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SUMMARY

Thanks to its high sample efficiency, BO has been popular and suc-
cessful in high-cost design problems. Nonetheless, the application of
BO in the literature has been restricted to low-dimensional Euclidean
spaces. Along with the ever-increasing complexity and diversity of
design problems, the necessity of effective BO in various spaces is
increasing. In response to such demand, in this thesis, we propose
BO on spaces other than low-dimensional Euclidean ones to broaden
the applicability of BO. Specifically, motivated by the successes of BO
with the Gaussian process (GP) surrogate model on low-dimensional
Euclidean spaces, we focus on BO with the GP surrogate model.

Our contributions are as follows

We propose Bayesian optimization on high-dimensional Euclid-
ean spaces, BOCK (Chapter 3). To mitigate the excessive ex-
ploration of high-dimensional BO, we use the cylindrical trans-
formation that makes BO focus more on the promising region,
i.e. the center of the search space. We demonstrate that BOCK
achieves competitive performance on high-dimensional prob-
lems up to 500 dimensions without making structural assump-
tions on the objective.

We propose Bayesian optimization on combinatorial spaces with
ordinal and categorical variables, COMBO (Chapter 4). Repre-
senting a combinatorial space with a graph, called the combi-
natorial graph, we propose the ARD diffusion kernel that effi-
ciently and scalably models the smoothness of functions on a
combinatorial space. The ARD diffusion kernel equips BO with
a variable selection mechanism, which helps improve the sam-
ple efficiency. We demonstrate that COMBO exhibits superior
sample efficiency with scalability up to a combinatorial problem
with 260 choices.

To model dependence between different types of variables, we
propose frequency modulation (Chapter 5) — modulating the fre-
quency of the ARD diffusion kernel (Chapter 4) with distances
of continuous variables. We find out that BO is degraded with-
out an additional condition — the similarity measure behavior of
the kernel — and thus provide a sufficient condition to guaran-
tee it. We show that, with the similarity measure behavior, BO
with the GP surrogate model can achieve high sample efficiency
on mixed-variable spaces.
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We propose a batch acquisition method applicable to permuta-
tion spaces, LAW (Chapter 6). To alleviate the difficulty of the
joint optimization of multiple permutations, we adapt Determi-
nantal point processes (DPP) based approach. In LAW, diversity
captured by DPP is augmented with the acquisition weights for
quality. We analyze the effect of weights on the regret bound in
LAW. Empirically, we demonstrate that considering quality en-
ables the batch acquisition method to scale well to large batch
sizes.

We show the potential of BO for combinatorial optimization
problems in chip design. We adapt LAW for the macro place-
ment of a practical scale (Chapter 7). We demonstrate that BO
significantly outperforms simulated annealing and performs co-
mpetitively to methods specialized to a specific objective. The
experiment supports that BO can be a competitive option for
combinatorial problems in chip design when the objective is ex-
pensive but close to the ultimate chip performance metric.



SAMENVATTING - SUMMARY IN DUTCH

Dankzij zijn hoge sample-efficiéntie is BO populair en succesvol bij
ontwerpproblemen met hoge kosten. Toch is de toepassing van BO
in de literatuur beperkt tot laag-dimensionale Euclidische ruimtes.
In samenhang met de steeds toenemende complexiteit en diversiteit
van ontwerpproblemen neemt de behoefte naar effectieve BO in alter-
natieve ruimtes toe. Als antwoord hierop stellen we in dit proefschrift
BO-methodes voor die functioneren in ruimtes die anders zijn dan
laag-dimensionale Euclidische ruimtes. In het bijzonder, gemotiveerd
door de successen van BO met het Gaussische proces (GP) surrogaat-
model op laag-dimensionale Euclidische ruimtes, richten we ons op
BO met het GP-surrogaatmodel.

Onze bijdragen zijn als volgt:

We introduceren BOCK (Hoofdstuk 3) voor hoog-dimensionale
Euclidische ruimtes. Om de overmatige verkenning van hoog-
dimensionale BO te vermijden gebruiken we de cilindrische
transformatie, waardoor BO zich meer richt op de veelbelovende
regio, d.w.z. het centrum van de zoekruimte. We demonstreren
dat BOCK competitieve prestaties behaalt op hoog-dimensionale
problemen tot wel 500 dimensies zonder enige structurele aan-
names te maken over het optimalisatie doel.

We introduceren COMBO (Hoofdstuk 4) voor Bayesiaanse op-
timalisatie op combinatorische ruimten met ordinale en cate-
gorische variabelen. Door een combinatorische ruimte weer
te geven als een graaf, de combinatorische graaf, introduceren
we de ARD-diffusiekernel die efficiént en schaalbaar de glad-
heid van functies in een combinatorische ruimte modelleert. De
ARD-diffusiekernel rust BO uit met een selectiemechanisme voor
variabelen, wat zorgt voor een betere sample-efficiéntie. We
demonstreren dat COMBO een superieure sample-efficiéntie he-
eft met schaalbaarheid tot een combinatorisch probleem met 260
keuzes.

Om de afhankelijkheid tussen verschillende soorten variabelen
te modelleren, introduceren we frequentiemodulatie (Hoofdstuk
5), wat de frequentie van de ARD-diffusiekernel (Hoofdstuk 4)
moduleert met afstanden van continue variabelen. We observer-
en dat de prestaties van BO worden gedegradeerd zonder een
aanvullende voorwaarde — namelijk het gedrag van de gelijkenis-
maat van de kernel — en introduceren een voorwaarde die dit

vit
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garandeert. We laten zien dat BO met het GP-surrogaatmodel
een hoge sample-efficiéntie kan bereiken op gemengde-variabele
ruimten.

We stellen een batch-acquisitiemethode voor die toepasbaar is
op permutatieruimten, LAW (Hoofdstuk 6). Om de complex-
iteit van de gezamenlijke optimalisatie van meerdere permu-
taties te verminderen, passen we de methode van determinan-
tale puntprocessen (DPP) aan. In LAW wordt diversiteit vast-
gelegd door DPP geschaald met de acquisitiegewichten voor
kwaliteit. We analyseren het effect van gewichten op de spijt-
grens in LAW. We laten empirisch zien dat het in acht nemen
van de kwaliteit ervoor zorgt dat de batch-acquisitiemethode
kan worden opgeschaald naar substantiéle batchgroottes.

We tonen het potentieel van BO aan voor combinatorische opti-
malisatieproblemen bij chipontwerp. We passen LAW aan voor
de macroplaatsing op een praktische schaal (Hoofdstuk 7). We
demonstreren dat BO aanzienlijk beter presteert dan simulated
annealing en competitief is met methodes die gespecialiseerd
zijn in een specifiek doel. Het experiment ondersteunt dat BO
een competitieve optie kan zijn voor combinatorische proble-
men bij het ontwerpen van chips wanneer het optimalisatiedoel
duur is, maar dicht bij de ultieme maatstaf voor chipprestaties
ligt.
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INTRODUCTION

This chapter provides an overview of the research questions we ad-
dress in this thesis. To motivate our research questions, we first show
the ubiquity of design problems in Sec 1.1. Then we present why
Bayesian optimization (BO) has been successful in such problems and
what needs to be improved to bring these successes to broader classes
of design problems. In Sec. 1.2, we specify research questions. Then
we discuss the motive of each research question and our strategy to
deal with it. In Sec. 1.3, the thesis structure is provided.

1.1 DESIGN OF EXPERIMENTS AND BAYESIAN OP-
TIMIZATION

In many scientific and engineering procedures, influencing factors
are selected to obtain the best possible output. To name a few,

In machine learning, hyperparameters, e.g. learning rate, neu-
ral architecture, etc. have a huge impact on model performance,
and they are deliberately tuned to optimize the generalization
performance. (Y. Chen, A. Huang, et al.,, 2018; B. Zhang et al,,
2021; Zoph, Vasudevan, et al., 2018).

In chemistry, experiments are subject to many conditions, such
as temperature, acidity, constants in chemical reaction models,
parameters of chemical devices, etc. Such factors are deliber-
ately configured to optimize the targets, e.g. selectivity and
reproducibility. (Boelrijk et al., 2021; Hase et al., 2018).

In chip design, components of integrated circuits (memory bloc-
ks, logic gates) interact in a complex way. These components are
optimally placed and wired to produce high-performing and
robust chips. (Lyu et al., 2018; Mirhoseini et al., 2021; S. Zhang
et al., 2019)

Even when developing a cookie recipe, the amount of ingredi-
ents can be optimized to find a highly-rated cookie recipe (Sol-
nik et al., 2017).

Even though such problems of selecting an optimal setting of influ-
encing factors occur in various disciplines and have different appear-
ances, many of them have common characteristics below.



A functional form of the relation between influencing factors
and target output is unknown. Consequently, the gradient is
not available.

The measured value of the target output is corrupted by noise.
Thus repeated evaluations for the same factor value may differ
from each other.

Evaluating a target output value for a given factor value is ex-
pensive in terms of time, compute resources, etc.

For the problems with the above characteristics, Bayesian optimiza-
tion (BO) has emerged as a competitive option (Brochu et al., 2010;
Shahriari et al., 2015). BO is a black-box function optimizer. It only
requires evaluation at a given point, not demanding additional in-
formation such as a gradient." Among various black-box function
optimizers, BO is famous for its high sample efficiency. It is capa-
ble of finding near-optimum solutions with fewer number of eval-
uations. Thanks to the high sample efficiency, BO has successfully
demonstrated its competitiveness in design problems with the above
characteristics, for instance, AlphaGo (Silver et al., 2017) where BO
increased the win rate from 50.0% to 66.5% (Y. Chen, A. Huang, et al.,
2018).

The competitiveness of BO originates from two main components
of BO, the surrogate model and the acquisition function. BO begins by
choosing the search space on which it tries to find an optimum. Then
the surrogate model is constructed to probabilistically model the objec-
tive to optimize. The surrogate model provides not only prediction
of the objective on unevaluated points but also the uncertainty of its
prediction. As a model of the objective, the surrogate model enables
BO to have a global view of the objective. In contrast to methods
using local search, the global view allows search beyond local neigh-
borhoods and thus gives BO global optimization capability. Based
on the predictive distribution provided by the surrogate model, an-
other function on the same search space is defined. This is the acquisi-
tion function, which assesses how informative each point in the search
space is for the optimization of the objective. The acquisition function
considers not only the chance to make a prompt improvement (ex-
ploitation) but also its influence on the optimization afterward (ex-
ploration). Instead of optimizing the expensive-to-evaluate original
objective, a cheap substitute (acquisition function) is optimized to
find the next promising point. With the combination of the surro-
gate model and the acquisition function, BO globally and efficiently
optimizes the objectives with the aforementioned characteristics.

BO does not require gradients. However, if the gradient is available, BO can utilize
it to actively use all accessible information as in (Wu, Poloczek, et al., 2017).



