8 research outputs found

    Revisiting the Nystrom Method for Improved Large-Scale Machine Learning

    Get PDF
    We reconsider randomized algorithms for the low-rank approximation of symmetric positive semi-definite (SPSD) matrices such as Laplacian and kernel matrices that arise in data analysis and machine learning applications. Our main results consist of an empirical evaluation of the performance quality and running time of sampling and projection methods on a diverse suite of SPSD matrices. Our results highlight complementary aspects of sampling versus projection methods; they characterize the effects of common data preprocessing steps on the performance of these algorithms; and they point to important differences between uniform sampling and nonuniform sampling methods based on leverage scores. In addition, our empirical results illustrate that existing theory is so weak that it does not provide even a qualitative guide to practice. Thus, we complement our empirical results with a suite of worst-case theoretical bounds for both random sampling and random projection methods. These bounds are qualitatively superior to existing bounds---e.g. improved additive-error bounds for spectral and Frobenius norm error and relative-error bounds for trace norm error---and they point to future directions to make these algorithms useful in even larger-scale machine learning applications.Comment: 60 pages, 15 color figures; updated proof of Frobenius norm bounds, added comparison to projection-based low-rank approximations, and an analysis of the power method applied to SPSD sketche

    Embedding Retrieval of Articulated Geometry Models

    Get PDF

    Indexing and Retrieval of 3D Articulated Geometry Models

    Get PDF
    In this PhD research study, we focus on building a content-based search engine for 3D articulated geometry models. 3D models are essential components in nowadays graphic applications, and are widely used in the game, animation and movies production industry. With the increasing number of these models, a search engine not only provides an entrance to explore such a huge dataset, it also facilitates sharing and reusing among different users. In general, it reduces production costs and time to develop these 3D models. Though a lot of retrieval systems have been proposed in recent years, search engines for 3D articulated geometry models are still in their infancies. Among all the works that we have surveyed, reliability and efficiency are the two main issues that hinder the popularity of such systems. In this research, we have focused our attention mainly to address these two issues. We have discovered that most existing works design features and matching algorithms in order to reflect the intrinsic properties of these 3D models. For instance, to handle 3D articulated geometry models, it is common to extract skeletons and use graph matching algorithms to compute the similarity. However, since this kind of feature representation is complex, it leads to high complexity of the matching algorithms. As an example, sub-graph isomorphism can be NP-hard for model graph matching. Our solution is based on the understanding that skeletal matching seeks correspondences between the two comparing models. If we can define descriptive features, the correspondence problem can be solved by bag-based matching where fast algorithms are available. In the first part of the research, we propose a feature extraction algorithm to extract such descriptive features. We then convert the skeletal matching problems into bag-based matching. We further define metric similarity measure so as to support fast search. We demonstrate the advantages of this idea in our experiments. The improvement on precision is 12\% better at high recall. The indexing search of 3D model is 24 times faster than the state of the art if only the first relevant result is returned. However, improving the quality of descriptive features pays the price of high dimensionality. Curse of dimensionality is a notorious problem on large multimedia databases. The computation time scales exponentially as the dimension increases, and indexing techniques may not be useful in such situation. In the second part of the research, we focus ourselves on developing an embedding retrieval framework to solve the high dimensionality problem. We first argue that our proposed matching method projects 3D models on manifolds. We then use manifold learning technique to reduce dimensionality and maximize intra-class distances. We further propose a numerical method to sub-sample and fast search databases. To preserve retrieval accuracy using fewer landmark objects, we propose an alignment method which is also beneficial to existing works for fast search. The advantages of the retrieval framework are demonstrated in our experiments that it alleviates the problem of curse of dimensionality. It also improves the efficiency (3.4 times faster) and accuracy (30\% more accurate) of our matching algorithm proposed above. In the third part of the research, we also study a closely related area, 3D motions. 3D motions are captured by sticking sensor on human beings. These captured data are real human motions that are used to animate 3D articulated geometry models. Creating realistic 3D motions is an expensive and tedious task. Although 3D motions are very different from 3D articulated geometry models, we observe that existing works also suffer from the problem of temporal structure matching. This also leads to low efficiency in the matching algorithms. We apply the same idea of bag-based matching into the work of 3D motions. From our experiments, the proposed method has a 13\% improvement on precision at high recall and is 12 times faster than existing works. As a summary, we have developed algorithms for 3D articulated geometry models and 3D motions, covering feature extraction, feature matching, indexing and fast search methods. Through various experiments, our idea of converting restricted matching to bag-based matching improves matching efficiency and reliability. These have been shown in both 3D articulated geometry models and 3D motions. We have also connected 3D matching to the area of manifold learning. The embedding retrieval framework not only improves efficiency and accuracy, but has also opened a new area of research

