or underperformance of any of the interlinked ICT systems may compromise the ability of airports to plan their use of resources to sustain high levels of air traffic, or to provide accurate aircraft movement forecasts to the wider European air traffic management systems. The proposed solution is to introduce further SERSCIS ICT components to manage dependability and interdependency. These use semantic models of the critical infrastructure, including its ICT services, to identify faults and potential risks and to increase human awareness of them. Semantics allows information and services to be described in such a way that makes them understandable to computers. Thus when a failure (or a threat of failure) is detected, SERSCIS components can take action to manage the consequences, including changing the interdependency relationships between services. In some cases, the components will be able to take action autonomously — e.g. to manage ‘local’ issues such as the allocation of CPU time to maintain service performance, or the selection of services where there are redundant sources available. In other cases the components will alert human operators so they can take action instead. The goal of this paper is to describe a Service Oriented Architecture (SOA) that can be used to address the management of ICT components and interdependencies in critical infrastructure systems. Index Terms—resilience; QoS; SOA; critical infrastructure, SLA

    WS-mediator for improving dependability of service composition

    Get PDF
    Web Services and service-oriented architectures (SOAs) represent a new paradigm for building distributed computing applications. In recent years, they have started to play a critical role in numerous e-Science and e-Commerce applications. The advantages of Web Services, such as their loosely coupled architecture and standardized interoperability, make them a desirable platform, especially for developing large-scale applications such as those based on cross-organizational service composition. However, the Web Service technology is now facing many serious issues that need to be addressed, one of the most important ones being the dependability of their composition. Web Service composition relies on individual component services and computer networks, particularly the Internet. As the component services are autonomous, prior to use their dependability is unknown. In addition to that, computer networks are inherently unreliable media: from the user's perspective, network failures may undermine the dependability of Web Services. Consequently, failures of individual component services and of the network can undermine the dependability of the entire application relying on service composition. Our research is intended to contribute to achieving higher dependability of Web Service composition. We have developed a novel solution, called WS-Mediator system, implementing resilience-explicit computing and fault tolerance mechanisms to improve the dependability of Web Service composition. It consists of a number of subsystems, called Sub-Mediators, which are deployed at various geographical locations across the Internet to monitor Web Services and dynamically generate Web Service dependability metadata in order to make resilience-explicit decisions. In addition to applying the fault tolerance mechanisms that deal with various kinds of faults during the service composition, the resilience-explicit reconfiguration mechanism dynamically selects the most dependable Web Services to achieve higher service composition dependability fault tolerance. A specific instance of the WS-Mediator architecture has been developed in the Java Web Service technology. A series of experiments with real-world Web Services, in particular in the bioinformatics domain, have been carried out using the Java WS- Mediator. The results of the experiments have demonstrated the applicability of the WS-Mediator approach.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen
    corecore