When the objective is noisy and not differentiable, other alterna-
tives are applicable, for instance, genetic algorithms (Mitchell, 1998),
evolutionary strategy (N. Hansen and Ostermeier, 1996), etc. How-
ever BO stands out, especially when the evaluation is expensive as in
the above examples, thanks to its high sample efficiency. Such high
sample efficiency is attributed to the well-calibrated uncertainty of the
surrogate model (Pleiss et al., 2018; Shahriari et al., 2015). Gaussian
processes (GPs) are famous for their principled and well-calibrated
uncertainty (Williams and Rasmussen, 2006), and the GP surrogate
model has been shown to outperform other surrogate models when
the GP surrogate model is applicable. (Snoek, Larochelle, et al., 2012;
Snoek, K. Swersky, et al., 2014)

Limitations of Existing approaches

As increasingly many success stories of BO are reported, the de-
mand for the utilization of BO in novel scenarios is growing. There
are many cases where vanilla BO is either inapplicable or ineffec-
tive. The optimization may involve several objectives that are opti-
mized simultaneously — multi-objective BO. Sometimes the optimiza-
tion needs to be performed in a few-shot setting with not identical
but related optimization problems — multi-task, contextual, transfer
BO. In practice, the complexity of design problems keeps increasing,
and thus more factors need to be optimized — high-dimensional BO.
Also, many design problems consist of both continuous and combina-
torial variables — combinatorial BO and mixed-variable (hybrid) BO.
Among the above ones, the focus of this thesis is high-dimensional
BO and combinatorial BO. We briefly discuss the difficulty of each of
them.

HIGH-DIMENSIONAL BO In high-dimensional spaces, it is infeasible
to collect evaluations enough to cover the search space. The surrogate
model is fitted with insufficient data. Thus the point predictions are
inaccurate in most areas of the search space. Moreover, the uncer-
tainty of the prediction is so high that its difference at different areas
of the search space is negligible. Therefore, in high-dimenionsional
BO, it is difficult for the surrogate model to produce actionable in-
formation in most areas of the search space. In practice, BO users
usually select a subset of factors to optimize with the rest of the fac-
tors fixed to manually chosen values, which leads to a suboptimal
result.

COMBINATORIAL BO  Despite abundant combinatorial choices in de-
sign problems, BO on combinatorial spaces is under-explored. A
simple approach is to embed combinatorial variables into Euclidean
spaces. However, such an approach is not only likely to be subop-
timal (Garrido-Merchdn and D. Hernandez-Lobato, 2020) but also



inapplicable to non-tabular data, e.g., molecules. Besides, existing
methods developed for Euclidean spaces are not transferable to com-
binatorial spaces since many intuitive structures in Euclidean spaces
such as distance, angle, etc., lack in combinatorial spaces.

1.2 RESEARCH QUESTIONS

Building on the many successes of BO in low-dimensional Euclidean
spaces, researchers and practitioners wish and try to bring the high
sample efficiency of BO into the problems on spaces other than low-
dimensional Euclidean spaces. In response to such demand, our gen-
eral goal in this thesis is to answer the question below.

Can we develop efficient BO methods
on search spaces other than low-dimensional Euclidean spaces?

Under the general question, we focus on improving the sample
efficiency of BO by utilizing the well-calibrated uncertainty of GPs.
We propose BO with the GP surrogate model on various types of
search spaces by tackling difficulties arising from each search space.

Research Question 1 What causes the excessive exploration in high-
dimensional Euclidean spaces? And how can we mitigate the excessive ex-
ploration for effective high-dimensional BO? (Chapter 3)

As the dimension increases, the volume is dominated by regions
near the boundary. Moreover the point with the highest uncertainty is
always on the boundary. Thus, in high-dimensional Euclidean spaces,
there is a plethora of points waiting for evaluation due to their high
uncertainty.

Even worse, such drive to evaluate points near the boundary con-
flicts with a common practice of BO. In BO, to the best of users’ prior
knowledge, the search space is set to contain a near-optimal point
around the center of the search space. Even after many evaluations,
there is still huge unprobed area near the boundary. Thus, it is un-
likely to evaluate a point near the center in high-dimensional spaces.

To reconcile the conflict, we propose a geometric transformation
of the search space. Our proposed transformation, the cylindrical
transformation, shrinks the volume near the boundary and expands
the volume near the center. Furthermore, the cylindrical transfor-
mation induces the effect of restraining high uncertainty near the
boundary. With this transformation, we propose BOCK, BO for high-
dimensional Euclidean spaces. We demonstrate that the cylindrical
transformation effectively mitigates the excessive exploration, and
that BOCK can achieve impressive performance on high-dimensional
problems — up to 500 dimension — without relying on assumptions on
the structure of the objective.



Research Question 2 How can we define smooth surrogate models and
acquisition functions on combinatorial spaces? And can we develop a flexible
GP surrogate model for BO in large combinatorial spaces? (Chapter 4)

In order to define the smoothness of functions on combinatorial
spaces, we propose a graph representation called the combinatorial
graph. On the combinatorial graph, each vertex corresponds to a com-
binatorial value, and edges represent relations between combinatorial
values. With the combinatorial graph, functions on a combinatorial
space can be interpreted as functions on a graph, i.e. graph signal (Or-
tega et al., 2018). We define the smoothness of functions on combina-
torial spaces as the smoothness of the graph signal.

We further equip the above notion of smoothness with computa-
tional efficiency and modeling flexibility. We set the combinatorial
graph to be decomposable into small graphs i.e. the graph Cartesian
product of small graphs (Hammack et al., 2011). Such decomposabil-
ity enables efficient computation of the diffusion kernel (R. I. Kon-
dor and Lafferty, 2002; Smola and R. Kondor, 2003) quantifying the
smoothness of graph signals. Using the decomposability, we propose
the ARD diffusion kernel to equip with a larger modeling capacity.

Compared with the existing surrogate model using Bayesian linear
regression (Baptista and Poloczek, 2018), our GP surrogate model can
model arbitrarily high-order interactions among variables even with
faster computation. We also demonstrate that GP using the ARD dif-
fusion kernel has an improved modeling capacity and that BO with
the ARD diffusion kernel, COMBO, scales well to large combinato-
rial spaces such as one represented by the combinatorial graph with
260 ~ 1.15 x 108 vertices.

Research Question 3 How can we model dependencies between different
types of variables in kernels? And do we need conditions for kernels other
than positive definiteness? (Chapter 5)

In order to model dependence between different types of variables
in GPs, we propose a kernel construction method called frequency
modulation. In the frequency modulation, the frequency in the ARD
diffusion kernel for combinatorial variables is modulated by the dis-
tance of continuous variables. This construction introduces coupling
between different types of variables.

While developing the frequency modulation, we discover that the
positive (semi-)definiteness of kernels does not provide any guaran-
tee on the natural behavior of the kernels — the similarity measure be-
havior, i.e., the more similar two points are, the higher their kernel
value is. We demonstrate that violation of the similarity measure be-
havior severely degrades the performance in BO and regression tasks.
Therefore, we provide a sufficient condition to guarantee the similar-
ity measure behavior of the kernels from the frequency modulation.

On many BO and GP regression tasks, we show that the similarity
measure behavior is another crucial property for robust and stable



performance. We demonstrate that, also in mixed-variable spaces, the
well-calibrated uncertainty of GP enables BO to achieve high sample
efficiency, for example, in the joint optimization of neural architecture
and learning hyperparameters.

Research Question 4 Can we develop a batch acquisition method appli-
cable to permutation spaces? And how can we maintain the quality of the
batch acquisition method as the batch size increases? (Chapter 6)

In super-exponentially growing® permutation spaces, sequential
BO on a large permutation space is likely to require unaffordable
wall-clock runtime. Therefore, we investigate batch acquisition on
permutation spaces. For more economical use of each evaluation, we
aim for a batch acquisition method that makes BO keep its perfor-
mance for large batch sizes.

We choose the Determinantal point process (DPP) (Kulesza and
Taskar, 2012) as a feasible framework for batch acquisition on permu-
tation spaces. DPP is not only widely used for diversity modeling,
but it also has a property called submodularity (Kulesza and Taskar,
2012) which makes the optimization of a function on multiple permu-
tations tractable (Buchbinder et al., 2014; Nemhauser et al., 1978).

Retaining the strengths of DPPs, we augment DPPs with the acqui-
sition value to take into account the quality of each point in the batch.
Theoretically, we analyze the cumulative regret taking into account
the effect of the quality. We demonstrate that the batch acquisition
considering diversity and quality significantly outperforms the one
considering diversity only.

Research Question 5 Can BO be an effective method for combinatorial
optimization problems in chip design? And can it be efficient enough to scale
to problems of a practical scale? (Chapter 7)

Recently, BO has been applied to problems arising in chip design,
most of which focus on continuous optimization (Lyu et al., 2018; S.
Zhang et al., 2019). However, there are numerous combinatorial op-
timization problems in chip design (A. Kahng et al., 2011). Among
others, we focus on the macro placement in which components with
a large area, e.g.,, memory and IP blocks, are placed on a chip can-
vas (Shahookar and Mazumder, 1991).

While applying BO to the macro placement of a practical scale, two
computational challenges arise. First, the macro placement is subject
to many constraints and the computation of the feasibility with re-
spect to such constraints takes up nonnegligible time. Second, for
a large number of macros, batch acquisition can be time-consuming,
which prevents the use of large batch sizes.

We adapt LAW (Chapter 6) to handle such issues. We incorporate
a parallel version of the feasibility check into the acquisition function
optimization and propose a parallel heuristic to accelerate the batch

2 Let SN be the symmetric group (permutation space) of length N. Super-exponential

growth is formally expressed as limn ;00 ‘i,‘t,’ l — o forallc e (0,0).




acquisition. We test the adapted LAW on the macro placement bench-
marks and compare it with other black-box optimizers and methods
specialized to a specific form of the objective.

1.3 THESIS STRUCTURE

In this thesis, we propose BO methods for search spaces other than
low-dimensional Euclidean spaces. We demonstrate that the well-
calibrated uncertainty of GPs improves sample efficiency of BO on
search spaces other than low dimensional Euclidean spaces and that
the principled formulation of GP uncertainty opens opportunities to
improve the efficiency of batch acquisition.

We cover five different types of search spaces in the thesis.

Chapter 3 High dimensional Euclidean spaces

Chapter 4 Combinatorial spaces

Chapter 5 Mixed-variable spaces

Chapter 6 Permutation spaces (Symmetric group)

Chapter 7 Constrained product spaces of two permutation spaces

Between the two components of BO, the surrogate model and the
acquisition function, in each chapter, we focus on one component. In
the first three chapters, we focus on devising effective kernels for GP
surrogate model on each search space. In the last two chapters, we
focus on effective batch acquisition in terms of both the number of
samples and the wall-clock runtime.

The rest of the thesis is structured as follows. In Chapter 2, we
briefly overview BO, GPs and relevant topics. In Chapter 3, we
present BOCK, BO for high dimensional Euclidean spaces. In Chap-
ter 4, we present COMBO, BO for combinatorial spaces with cate-
gorical and ordinal variables. In Chapter 5, we present frequency
modulation, a novel kernel combination method with the application
to mixed-variable BO. In Chapter 6, we present LAW, a batch acqui-
sition method applicable to permutation spaces. In Chapter 7, we
extend LAW for the application of BO on a combinatorial optimiza-
tion problem appearing in chip design. Then, we conclude the thesis
with a discussion on the limitations of the proposed methods and the
future works which we believe are promising.
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BACKGROUND

This chapter explains prerequisite knowledge of the research in this
thesis. In Sec. 2.1, we explain the basics of Bayesian optimization (BO),
the workflow of Bayesian optimization (BO) and two key components
— the surrogate model and the acquisition function. Among others,
the surrogate model of our interest, Gaussian processes, is explained
in more detail in Sec. 2.2. In Sec. 2.3, the central notions of gen-
eral sequential decision-making — exploration and exploitation — are
elaborated in the context of BO. Lastly, in Sec. 2.4, we compare and
contrast BO to relevant topics to better position our research from a
broader perspective.