    A machine learning approach to the unsupervised segmentation of mitochondria in subcellular electron microscopy data

    Get PDF
    Recent advances in cellular and subcellular microscopy demonstrated its potential towards unravelling the mechanisms of various diseases at the molecular level. The biggest challenge in both human- and computer-based visual analysis of micrographs is the variety of nanostructures and mitochondrial morphologies. The state-of-the-art is, however, dominated by supervised manual data annotation and early attempts to automate the segmentation process were based on supervised machine learning techniques which require large datasets for training. Given a minimal number of training sequences or none at all, unsupervised machine learning formulations, such as spectral dimensionality reduction, are known to be superior in detecting salient image structures. This thesis presents three major contributions developed around the spectral clustering framework which is proven to capture perceptual organization features. Firstly, we approach the problem of mitochondria localization. We propose a novel grouping method for the extracted line segments which describes the normal mitochondrial morphology. Experimental findings show that the clusters obtained successfully model the inner mitochondrial membrane folding and therefore can be used as markers for the subsequent segmentation approaches. Secondly, we developed an unsupervised mitochondria segmentation framework. This method follows the evolutional ability of human vision to extrapolate salient membrane structures in a micrograph. Furthermore, we designed robust non-parametric similarity models according to Gestaltic laws of visual segregation. Experiments demonstrate that such models automatically adapt to the statistical structure of the biological domain and return optimal performance in pixel classification tasks under the wide variety of distributional assumptions. The last major contribution addresses the computational complexity of spectral clustering. Here, we introduced a new anticorrelation-based spectral clustering formulation with the objective to improve both: speed and quality of segmentation. The experimental findings showed the applicability of our dimensionality reduction algorithm to very large scale problems as well as asymmetric, dense and non-Euclidean datasets

    The numerical solution of the dynamic fluid-structure interaction problem.

    Get PDF
    Merged with duplicate record 10026.1/2055 on 12.04.2017 by CS (TIS)In this thesis we consider the problem of the dynamic fluid-structure interaction between a finite elastic structure and the acoustic field in an unbounded fluid-filled exterior domain. We formulate the exterior acoustic problem as an integral equation over the structure surface. However, the classical boundary integral equation formulations of this problem do not have unique solutions at certain characteristic frequencies (which depend on the surface) and it is necessary to employ modified boundary integral equation formulations which are valid for all frequencies. The modified integral equation formulation used here involves certain arbitrary parameters and we shall study the effect of these parameters on the stability and accuracy of the numerical methods used to solve the integral equation. We then couple the boundary element analysis of the exterior acoustic problem with a finite element analysis of the elastic structure to investigate the interaction between the structure and the acoustic field. Recently there has been some controversy over whether or not the coupled problem suffers from the non-uniqueness problems associated with the classical integral equation formulations of the exterior acoustic problem. We resolve this question by demonstrating that the solution to the coupled problem is not unique at the characteristic frequencies and that we need to employ an integral equation formulation valid for all frequencies. We discuss the accuracy of our numerical results for both the acoustic problem and the coupled problem, for a number of axisymmetric and fully three-dimensional problems. Finally, we apply our method to the problem of a piezoelectric sonar transducer transmitting an acoustic signal in water, and observe reasonable agreement between our theoretical predictions and some experimental results.Admiralty Research Establishment, Portlan
    corecore