2.1 BAYESIAN OPTIMIZATION

Bayesian optimization (BO) aims at finding a global minimum of
the objective fop; on the search space X

Xopt = argmin fqp;(x). (2.1)
xeX
Distinctively, BO typically targets the optimization with the con-
straints below

Functional form and thus gradients of the objective f,p; are not
accessible.

Evaluating f,p; at a given point x is expensive.
The evaluation is noisy fop;(X) = fground truth(X) + €.

Due to the inaccessibility to the gradient of the objective, BO takes
a black-box function optimization approach where it relies on the
evaluation of the objective f,y; at given points.3 Due to the high
cost of evaluations, BO puts emphasis on high sample efficiency. BO
tries to find x* whose evaluation f,p;(x*) is as close to the optimum
minyex fopj(x) as possible with fewer evaluations.

In pursuit of a sample-efficient global optimizer, BO takes a model-
based approach. In contrast with model-free approaches such as sim-
ulated annealing (Van Laarhoven and Aarts, 1987) and genetic algo-
rithm (Mitchell, 1998), BO builds a probabilistic model approximating

When the gradient of the objective is available, certain BO methods leverage this
information to improve the performance (Wu, Poloczek, et al., 2017)
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[ Set the search space ]
¥

Set the initial evaluation data
Dn = {(Xi/yi = f(xq) + ei)}ie[n]

¥

Report the result

(Xigpes Yiope)
lopt = argmlniyi

(9}

Have the Evaluation budget?

Fit the Surrogate model
f(x) ~ N (1(x| Dn), 0% (x| Dn))
Maximize the acquisition function
Xn+1 = aTgmaan(P(f(X)| Dn))
Evaluate the objective
Yn+1 = F(xni1) + €nt1

!}

Expand the evaluation data
D1 =DnU {(Xn+1/yn+1 )}

Figure 2.1: Bayesian optimization workflow

the objective, called the surrogate model M conditioned on the pre-
viously evaluated data D,,_1 = (xi,yi)i:b”/nf], Yi = fowj(xi) + €t
and €; ~ N(0, O%b ¢)- The surrogate model is the primary channel
leveraging the evaluation data D,,_7 in BO and the prediction made
by the surrogate model provides a global view of the objective.

In addition to the accurate prediction, another key requirement for
the surrogate model is well-calibrated uncertainty. Due to the lim-
ited size of evaluation data D, _1, it is unlikely that the surrogate
model makes fairly accurate predictions on the entire search space X.
Well-calibrated uncertainty complements the predictions by inform-
ing how trustworthy the predictions are, which, in turn, guides the
optimization.

The way that the surrogate model steers the optimization is via
balancing between two modes of information utilization, exploita-
tion and exploration. Exploitation is to evaluate the point of low
objective but not high predictive value which is conferred with uncer-
tain predictions, expecting the probable improvement of the optimiza-
tion process. Exploration is to evaluate the point of high uncertainty,
which not only aids optimization later to be based on more reliable



information, but also helps to probe unexplored areas. If lucky, ex-
ploration sometimes happens to evaluate the point making a huge
improvement in the optimization.

Mathematically, the surrogate model takes the data of points eval-
uated, D, as an input and generates predictive distributions on all
x € X, which is typically in the form of the predictive mean pn_1(x) =
w(x|Dn—1) and the predictive variance on,—1(x) = o(x|Dpn_1).

Quantitatively balancing between exploitation and exploration is
the responsibility of another key component of BO, the acquisition
function a(x). By using the probabilistic prediction made by the sur-
rogate model M, the acquisition function represents a good balancing
score between exploitation and exploration as a single number. Many
interesting acquisition functions have been proposed, and all reflect
the intuition that points with low predictive mean (in minimization)
and high predictive uncertainty have high acquisition values.

Some acquisition functions only summarize the predictive distribu-
tion at x to compute the acquisition value x. Such local acquisition
functions include probability of improvement (PI) (Kushner, 1964)
and expected improvement (EI) (Jones et al., 1998).

ap10) =Py x(1 10,02, x) Y < Yrmin]

n—

agr(x) = E N(un (x),02_,(x)) [(Gmin —y)]

where Jmin = minj—j,... n—1yi. Others take into account predictive
distributions at other locations, which are more global such as en-
tropy search (ES) (Hennig and Schuler, 2012) and predictive entropy
search (PES) (J. M. Hernandez-Lobato, M. W. Hoffman, et al., 2014)

ags(x) =Hp(x* | Dn_1)]
— By N 00,02, ) PO D U{(x, y) )]

apes(x) =HN(pn_1(x), 05 _; (x))]
- ]Ep(x* | Dn_1) [H[p(y| Dn—1 /X, X*H

where the predictive distributions at other locations are considered
indirectly via p(x* |—).

Now the acquisition function a(x) is maximized to select the most
promising point with respect to a chosen acquisition function. a(x)
is a function defined on the same space X as the search space of the
original optimization task. However, a(x) is much cheaper to evaluate
than the original objective f and if the search space is continuous, then
a(x) is differentiable.

With these two key components of BO, the surrogate model and the
acquisition function, the BO algorithm proceeds as given in Fig. 2.1.
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2.2 GAUSSIAN PROCESSES

Different probabilistic models have been used as surrogate mod-
els of BO including random forests (Hutter et al., 2011), the tree-
structured Parzen estimator (J. Bergstra, Yamins, et al.,, 2013; J. S.
Bergstra et al., 2011), Bayesian neural networks (Springenberg et al.,
2016), deep ensembles (Belanger et al., 2019; K. Swersky, Rubanova,
et al., 2020), Bayesian linear models (Baptista and Poloczek, 2018;
Daxberger et al., 2021; Perrone, Jenatton, et al., 2018; Snoek, Rippel,
et al., 2015) and Gaussian processes (Eriksson, Pearce, et al., 2019; E.
Lee et al., 2020; Snoek, Larochelle, et al., 2012; Snoek, K. Swersky, et
al., 2014; Zi Wang, Gehring, et al., 2018; Zi Wang, C. Li, et al., 2017).

Gaussian processes (GPs) have proven their competitiveness over
others in black-box function optimization tasks (Ru, Alvi, et al., 2020;
Snoek, Larochelle, et al., 2012; Springenberg et al., 2016), mainly due
to their well-calibrated uncertainty.

GP is a Bayesian nonparametric method to model a function (Ras-
mussen, 2003). As a surrogate model in BO, it probabilistically mod-
els the objective function f,p; whose evaluation is often noisy. GP
is an infinite dimensional generalization of the multivariate Gaussian
distribution. The corresponding infinite dimensional mean parameter
vector and infinite dimensional covariance parameter matrix are spec-
ified by the mean function m(x) and the covariance function k(x,x’).
In order to define an appropriate covariance, the covariance function
should satisfy the following condition, which is called positive (semi-)
definite.

Zcik(xi,xj)cj >0 Vei e R VxpeX
ij

More commonly, the covariance function is called the (positive semi-
definite) kernel.

For a given mean function and a kernel, conditioned on the data
D =Xy, X =[x, ,xJ" and y = [y1,---,ynl", the predic-
tive distribution of f.(x. | D) at x, is given as N(p(x. | D), 0% (x« | D))
where

WX, | D) = m(x.) + k(x., X) KX, X) + 02 In) ' (y —m(X))
02 (% | D) = K(xe, %) — k(x, X)X, X) + 02 Tn] T KX, x4

Model predictive performance is heavily affected by the hyperpa-
rameters of GPs 6, including mean function parameters, kernel pa-
rameters, and noise variance. GP hyperparameters can be chosen by
optimizing the (log-)marginal likelihood.

2y =m0 KX, X +02, 1)y~ m(X))

- % log detk(X, X) — % log(27)

logp(ylX,0) =



S

Alternatively, taking full Bayesian approach, the posterior of 6 can
be used. For a given prior p(0), the posterior

_ plylX,0)p(6)
p(0ly, X) = TN

is used to construct the predictive distribution marginalized over 0
Eporyx [ (x. 1,0)] = | Nulx.|D,0), ¢ (x. D, 0) (6] 2)do

The posterior is approximated by MCMC (Snoek, Larochelle, et al.,
2012) or variational inference (M. Titsias, 2009).

2.3 EXPLORATION-EXPLOITATION TRADE-OFF

Among black-box function optimization methods, BO is famous for
its high sample efficiency, i.e. it finds an optimum with fewer num-
ber of evaluations.# Its high sample efficiency makes BO a method
of choice in the situation where the objective is expensive to eval-
uate. The high sample efficiency of BO is attributed to the capa-
bility of balancing between exploration and exploitation (Brochu et
al., 2010; Shahriari et al., 2015). In the context of BO, the exploita-
tion is to utilize the previous evaluations conservatively, which corre-
sponds to evaluating a point near the best evaluation in hand. On the
other hand, the exploration is to make an aggressive step by trying a
point in the unprobed region with high uncertainty. With exploratory
moves, we can expect two scenarios. With any luck, an exploratory
move may find an input better than the current best input outside the
neighborhood of the current best input. Even in the worst case, an
exploratory move reveals a region unlikely to have a good input by
supplying the evaluation to the surrogate model in future BO rounds.

In BO, the exploration-exploitation trade-off is controlled by the
uncertainty from the surrogate model and the acquisition function.
Compared with other surrogate models, random forests (Hutter et al.,
2011) and the tree-structured Parzen estimator (J. Bergstra, Yamins, et
al,, 2013; J. S. Bergstra et al., 2011), Gaussian processes (GPs) (Snoek,
Larochelle, et al., 2012) provide principled and well-calibrated un-
certainty (Rasmussen, 2003). The well-calibrated uncertainty of GPs
enables better exploration-exploitation trade-off and, in turn, better
sample efficiency (Brochu et al., 2010; Shahriari et al., 2015; Snoek,
Larochelle, et al., 2012).

Strictly speaking, optimization methods find an optimum or a point whose evalua-
tion is close to the evaluation of an optimum unless there is a guarantee to find an
optimum.
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2.4 RELEVANT TOPICS

2.4.1  Hyperparameter optimization

In machine learning communities, BO has received attention as a
hyperparameter optimization method (Hutter et al., 2011; Ru, Alvi,
et al., 2020; Snoek, Larochelle, et al., 2012). These days, deep learn-
ing models are becoming more complex. Accordingly, the size of the
hyperparameter space far exceeds the scope of human researchers’
ability to search it, and the evaluation of a configuration of hyper-
parameters becomes increasingly costly. Thanks to its high sample-
efficiency, BO has proved its competitiveness in many deep learning
hyperparameter optimization tasks (J. Bergstra, Yamins, et al., 2013;
J. S. Bergstra et al., 2011; Snoek, Larochelle, et al., 2012; Snoek, Rip-
pel, et al., 2015). Among others, BO was successfully deployed to
optimize the hyperparameters of AlphaGo (Silver et al., 2017) agent
training with the impressive result of improving the agent’s win rate
from 50% to 66.5% (Y. Chen, A. Huang, et al., 2018).

Among other hyperparameters of deep learning models, the search
for an optimal architecture has been extensively studied (Elsken et al.,
2019; Wistuba, Rawat, et al., 2019). The search for an architecture of
deep learning models, a.k.a. neural architecture search (NAS) began
with reinforcement learning (Zoph and Q. Le, 2017). As a black-box
function optimization problem, NAS was also tackled by BO (Kan-
dasamy, Neiswanger, et al., 2018; Changyong Oh, Tomczak, et al.,
2019; Ru, Wan, et al., 2020). Recently, the differentiable approach
which is prevalent since its inception (H. Liu et al., 2018) has becomes
the mainstream of NAS. Its popularity is attributable to its scalabil-
ity. BO requires the training of many neural networks, on the other
hand, the differentiable approach trains a single large neural network
within which many sub-architectures are included (Pham et al., 2018).
Even though the differentiable approach is more promising than BO
in NAS, non-differentiable sample-based approaches including BO
tend to obtain better and more stable results at the cost of compute
time (X. Dong, L. Liu, et al., 2021). Moreover, while joint optimization
of architecture and other hyperparameters can be handled in the BO
framework (Falkner et al., 2018; Changyong Oh, Gavves, et al., 2021),
a differentiable correspondent is still missing.

2.4.2 Bandits

Bayesian optimization has been studied under different names such
as Gaussian process bandit optimization (Bogunovic, Scarlett, et al.,
2016; Griinewdlder et al., 2010; Janz et al., 2020; Krause and Ong,
2011; Srinivas et al., 2010), kernelized bandit (Bogunovic and Krause,
2021; Chowdhury and Gopalan, 2017), etc.



There are subtle differences between the BO perspective and the
bandit perspective. Works from the bandit perspective tend to take
more rigorous approaches stressing theoretical guarantees on the re-
gret. Such guarantees do not come for free. They make regularity
assumptions on the objective such as Lipschitz, small RKHS norm,
etc. (De Freitas et al., 2012; Srinivas et al., 2010) which are oftentimes
too complex to validate in practice. On the other hand, BO tends
to focus more on heuristically designed methods emphasizing exten-
sive empirical validation on complex objectives (Eriksson, Pearce, et
al.,, 2019; Snoek, Rippel, et al., 2015).

The way they handle the surrogate model slightly differs. Methods
from the bandit framework often use GPs with fixed kernel hyperpa-
rameters (Chowdhury and Gopalan, 2017). However, in BO, fitting
the kernel hyperparameters is a crucial step to improve sample effi-
ciency, which is almost always adopted.

The seminal work of (Srinivas et al., 2010) shows that the cumula-
tive regret from GP-UCB acquisition function can be analyzed in the
bandit framework. Beginning with GP-UCB, it is shown that other ac-
quisition functions can enjoy similar theoretical analysis, for example,
EI (Gupta et al., 2022; V. Nguyen, Gupta, et al.,, 2017) and TS (Kan-
dasamy, Krishnamurthy;, et al., 2018). Although the ultimate objective
of BO is usually the simple regret, the analysis of BO usually finds a
cumulative regret bound as an intermediate step (Contal et al., 2013;
Desautels et al., 2014, Kandasamy, Krishnamurthy, et al., 2018) since
the simple regret is bounded above by the cumulative regret.

There is no clear-cut distinction between BO and bandits, but the
difference is more of a tendency of the focus under different names.
From the bandit perspective, BO can be described as a heuristic struc-
tured bandit where the performance takes precedence over the theo-
retical guarantee.

2.4.3 Reinforcement Learning (RL)

In RL, the goal is to find a policy taking an optimal sequence of
actions in a given environment (Sutton and Barto, 2018). Since a
bandit is a simplified RL agent> (Sutton and Barto, 2018), on problems
that can be reformulated without state transition, BO can be adopted
in place of RL.

Examples include the neural architecture search (NAS) (Elsken et
al.,, 2019; Zoph and Q. Le, 2017, Zoph, Vasudevan, et al., 2018),
drug discovery (Gémez-Bombarelli et al., 2018; Korovina et al., 2020;
Popova et al., 2018; Pyzer-Knapp, 2018), chip design (R. Cheng and
Yan, 2021; Deshwal, Belakaria, ]J. R. Doppa, and D. H. Kim, 2022;

A contextual bandit can be regarded as reinforcement learning where states are given
solely by the environment not affected by the agent’s actions. Bandit without context
can be regarded as stateless reinforcement learning.
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Mirhoseini et al., 2021; Changyong Oh, Bondesan, et al., 2022), etc.
In Zoph and Q. Le, 2017, NAS was initially formulated as a RL
problem where the architecture specification is a sequence of actions
imposing constraints on possible next actions. Later, many BO ap-
proaches were developed for NAS by reformulating architecture spec-
ification as a combinatorial choice (Kandasamy, Neiswanger, et al.,
2018; Ru, Wan, et al., 2020).

In drug discovery, desirable properties of molecules are optimized.
In RL (H. Chen et al., 2018; Popova et al., 2018), molecules are searched
by gradually constructing valid molecules. In BO (Gémez-Bombarelli
et al., 2018; Korovina et al., 2020; Pyzer-Knapp, 2018; K. K. Yang et al.,
2019), the search for optimal molecules is conducted by performing a
constrained optimization.

In chip design, there are many optimization problems with com-
plex constraints. RL (R. Cheng and Yan, 2021; Mirhoseini et al., 2021)
readily handles constraints by taking a sequence of actions respect-
ing constraints. However, RL requires many evaluations and thus
resorts to a cheap proxy for the original objective. On the other hand,
BO (Deshwal, Belakaria, J. R. Doppa, and D. H. Kim, 2022; Lyu et al,,
2018; Changyong Oh, Bondesan, et al., 2022) requires a well-designed
representation to handle constraints, but it can optimize the objective
directly.

In Markov Decision Processes, many constraints can be easily han-
dled by masking infeasible actions in the state transition. Such flexi-
bility is one of the reasons for the popularity of RL in many complex
problems. However, it comes at the cost of fragile training stabil-
ity. Compared with RL, BO is deployed with a formulation without
state transition, and thus, in some cases, BO produces more stable
results (X. Dong, L. Liu, et al., 2021).

2.4.4 Design of Experiments

The design of experiments is concerned with identifying factors
that affect the response of the experiment, approximating the rela-
tion of the factors and the response, finding an optimal setting of the
factors with respect to the response, etc. (Montgomery, 2017; STAN-
DARDS and TECHNOLOGY/SE-MATECH, 2013) BO also has been
actively employed to find an optimal setting for the experiment in
science and engineering (Greenhill et al., 2020; Shahriari et al., 2015).

Traditional experimental design methods, such as factorial design
and space-filling design, do not consider the responses of the experi-
ments (Greenhill et al., 2020; Montgomery, 2017). A more advanced
method is response surface methodology (RSM) (Box and K. B. Wil-
son, 1992; Greenhill et al., 2020). RSM adaptively determines which
factor values to try based on the responses of the experiments.



The general procedure of RSM resembles that of BO, but there are
key differences. RSM does not consider the uncertainty, but BO ac-
tively utilizes the uncertainty to balance exploitation and exploration.
RSM makes incremental changes purely based on a local search on
its response surface, but BO searches globally based on the global
viewpoint granted by the surrogate model.

In many design problems, not only in hyperparameter optimiza-
tion but also in various fields in science and engineering, BO is be-
coming the method of choice. (Char et al., 2019; Frazier and Jialei
Wang, 2016; R.-R. Griffiths and J. M. Herndndez-Lobato, 2020; Jalas
et al., 2021; X. Lu et al., 2018; Pang et al., 2017; Perdikaris and Karni-
adakis, 2016).
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BOCK : BAYESIAN
OPTIMIZATION WITH
CYLINDRICAL KERNELS

3.1 INTRODUCTION

When we talk about stars and galaxies we use parsecs to describe
structures, yet when we discuss the world around us we use meters. In
other words, the natural lengthscale scale with which we describe the
world increases with distance away from us. We believe this same
idea is useful when performing optimization in high dimensional
spaces.

In Bayesian Optimization (or other forms of hyperparameter op-
timization) we define a cube or a ball and search for the solution
inside that volume. The origin of that sphere is special in the sense
that this represents the part of space with the highest probability if
finding the solution. Moreover, in high dimensions, when we move
outwards, the amount of volume contained in an annulus with width
dR, A(¢;R—03R,R) = {x[R—0R < [[x—c|| < R}, grows exponentially
with distance R. As such, if we would spend an equal amount of time
searching each volume element 5V, we would spend all our time at
the boundary of our search region. This effective attraction to the
places with more volume is the equivalent of an "entropic force" in
physics, and in the case of optimization is highly undesirable, since
we expect the solution at a small radius R.

Figure 3.1: Cylindrical transformation
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Algorithm 2 Bayesian Optimization pipeline.

1: Input: surrogate model M, acquisition function «, search space
X, initial training data Dini¢, function f

: Output: optimum X,p¢ € X of f

: Initialize D = Dinit

: while evaluation budget available do

Set u(-|D), o2(:|D) < M|D // Surrogate function returns predictive

mean function and predictive variance function by fitting M to D

6:  Maximize X = argmax a(p(x|D), o2 (x|D))

xeX
// Acquisition function suggests next evaluation by maximization

GoR W oN

7. Evaluate § = f(X) // Evaluate the score of the point selected by the
acquisition function

8 Set D « DU{(X,0)} // Update the training dataset by including the
newly evaluated pair (X, Q)

9: end while

In this chapter we, therefore, reformulate Bayesian Optimization
in a transformed space, where a ball, B(x;R) = {x|||[x—c]|| < R}, is
mapped to a cylinder, C(p,q;¢c,L ={(r,a)||r € [p,ql,||d—c| =L} (see
Fig. 3.1). In this way, every annulus of width 3R contains an equal
amount of volume for every radius R, and the entropic force pulling
the optimizer to the boundary disappears. We call our method BOCK,
for Bayesian Optimization with Cylindrical Kernel. BOCK is effective
in handling the boundary issue — too much volume near the bound-
ary (K. J. Swersky, 2017)). By mitigating the boundary issue, BOCK
spends the evaluation budget in a promising region of the search
space, the center, which is aligned with the prior assumption that the
solution most likely lies close to the origin. We find that our algo-
rithm is able to successfully handle much higher dimensional prob-
lems than standard Bayesian optimizers. As a result, we manage to
not only optimize modestly sized neural network layers (up to 500
dimensions in our experiments), obtaining solutions competitive to
SGD training, but also hyper-optimize stochastic depth Resnets (G.
Huang et al., 2016).

3.2 PRELIMINARIES

3.2.1  Bayesian Optimization

Bayesian optimization aims at finding the global optimum of black-
box functions, namely

Xopt = argmin f(x) (3.1)



The general pipeline of Bayesian Optimization is given in Alg. 1.
Prior to starting, a search space must be defined, where the opti-
mum f(Xopt) Will be searched for. Given this search space, the initial
training dataset must be set, typically by naive guessing where the
solution might lie or by informed expert knowledge of the problem.
Having completed these two steps, Bayesian Optimization proceeds
in an iterative fashion. At each round, in the absence of any other in-
formation regarding the nature of f(x) a surrogate model attempts to
approximate the behavior of f(x) based on the so far observed points
(xi,Yi),yi = f(xi). The surrogate function is then followed by an ac-
quisition function that suggests the next most interesting point X 1
that should be evaluated. The pair (xi,yi) is added to the training
dataset, D = D U(x4,yi), and the process repeats until the optimiza-
tion budget is depleted.

The first design choice of the Bayesian Optimization pipeline is the
surrogate model. The task of the surrogate model is to model proba-
bilistically the behavior of f(-) in the x-space in terms of (a) a predic-
tive mean p(x, | D) that approximates the value of f(x) at any point
x., and (b) a predictive variance that represents the uncertainty of the
surrogate model in this prediction. Any model that can provide a
predictive mean and variance can be used as a surrogate model, in-
cluding random forests (Hutter et al., 2011), tree-based models (J. S.
Bergstra et al., 2011) and neural networks (Snoek, Rippel, et al., 2015;
Springenberg et al., 2016). Among other things, Gaussian Processes
not only provide enough flexibility it terms of kernel design but also
allow for principled and tractable quantification of uncertainty (Ras-
mussen, 2003). Therefore, we choose Gaussian Processes as our sur-
rogate model. The predictive mean and the predictive variance of
Gaussian processes are given as below

wx«|D) = Ken(Kpp +0?1) Ty (3-2)
0% (% | D) = Kose — Koo (Kpp + 02 ) 7' Kop o (3-3)

where K. = K(x,,X4), K. p is a row vector whose ith entry is K(x,, x{),
Ko, = (Kup)T, Kpplij = K(xi,%j), 02, is the variance of observa-
tional noise and D ={(xj,yi)}; is the dataset of observations so far.

The second design choice of the Bayesian Optimization pipeline
is the acquisition function. The predictive mean and the predictive
variance from the surrogate model is input to the acquisition function
that quantifies the significance of every point in x as a next evaluation
point. While different acquisition functions have been explored in the
literature (Hennig and Schuler, 2012; J. M. Herndndez-Lobato, M. W.
Hoffman, et al., 2014; Kushner, 1964; Mockus, 1975; Srinivas et al.,
2010; Thompson, 1933), they all share the following property: they
return high scores at regions of either high predictive variance (high
but uncertain reward), or low predictive mean (modest but certain
reward).
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Last, the third design choice of the Bayesian Optimization pipeline,
often overlooked, is the search space. In (Snoek, K. Swersky, et al.,
2014) the kernel of the surrogate model is defined on a warped search
space, thus allowing for a more flexible modeling of f(x) by the sur-
rogate function. As the search space defines where optimal solutions
are to be sought for, the search space definition is a means of infusing
prior knowledge into the Bayesian Optimization. Usually, a search
space is set so that the expected optimum is close to the center.

3.2.2 High-dimensional Bayesian Optimization

Even with its successes in many applications, several theoretical as
well as practical issues (Shahriari et al., 2015) still exist when employ-
ing Bayesian Optimization to real world problems. Among others,
many Bayesian optimization algorithms are restricted in practice to
problems of moderate dimensions. In high dimensional problems,
one suffers from the curse of dimensionality. To overcome the curse
of dimensionality, several works make structural assumptions, such
as low effective dimensionality (J. Bergstra and Bengio, 2012; Ziyu
Wang, Hutter, et al., 2016) or additive structure (Kandasamy, Schnei-
der, et al., 2015).

Because of the way Gaussian Processes quantify uncertainty, the
curse of dimensionality is a serious challenge for Gaussian Processes-
based Bayesian Optimization in high dimensions. Since in high di-
mensions data points typically lie mostly on the boundary, and any-
ways far away from each other, the predictive variance tends to be
higher in the regions near the boundary. Thus, the acquisition func-
tion is somewhat biased to choose evaluations near the boundary,
hence, biasing Bayesian Optimization towards solution near the bound-
ary and away from the center, contradicting with the prior assump-
tion. This is the boundary issue(K. ]J. Swersky, 2017).

3.2.3 Contributions

Different from the majority of the Bayesian Optimization methods
that rely on a Euclidean geometry of the search space implicitly or ex-
plicitly(J. S. Bergstra et al., 2011; Hutter et al., 2011; Snoek, Larochelle,
et al., 2012; Snoek, Rippel, et al., 2015; Snoek, K. Swersky, et al.,
2014; K. Swersky, Snoek, et al., 2013; Zi Wang, C. Li, et al., 2017),
the proposed BOCK applies a cylindrical geometric transformation
on it. The effect is that the volume near the center of the search space
is expanded, while the volume near the boundary is shrunk. Com-
pared to (Snoek, K. Swersky, et al., 2014), where warping functions
were introduced with many kernel parameters to be learned, we do
not train transformations. Also, we avoid learning many additional
kernel parameters for better efficiency and scalability. Because of the



transformation, the proposed BOCK solves also the issue of flat op-
timization surfaces of the acquisition function in high dimensional
spaces (Rana et al., 2017). And compared to REMBO (Ziyu Wang,
Hutter, et al., 2016), BOCK does not rely on assumptions of low di-
mensionality of the latent search space.

3.3 METHODS

3.3.1  Prior assumption and search space geometry

The flexibility of a function f on a high-dimensional domain X can
be, and usually is, enormous. To control the flexibility and make the
optimization feasible some reasonable assumptions are required. A
standard assumption in Bayesian Optimization is the prior assump-
tion K. J. Swersky, 2017, according to which the optimum of f(x)
should lie somewhere near the center of the search space X. Since
the search space is set with the prior assumption in mind, it is reason-
able for Bayesian Optimization to spend more evaluation budget in
areas near the center of X.

It is interesting to study the relation of the prior assumption and
the geometry of the search space. The ratio of the volume of two
concentric balls B(¢;R — 6R) and B(c; R), with a radius difference of
OR, is

volume(B(c; R — 8R))
volume(B(c; R))

—o((1—5)), (34)

which rapidly goes to zero with increasing dimensionality D. This
means that the volume of B(c;R) is mostly concentrated near the
boundary, which in combination with Gaussian processes’ behavior
of high predictive variance at points far from data, creates the bound-
ary issue K. J. Swersky, 2017.

It follows, therefore, that with a transformation of the search space
we could avoid excessively biasing our search towards large values of
R.

3.3.2 Cylindrical transformation of search space

The search space geometry has a direct influence on the kernel
K(x,x’) of the Gaussian Process surrogate model, and, therefore, its
predictive variance 02(x), see eq. (3.3). A typical design choice for
Gaussian Processes Gonzdlez et al., 2016; Snoek, Larochelle, et al.,
2012; Snoek, K. Swersky, et al., 2014 are stationary kernels, K(x,x") o
f(x —x’). Unfortunately, stationary kernels are not well equipped to
tackle the boundary issue. Specifically, while stationary kernels com-
pute similarities only in terms of relative locations x —x’, the bound-
ary issue dictates the use of location-aware kernels K(x,x’) to recog-
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nize whether x,x’ lie near the boundary or the center areas of the
search space.

A kernel that can address this should have the following two prop-
erties. First, the kernel must define the similarity between two points
x,x" in terms of their absolute locations, namely the kernel has to be
non-stationary. Second, the kernel must transform the geometry of its
input (i.e., the search space for the Gaussian Process surrogate model)
such that regions near the center and the boundaries are equally rep-
resented. To put it otherwise, we need a geometric transformation of
the search space that expands the region near the center while con-
tracting the regions near the boundary. A transformation with these
desirable properties is the cylindrical one, separating the radius and
angular components of a point x, namely

T(x) = {(IIXIIZ,X/IXIIZ) for [|x[2 # 0
(x) = (3-5)
(o, aa‘rbitrary) for HXHZ =0
T '(r,a)=ra
where agrpitrary is an arbitrarily chosen vector with unit {;-norm 6,

After applying the geometric transformation we arrive at a new
kernel K¢y1(x71,x2), which we will refer to as the cylindrical kernel.
The geodesic similarity measure (kernel) of K. on the transformed
cylinder, T(X), is defined as

Keyt1(x1,x2) = K(T(x1), T(x2)) = Ky (11,712) - Ko (a1, a2) (3:6)

where the final kernel decomposes into a 1-D radius kernel K, mea-
suring the similarity of the radii of r1, 7, and a angle kernel K.

For the angle kernel K4 (a7,a;), we opt for a continuous radial ker-
nel on the (hyper-)sphere Jayasumana et al., 2014,

P
alar,az) Z a1 ay)P cp =0, Vp (3.7)

with trainable kernel parameters of co,:---,cp and P user-defined.
The advantages of a continuous radial kernel is two-fold. First, with
increasing P a continuous radial kernel can approximate any con-
tinuous positive definite kernel on the sphere with arbitrary preci-
sion Jayasumana et al., 2014. Second, the cylindrical kernel has P + 1
parameters, which is independent of the dimensionality of X. This
means that while the continuous radial kernel retains enough flexibil-
ity, only few additional kernel parameters are introduced, which are
independent of the dimensionality of the optimization problem and

Another possible geometric transformation could be from rectangular to spherical
coordinates. Unfortunately, the inverse transformation from spherical to rectangular
coordinate entails multiplication of many trigonometric functions, causing numeri-
cal instabilities because of large products of small numbers.
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Figure 3.2: Similarity to the center point in the transformed geometry.

can, thus, easily scale to more than 50 dimensions. This compares
favorably to Bayesian optimization with ARD kernels that introduce
at least d kernel parameters for a d-dimensional search space.

Although the boundary issue is mitigated by the cylindrical trans-
formation of the search space, the prior assumption (good solutions
are expected near the center) can be promoted. To this end, and to
reinforce the near-center expansion of the cylindrical transformation,
we consider input warping Snoek, K. Swersky, et al., 2014 on the
radius kernel K,(ry,r2). Specifically, we use the cumulative distri-
bution function of the Kumaraswamy distribution, Kuma(rlx, ) =
1—(1—7%)B (with &« > 0, > 0),

Ky (r1,72) =Kpase(Kuma(rile, f), Kuma(rile, $))
=Kpase(T—(1—=1F)P, 1—(1—15)P|a, B)

where the non-negative a, b are learned together with the kernel pa-
rameters. Kpgqse is the base kernel for measuring the radius-based
similarity. Although any kernel is possible for Kyqse, in our imple-
mentations we opt for the Materns2 kernel used in Spearmint Snoek,
Larochelle, et al., 2012. By making radius warping concave and non-
decreasing, K; and, in turn, K., focus more on areas with small
radii.

Overall, the transformation of the search space has two effects. The
first effect is that the volume is redistributed, such that areas near the
center are expanded, while areas near the boundaries are contracted.
Bayesian optimization’s attention in the search space, therefore, is
also redistributed from the boundaries to the center of the search
space. The second effect is that the kernel similarity changes, such
that the predictive variance depends mostly on the angular difference
between the existing data points and the ones to be evaluated. An
example is illustrated in Fig. 3.1, where our dataset comprises of D =
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{x1,x2} and the acquisition function must select between two points,
Xx,a and X, . Whereas in the original Euclidean geometry (Fig. 3.1
to the left) x, q is further away from D, thus having higher predictive
variance, in the cylindrical geometry both x, o and x, 1, are equally
far, thus reducing the artificial preference to near-boundary points.

3.3.3 Balancing center over-expansion

The transformation T maps an annulus A(o;R — 8R,R) of width
OR to the cylinder C(R —08R,R;0,1), where (o,1) is the center and
the radius of the cylinder. For almost any point in the original ball
there is a one-to-one mapping to a point on the cylinder. The only
exception is the extreme case of the ball origin, which is mapped to
the o-width sphere C(0,0;0,1) = {(0,a)l||la]| = 1} on the base of the
cylinder (bright green circle in the Fig. 3.2 to the right). Namely, the
center point Xcenter is overly expanded, corresponding to a set of
points. Because of the one-to-many correspondence between Xcenter
and C(0,0;0,1), an arbitrary point is selected in eq. (3.5).

Unfortunately, the dependency on a point that is both arbitrary and
fixed incurs an arbitrary behavior of K¢y as well. For any point x. €
X\ {o} the kernel K¢y (Xcenter,X«) changes arbitrarily, depending on
the choice of agrbitrary, see Fig. 3.2. Having a fixed arbitrary point,
therefore, is undesirable as it favors points lying closer to it. To this
end, we define agrbitrary as the angular component of a test point x.,
agrbitrary = X« /|| X« ||, thus being not fixed anymore. Geometrically,
this is equivalent to using the point in C(0,0;0, 1) closest to T(x,), see
Fig. 3.2 to the right. This implies that, if the origin is in the dataset,
the Gram matrix needed for computing the predictive density now
depends on the angular location of the test point under consideration.
This is somewhat unconventional but still well behaved (the kernel is
still positive definite and the predictive mean and variance change
smoothly). More details can be found in Appx. A.1.

3-4 EXPERIMENTS

In Bayesian optimization experiments, we need to define (a) how to
train the surrogate model, (b) how to optimize the acquisition func-
tion and (c) how to set the search space. For BOCK we use Gaussian
Process surrogate models, where following (Snoek, Larochelle, et al.,
2012; Snoek, K. Swersky, et al., 2014) we train parameters of BOCK
with MCMC (slice sampling (Murray and Adams, 2010; Neal, 2003))
. For the acquisition function, we use the Adam (Kingma and Ba,
2015) optimizer, instead of L-BFGS-B (Zhu et al., 1997). To begin the
optimization we feed 20 initial points to Adam. To select the 20 initial
points, a sobol sequence (Bratley and B. L. Fox, 1988) of 20,000 points



Table 3.1: Performance on benchmarks of 20 and 200 dimensions

Benchmark Repeated Branin Repeated Hartmann6 Rosenbrock Levy
Dimensions 20 100 20 100 20 100 20 100
Minimum 0.3979 0.3979 -3.3223 -3.3223 0.0000 0.0000 0.0000 0.0000
SMAC 15.954+3.71 20.03+0.85 -1.61+0.12 -1.16+0.19 8579.13+ 5845 8593.09= 18.80 2.35+0.00 9.60+0.04
TPE 7.59+1.20 23.554+0.73 -1.744+0.10 -1.0140.10 8608.36+ 0.00 8608.36+ 0.00 2.3540.00 9.62+0.00
Spearmint 5.07+3.01  2.78+1.06 -2.60+0.42 -2.55+0.19 7970.05+ 1276.62  8608.36+ 0.00 1.88+0.59 4.87+0.35
Spearmint+ 6.83+0.32 - -2.9140.25 - 5909.63+ 2725.76 - 2.35+0.00 -
Additive BO 5.75+0.93 14.0740.84 -3.0340.13 -1.6940.22 3632.254 1642.71  7378.274+ 305.24 2.32+0.02 9.59+0.04
Elastic BO 6.77+4.85 - -2.85+0.57 - 5346.96+ 2494.89 - 1.35+0.34 -
Matern 0.41+0.00  0.54+0.06 -3.29+0.04 -2.91+0.26  230.25+ 187.41 23142+  28.94 0.38+0.13 2.17+0.18
BOCK 0.50+0.12  1.03+0.17 -3.30+0.02 -3.1640.10 4787+  33.94 12869+ 5284 0.54+0.13 6.78+2.16

* Spearmint+ (Snoek, K. Swersky, et al., 2014) and Elastic BO (Rana et al., 2017) are evaluated only on the 20-dimensional cases
because of prohibitive execution times. " Additive BO (Kandasamy, Schneider, et al., 2015) requires a user-specified “maximum
group size” to define the additive structure. In each experiment we tried 5 different values and reported the best result.

is generated on the cube (we used the cube for fair comparison with
others). The acquisition function is evaluated on these points and
the largest 20 points are chosen as the initial ones. Instead of using
a static sobol sequence in the entire course of Bayesian optimization
(Snoek, Larochelle, et al., 2012; Snoek, K. Swersky, et al., 2014), we
generate different sobol sequences for different evaluations, as fixed
grid point impose too strong constraints in high dimensional prob-
lems. In the d-dimensional space, our search space is a ball B(o,/d)
circumscribing a cube [—1, 1] d which is the scaled and translated ver-
sion of the typical search region, unit cube [0, 114, Our search space is
much larger than a cube. By generating sobol sequence on the cube,
the reduction of the boundary issue mostly happens at corners of the
cube [—1,1]4.

3.4.1  Benchmarks

First, we compare different Bayesian Optimization methods and
BOCK on four benchmark functions. Specifically, following (Eggensp-
erger et al., 2013; Laguna and Marti, 2005) we use the repeated Branin,
repeated Hartmanné and Levy to assess Bayesian Optimization in
high dimensions. To test the ability of Bayesian Optimization meth-
ods to optimize functions with more complex structure and stronger
intra-class dependencies, we additionally include the Rosenbrock ben-
chmark, typically used as benchmark for gradient-based optimiza-
tion (Laguna and Marti, 2005). The precise formulas for the four
benchmark functions are added to Appx. A.2. We solve the bench-
mark functions in 20 and 100 dimensions?, using 200 and 600 func-
tion evaluations respectively for all Bayesian Optimization methods.
We compare the proposed BOCK with the following Bayesian Op-
timization methods using publicly available software: SMAC (Hut-
ter et al., 2011), TPE (J. S. Bergstra et al., 2011), Spearmint (Snoek,

7 We also solve the 50-dimensional cases. As conclusions are similar, we report these
results in Appx. A.4.
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Larochelle, et al., 2012), Spearmint+ (Snoek, K. Swersky, et al., 2014),
additive BO (Kandasamy, Schneider, et al., 2015), elastic BO (Rana
et al., 2017). We also report an in-house improved Spearmint imple-
mentation, which we refer to as Matern.8

We focus on four aspects: (1) accuracy, (b) efficiency (wall clock
time) vs accuracy, (c) scalability (number of dimensions) vs efficiency,
and (d) robustness of BOCK to hyperpararameters and other design
choices. We study (a) in all four benchmark functions. For brevity,
we report (b)-(d) on the Rosenbrock benchmark only, the hardest of
the four benchmark functions for all Bayesian Optimization methods
in terms of accuracy, and report results the rest of the benchmark
functions in Appx. A.4.

* <4 Matern
8000 + 4+ AdditiveBO
g 4 Spearmint+
£ 6000 + & TPE
£ + BOCK
o X SMAC
g 4000 + 4 Spearmint
2
a 2000
0 + +
0 1 2 3 4 5

Run time(hours)

Figure 3.3: Accuracy vs wall clock time for 20 dim. Rosenbrock

Hours
100 Matern
—— Spearmint
80 {|— BOCK
60
40
20
0
20 40 60 80 100
Dimension

Figure 3.4: Wall clock time on Rosenbrock of 20, 50 and 100 dim.

Accuracy. We first present the results regarding the accuracy of BOCK
and the Bayesian Optimization baselines in Tab. 3.1. BOCK and
Matern outperform others with large margin in discovering near opti-
mal solutions. For benchmark functions with complicated dependen-

8 Differences with standard Spearmint: (a) a non-ARD, Materns2 kernel for the surro-
gate model, (b) dynamic search grid generation per evaluation, (c) Adam (Kingma
and Ba, 2015) instead of L-BFGS-B (Zhu et al., 1997), (d) more steps for optimizer.



cies between variables, such as the repeated Hartmann6 and Rosen-
brock, BOCK consistently discovers smaller values compared to other
baselines, while not being affected by an increasing number of di-
mensions. What is more, BOCK is on par even with methods that
are designed to exploit the specific geometric structures, if the same
geometric structures can be found in the the evaluated functions. For
instance, the repeated Branin and Levy have an additive structure,
where the same low dimensional structure is repeated. The non-ARD
kernel of Matern can exploit such special, additive structures. BOCK
is able to reach a similar near-optimum solution without being explic-
itly designed to exploit such structures.

We conclude that BOCK is accurate, especially when we have no
knowledge of the geometric landscape of the evaluated functions.
In the remaining of the experiments we focus on the Bayesian Op-
timization methods with competitive performance, namely BOCK,
Spearmint and Matern.

Efficiency vs accuracy. Next, we compare in Fig. 3.3 the accuracy of
the different Bayesian Optimization methods as a function of their
wall clock times for the 20-dimensional case for Rosenbrock. As the
function minimum is f(xopt) = 0, the optimal operating point is at
(0,0). BOCK is the closest to the optimal point. Matern is the second
most accurate, while being considerably slower to run. SMAC (Hutter
et al., 2011) and AdditiveBO (Kandasamy, Schneider, et al., 2015) are
faster than BOCK, however, they are also considerably less accurate.

Scalability. In Fig. 3.4 we evaluate the most accurate Bayesian Opti-
mization methods from Tab. 3.1 (Spearmint, Matern and BOCK.) with
respect to how scalable they are, namely measuring the wall clock
time for an increasing number of dimensions. We test on Rosenbrock
of 20, 50 and 100 dimensions with 200, 400 and 600 function evalu-
ations respectively for all methods. We report mean and standard
error of 5 runs. Compared to Spearmint, BOCK is less affected by
the increasing number of dimensions. Not only the BOCK surrogate
kernel requires fewer parameters, but also the number of surrogate
kernel parameters is independent of the number of input dimensions,
thus making the surrogate model fitting faster. BOCK is also faster
than Matern, although the latter uses a non-ARD kernel that is also
independent of the number of input dimensions. Presumably, this is
due to a better, or smoother, optimization landscape after the cylindri-
cal transformation of geometry of the input space, affecting positively
the search dynamics. We conclude that BOCK is less affected by the
increasing number of dimensions, thus scaling better.

Robustness. To study the robustness of BOCK to design choices, we
compare three BOCK variants. The first is the standard BOCK as
described in Sec. 3.3. The second variant, BOCK-W, removes the in-
put warping on the radius component. The third variant, BOCK+B,
includes an additional boundary treatment to study whether further
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reduction of the predictive variance is beneficial. Specifically, we re-
duce the predictive variance by adding “fake” data. 9 We report the
result in Tab. 3.2.

Table 3.2: Ablation study on BOCK variants

Dimensions 20 50 100

BOCK 47.87+  33.94 29.65+11.56 128.69+ 52.84
BOCK-W 1314.03% 1619.73  51.14%58.18 157.89=+ 161.92
BOCK+B 48.87+ 18.33 33.90£21.69  87.00E£ 36.88

Removing the input warping on the radius is hurting the robust-
ness, as BOCK-W tends to reach slightly worse minima than BOCK.
However, introducing further boundary treatments has a marginal
effect.

Further, we assess the sensitivity of BOCK with respect to the hy-
perparameter P in eq.(3.5). For P = 3,5,7,9, we observe that higher
P tends to give slightly better minima, while increasing the computa-
tional cost.

For clarity of presentation, as well as to maintain the experimental
efficiency, in the rest of the experiments we focus on BOCK with
P =3.

3.4.2 Optimizing a neural network layer

100 dim, W5 : 10 x 10 200 dim, W5 : 20 x 10 500 dim, W, : 50 x 10
i

0.18T%
0.31 0.21 -
0.30 0.20 0.16 %
0.29 . N
0-19 0.14 H

0.28 0.18
027 017 012 =
0.26| — SGD 0.16/. — SGD = — sGb

— -  S— 0.10f T
0.25 Matern . 0158 Matern : Matern

—— Spearmint . —— Spearmint —— Spearmint
0.24) — Bock 0.14f — BOCK 0.08{ — BOCK

0 100 200 300 400 0 200 400 600 0 200 400 600 800

Figure 3.5: Neural network parameter optimization (100, 200, 500) dim.

As BOCK allows for accurate and efficient Bayesian Optimization
for high-dimensional problems, we next perform a stress test, at-
tempting to optimize neural network layers of 100, 200 and 500 di-

Predictive variance depends only on the inputs x, not the evaluations y = f(x).
Thus we can manipulate the predictive variance only with input data. BOCK+B
uses one additional “fake data”, which does not have output value(evaluation),
in its predictive variance. BOCK’s predictive variance 02(x4 | D) becomes
02 (x5 | D U{(R x» /|| %« |,~)}) in BOCK+B on the search space of the ball B(o;R),
where (Rxy /|| x« ||, ~) is the fake data.
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mensions. Specifically, we define a two-layered neural network with

architecture: 784 x W1—’b1> Nhidden X M 10, using ReLU as the
intermediate non-linearity.

In this experiment we are only interested in the optimization abil-
ity of BOCK of the parameters of a neural network, not in its abil-
ity to find solutions that generalize well. Thus, we intentionally fol-
low a procedure that tests if BOCK is able to even overfit to the test
set. Specifically, for all Bayesian optimization experiments W1, by
and b, are optimized with Adam (Kingma and Ba, 2015) and W;
with Bayesian Optimization. The training proceeds as follows. First,
Bayesian Optimization suggests a W, based on evaluations on the test
set. Given this W, we train on the train+validation sets the Wy, b1, b>
with Adam, then repeat. We show results in Fig. 3.5, where we report
mean and standard deviation over 5 runs for all methods. We com-
pare BOCK with the competitive Spearmint and Matern. As baseline,
we train a network with Adam (Kingma and Ba, 2015) on the train-
ing set and report the test loss. To the best of our knowledge we are
the first to apply Gaussian Process-based Bayesian Optimization in
so high-dimensional and complex, representation learning spaces. *.

We observe that BOCK clearly outperforms Spearmint and Matern,
with the gap increasing for higher W, dimensions. What is more sur-
prising, however, is that BOCK is able to match and even outperform
the Adam-based SGD in the 200 and 500-dimensional experiments
for all 5 runs. There are two reasons for this. First, in this experiment,
all Bayesian optimization algorithms directly optimize the test loss.
Second, in its sophistication Adam (Kingma and Ba, 2015) probably
overfits to the training set.

In the end, the final neural network is obviously not optimal in
terms of generalization, as to optimize W, BOCK has access to the
test set. However, even the fact that it is possible to optimize such
high-dimensional and complex (representation learning) functions
with Bayesian Optimization is noteworthy. We conclude that BOCK is
able to optimize complex, multiple-optima functions, such as neural
network layers.

3.4.3 Hyper-optimizing stochastic depth ResNets

As BOCK allows for accurate and efficient Bayesian Optimization,
in our last experiment we turn our attention to a practical hyperpa-
rameter optimization application. Stochastic Depth ResNet (SDRes-
Net) (G. Huang et al., 2016) was shown to obtain better accuracy and
faster training by introducing a stochastic mechanism that randomly
suppresses ResNet blocks (ResBlock) (He et al., 2016a). The stochastic

To our knowledge, running Bayesian Optimization on 200 or 500 dimensional prob-
lems has only been tried with methods assuming low effective dimensionality (B.
Chen et al., 2012; Ziyu Wang, Hutter, et al., 2016)
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Table 3.3: Optimization of the “death rates” of a Stochastic Depth ResNet-

110
Method Test Acc.  Val. Acc.  Exp. Depth
ResNet-110 72.98+0.43 73.03£0.36 110.00
SDResNet-110+Linear 74.9040.15 75.0640.04 82.50

SDResNet-110+BOCK  75.064+0.19 75.214+0.05 74.51+1.22

mechanism for dropping ResBlocks is controlled by a vector p € [0, 1]*
of probabilities for t ResBlocks, called “death rate”. In (G. Huang et
al., 2016) a linearly increasing (from input to output) death rate was
shown to improve accuracies.

Instead of pre-defined death rates, we employ BOCK to find the
optimal death date vector for SDRes-110 on CIFAR100 (Krizhevsky
and Hinton, 2009). We first train an SD-ResNet for 250 epochs and
linear death rates with exactly the same configuration in (G. Huang
et al., 2016) up to 250 epochs. In this experiment BOCK has access
to the training and validation set only. Then, per iteration BOCK
first proposes the next candidate p based on evaluation on the vali-
dation set. Given the candidate p we run 100 epochs of SGD on the
training set and repeat with an annealed learning rate (0.01 for 50
epochs, then 0.001 for 50 more). We initialize the death rate vector to
p = [0.5,0.5,...,0.5]. We report the final accuracies computed in the
unseen test set in Tab. 3.3, using only 50 evaluations.

We observe that BOCK learns a p-value that results in an improved
validation accuracy compared to SDResNet, all the while allowing
for a lower expected depth. The improved validation accuracy ma-
terializes to an only slightly better test accuracy, however. One rea-
son is that optimization is not directly equivalent to learning, as also
explained in Sec. 3.4.2. What is more, it is likely that the accuracy
of SDResNet-110 on CIFAR-100 is maxed out, especially considering
that only 50 evaluations were made. We conclude that BOCK allows
for successful and efficient Bayesian Optimization even for practical,
large-scale learning problems.

3.5 CONCLUSION

We propose BOCK, Bayesian Optimization with Cylindrical Ker-
nels. Many of the problems in Bayesian Optimization relate to the
boundary issue (too much value near the boundary), and the prior
assumption (optimal solution probably near the center). Because of
the boundary issue, not only much of the evaluation budget is un-
evenly spent to the boundaries, but also the prior assumption is vio-



lated. The basic idea behind BOCK is to transform the ball geometry
of the search space with a cylindrical transformation, expanding the
volume near the center while contracting it near the boundaries. As
such, the Bayesian optimization focuses less on the boundaries and
more on the center.

We test BOCK extensively in various settings. On standard bench-
mark functions BOCK is not only more accurate, but also more effi-
cient and scalable compared to state-of-the-art Bayesian Optimization
alternatives. Surprisingly, optimizing a neural network (on the test
set) up to 500 dimensions with BOCK allows for even better (albeit
overfitting) parameters than SGD with Adam Kingma and Ba, 2015.
And hyper-optimizing the “death rate” of stochastic depth ResNet G.
Huang et al., 2016 results in smaller ResNets while maintaining accu-
racy.

We conclude that BOCK allows for accurate, efficient and scalable
Gaussian Process-based Bayesian Optimization. We plan to make the
code public upon acceptance.
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COMBINATORIAL
BAYESIAN OPTIMIZATION
USING THE GRAPH
CARTESIAN PRODUCT

4.1 INTRODUCTION

This chapter focuses on Bayesian Optimization (BO) for objectives
on combinatorial search spaces consisting of ordinal or categorical
variables. Combinatorial BO (Jones et al., 1998) has many applica-
tions, including finding optimal chipset configurations, discovering
the optimal architecture of a deep neural network or the optimiza-
tion of compilers to embed software on hardware optimally. All
these applications, where Combinatorial BO is potentially useful, fea-
ture the following properties. They (i) have black-box objectives for
which gradient-based optimizers (Aaron Wilson et al., 2014) are not
amenable, (ii) have expensive evaluation procedures for which meth-
ods with low sample efficiency such as, evolution (Freitas, 2009) or
genetic (Davis, 1991) algorithms are unsuitable, and (iii) have noisy
evaluations and highly non-linear objectives for which simple and ex-
act solutions are inaccurate (Brochu et al., 2010; Frazier, 2018; Shahri-
ari et al., 2015).

Interestingly, most BO methods in the literature have focused on
continuous (Mockus, 1975) rather than combinatorial search spaces.
One of the reasons is that the most successful BO methods are built on
top of Gaussian Processes (GPs) (Kandasamy, Dasarathy, J. B. Oliva,
et al., 2016; ChangYong Oh et al., 2018; Snoek, Larochelle, et al., 2012).
As GPs rely on the smoothness defined by a kernel to model un-
certainty (Rasmussen, 2003), they are originally proposed for, and
mostly used in, continuous input spaces. In spite of the presence of
kernels proposed on combinatorial structures (Haussler, 1999; R. I
Kondor and Lafferty, 2002; Smola and R. Kondor, 2003), to date the
relation between the smoothness of graph signals and the smoothness
of functions defined on combinatorial structures has been overlooked
and not been exploited for BO on combinatorial structures. A simple
solution is to use continuous kernels and round them up. This round-
ing, however, is not incorporated when computing the covariances at
the next BO iteration (Garrido-Merchan and D. Hernédndez-Lobato,
2020), leading to unwanted artifacts. Furthermore, when considering
combinatorial search spaces the number of possible configurations
quickly explodes: for M categorical variables with k categories the
number of possible combinations scales with O(kM). Applying BO
with GPs on combinatorial spaces is, therefore, not straightforward.
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We propose COMBO, a novel Combinatorial BO designed to tackle
the aforementioned problems of lack of smoothness and computa-
tional complexity on combinatorial structures. To introduce smooth-
ness of a function on combinatorial structures, we propose the com-
binatorial graph. The combinatorial graph comprises sub-graphs —one
per categorical (or ordinal) variable— later combined by the graph
Cartesian product. The combinatorial graph contains as vertices all
possible combinatorial choices. We define then smoothness of func-
tions on combinatorial structures to be the smoothness of graph sig-
nals using the Graph Fourier Transform (GFT) (Ortega et al., 2018).
Specifically, we propose as our GP kernel on the graph a variant
of the diffusion kernel, the automatic relevance determination(ARD)
diffusion kernel, for which computing the GFT is computationally
tractable via a decomposition of the eigensystem. With a GP on a
graph COMBO accounts for arbitrarily high order interactions be-
tween variables. Moreover, using the sparsity-inducing Horseshoe
prior (Carvalho et al., 2009) on the ARD parameters COMBO per-
forms variable selection and scales up to high-dimensional. COMBO
allows for accurate, efficient and large-scale BO on combinatorial
search spaces.

In this work, we make the following contributions. First, we show
how to introduce smoothness on combinatorial search spaces by in-
troducing combinatorial graphs. On top of a combinatorial graph
we define a kernel using the GFT. Second, we present an algorithm
for Combinatorial BO that is computationally scalable to high dimen-
sional problems. Third, we introduce individual scale parameters
for each variable making the diffusion kernel more flexible. When
adopting a sparsity inducing Horseshoe prior (Carvalho et al., 2009,
2010), COMBO performs variable selection which makes it scalable to
high dimensional problems. We validate COMBO extensively on (i)
four numerical benchmarks, as well as two realistic test cases: (ii) the
weighted maximum satisfiability problem (P. Hansen and Jaumard,
1990; Resende et al., 1997), where one must find boolean values that
maximize the combined weights of satisfied clauses, that can be made
true by turning on and off the variables in the formula, (iii) neural ar-
chitecture search (Elsken et al., 2019; Wistuba, Rawat, et al., 2019).
Results show that COMBO consistently outperforms all competitors.

4.2 METHODS

4.2.1  Bayesian optimization with Gaussian processes

Bayesian optimization (BO) aims at finding the global optimum
of a black-box function f over a search space X, namely, Xopt =
f(x). At each round, a surrogate model attempts to ap-
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proximate f(x) based on the evaluations so far, D = {(x;,yi = f(xi))}.
Then an acquisition function suggests the most promising point x4 1
that should be evaluated. The D is appended by the new evaluation,
D = DU({xi+1,Yi+1)}- The process repeats until the evaluation bud-
get is depleted.

The crucial design choice in BO is the surrogate model that models
f(-) in terms of (i) a predictive mean to predict f(-), and (i) a predic-
tive variance to quantify the prediction uncertainty. With a GP sur-
rogate model, we have the predictive mean p(x,|D) = Ky p(Kpp +
021)7 'y and variance 02(x«|D) = Kus — Ky (Kpp + 021) Ko,
where K, = K(xs, %), [Kinl1i = K(xe, xi), Ko = (Kup) T, [Kpplij =
K(xi, x;) and o2 is the noise variance.

4.22 Combinatorial graphs and kernels

In BO on continuous search spaces the most popular surrogate
models rely on GPs (Kandasamy, Dasarathy, J. B. Oliva, et al., 2016;
ChangYong Oh et al., 2018; Snoek, Larochelle, et al., 2012). Their
popularity does not extend to combinatorial spaces, although kernels
on combinatorial structures have also been proposed (Haussler, 1999;
R. I. Kondor and Lafferty, 2002; Smola and R. Kondor, 2003). To
design an effective GP-based BO algorithm on combinatorial struc-
tures, a space of smooth functions —defined by the GP- is needed.
We circumvent this requirement by the notion of the combinatorial
graph defined as a graph, which contains all possible combinatorial
choices as its vertices for a given combinatorial problem. That is, each
vertex corresponds to a different joint assignment of categorical or or-
dinal variables. If two vertices are connected by an edge, then their
respective set of combinatorial choices differ only by a single com-
binatorial choice. As a consequence, we can now revisit the notion
of smoothness on combinatorial structures as smoothness of a graph
signal (Chung, 1997; Ortega et al., 2018) defined on the combinatorial
graph. On a combinatorial graph, the shortest path is closely related
to the Hamming distance.

THE COMBINATORIAL GRAPH  To construct the combinatorial graph,
we first define one sub-graph per combinatorial variable Ci, §(Cy).
For a categorical variable C;, the sub-graph §(C;) is chosen to be a
complete graph while for an ordinal variable we have a path graph.
We aim at building a search space for combinatorial choices, i.e. a
combinatorial graph, by combining sub-graphs G(C;) in such way
that a distance between two adjacent vertices corresponds to a change
of a value of a single combinatorial variable. It turns out that the
graph Cartesian product (Hammack et al., 2011) ensures this prop-
erty. Then, the graph Cartesian product of subgraphs G(C;) = (Vj, &;)
is defined as G = (V,€) = 0; §(Cy), where V = x;V; and (v; =
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(c%”,--~ ,c](\})),vz = (cgz),»-o ,c,(\%))) € € if and only if Jj such that

Vi#£j c?) = C£2) and (cgn,c]m) € &5

As an example, let us consider a simplistic hyperparameter opti-
mization problem for learning a neural network with three combina-
torial variables: (i) the batch size, c; € Cy = {16,32, 64}, (ii) the opti-
mizer c; € C; ={AdaDelta, RMSProp, Adam} and (iii) the learning
rate annealing c3 € C3 = {Constant, Annealing}. The sub-graphs
{G(Ci)}i=1,2,3 for each of the combinatorial variables, as well as the
final combinatorial graph after the graph Cartesian product, are il-
lustrated in Fig. 4.1. For the ordinal batch size variable we have a
path graph, whereas for the categorical optimizer and learning rate
annealing variables we have complete graphs. The final combinato-
rial graph contains all possible combinations for batch size, optimizer
and learning rate annealing.

AdaDelta

6@ Constant
+
i I

320
» O O
+

640 RMSProp Adam Annealing

Figure 4.1: Combinatorial =~ Graph: graph  Cartesian  product

S(C1)OS(C2)O5(C5)

CARTESIAN PRODUCT AND HAMMING DISTANCE The Hamming dis-
tance is a natural choice of distance on categorical variables. With all
complete sub-graphs, the shortest path between two vertices in the
combinatorial graph is exactly equivalent to the Hamming distance
between the respective categorical choices.

Theorem 4.1. Assume a combinatorial graph G = (V, £) constructed from
categorical variables, Cy,...,Cn, that is, G is a graph Cartesian prod-

uct O; §(Cy) of complete sub-graphs {G(Ci)}i. Then the shortest path
(1) (1 (2) (2)

s(v1,v2; ) between verticesvy = (c¢y °,- -, ¢ ), V2 = (¢, , e ) €

V on §G is equal to the Hamming distance between (c%”,-n ,c](\})) and
(2) (2)

(C] V] CN )‘

Proof. See Appx. Thm. B.1 O

When there is a sub-graph which is not complete, the below result
follows from the Thm. 4.1:

Corollary 4.2. If a sub-graph is not a complete graph, then the shortest path
is equal to or bigger than the Hamming distance.

The combinatorial graph using the graph Cartesian product is a nat-
ural search space for combinatorial variables that can encode a widely
used metric on combinatorial variables like Hamming distance.



KERNELS ON COMBINATORIAL GRAPHS. In order to define the GP
surrogate model for a combinatorial problem, we need to specify a
a proper kernel on a combinatorial graph § = (V,€). The role of
the surrogate model is to smoothly interpolate and extrapolate neigh-
boring data. To define a smooth function on a graph, i.e. a smooth
graph signal f : V — R, we adopt Graph Fourier Transforms (GFT)
from graph signal processing (Ortega et al., 2018). Similar to Fourier
analysis on Euclidean spaces, GFT can represent any graph signal as
a linear combination of graph Fourier bases. Suppressing the high
frequency modes of the eigendecomposition approximates the signal
with a smooth function on the graph. We adopt the diffusion kernel
which penalizes basis-functions in accordance with the magnitude of
the frequency (R. I. Kondor and Lafferty, 2002; Smola and R. Kondor,
2003).

To compute the diffusion kernel on the combinatorial graph G, we
need the eigensystem of graph Laplacian L(§) = Dg — Ag, where Ag
is the adjacency matrix and Dyg is the degree matrix of the graph G.
The eigenvalues {A1,A2,- -, Ay} and eigenvectors {uy, Uz, -+, Uy}
of the graph Laplacian L(G) are the graph Fourier frequencies and
bases, respectively. Eigenvectors paired with large eigenvalues cor-
respond to high-frequency Fourier bases. The diffusion kernel is de-

fined as
n

k(pl [qlIB) =)

¢ Prug(phusllal), (4.1)
from which it is clear that higher frequencies, A; > 1, are penal-
ized more. In a matrix form, with A = diag(Ay,---,Ajy|) and U =

[ug,---,uy ], the kernel takes the following form:
K(V,V) =Uexp(—BA)UT, (4.2)

which is the Gram matrix on all vertices whose submatrix is the Gram
matrix for a subset of vertices.

4.2.3 Scalable combinatorial Bayesian optimization with the graph
Cartesian product

The direct computation of the diffusion kernel is infeasible because
it involves the eigendecomposition of the Laplacian L(§), an oper-
ation with cubic complexity with respect to the number of vertices
['V|. As we rely on the graph Cartesian product [; §; to construct
our combinatorial graph, we can take advantage of its properties and
dramatically increase the efficiency of the eigendecomposition of the
Laplacian L(§). Further, due to the construction of the combinatorial
graph, we can propose a variant of the diffusion kernel: automatic
relevance determination (ARD) diffusion kernel. The ARD diffusion
kernel has more flexibility in its modeling capacity. Moreover, in com-
bination with the sparsity-inducing Horseshoe prior (Carvalho et al.,
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2009) the ARD diffusion kernel performs variable selection automati-
cally that allows to scale to high dimensional problems.

SPEEDING UP THE EIGENDECOMPOSITION WITH GRAPH CARTESIAN
PrRoDUCTS. Direct computation of the eigensystem of the Laplacian
L(S) naively is infeasible, even for problems of moderate size. For
instance, for 15 binary variables, eigendecomposition complexity is
O(IVP) = (2'%)°.

The graph Cartesian product allows to improve the scalability of
the eigendecomposition. The Laplacian of the Cartesian product of
two sub-graphs §; and 9, §109,, can be algebraically expressed
using the Kronecker product @ and the Kronecker sum & (Hammack
etal., 2011):

L(9189) =L(G1)eLG2) =LG1eLH +1L ®L(S2), (4-3)

where I denotes the identity matrix. Considering the eigensystems
{(7\0 ),ug] ) )} and {(A§2),u§2))} of §1 and G, respectively, the eigensys-

1

tem of G119, is {(7\5” + ?\ng),uin ®uj(2))}. Given Eq. (4.3) and matrix
exponentiation, for the diffusion kernel of m categorical (or ordinal)
variables we have

K=exp(—B @11 L(Gi)) = ®Z1 exp (— B L(G1)). (4-4)

This means we can compute the kernel matrix by calculating the Kro-
necker product per sub-graph kernel. Specifically, we obtain the ker-
nel for the i-th sub-graph from the eigendecomposition of its Lapla-
cian as per eq. (4.2).

Importantly, the decomposition of the final kernel into the Kro-
necker product of individual kernels in Eq. (4.4) leads to the following
proposition.

Proposition 4.3. Assume a graph G = (V, €) is the graph cartesian product
of sub-graphs G = Ui, Gi. The graph Fourier Transform of G can be com-
puted in O(Y_" [Vi|3) while the direct computation takes O ([T, [Vi[3).

Proof. See Appx. Prop. B.2. O

VARIABLE-WISE EDGE SCALING. We can make the kernel more flexi-
ble by considering individual scaling factors {3}, a single 3; for each
variable. The diffusion kernel then becomes:

K:exp(@l] —Bi L(S1)) :®Z] exp (—Bi L(G1)), (4.5)

where 3; > 0 for i =1,...,m. Since the diffusion kernel is a discrete
version of the exponential kernel, the application of the individual
i for each variable is equivalent to the ARD kernel (MacKay, 1994;
Neal, 1995). Hence, we can perform variable (sub-graph) selection
automatically. We refer to this kernel as the ARD diffusion kernel.



Algorithm 3 COMBO: Combinatorial Bayesian Optimization on the
combinatorial graph

1: Input: N combinatorial variables {Ci}i—1,... N
2: Set a search space and compute Fourier frequencies and bases: #
See Subsec. 4.2.2
3: > Set sub-graphs §(C;) for each variables C;.
4 > Compute eigensystem {()\S),ug) )}i,x for each sub-graph §(Cy)
5: > Construct the combinatorial graph § = (V, £) = 0; §(C;) using
graph Cartesian product.
6: Initialize D.
7: repeat
8:  Fit GP using ARD diffusion kernel to D with slice sampling :
w(v« D), O-Z(V*‘ D)
9:  Maximize acquisition function :
Vnext = argmax,, oy a(p(v«| D), 0% (v.| D))
10:  Evaluate f(vnext), append to D = D U{(Viext, f(Vnext))}
11: until stopping criterion

PRIOR ON (;. To determine (3;, and to prevent GP with ARD ker-
nel from overfitting, we apply posterior sampling with a Horseshoe
prior (Carvalho et al., 2009) on the {3;}. The Horseshoe prior encour-
ages sparsity, and, thus, enables variable selection, which, in turn,
makes COMBO statistically scalable to high dimensional problems.
For instance, if ; is set to zero, then L(G;) does not contribute in

Eq (4.5).

4.2.4 COMBO algorithm

We present the COMBO approach in Algorithm 3. More details
about COMBO could be found in the Appx. B.2.

We start the algorithm with defining all sub-graphs. Then, we cal-
culate GFT (line 4 of Alg. 3), whose result is needed to compute the
ARD diffusion kernel, which could be sped up due to the application
of the graph Cartesian product. Next, we fit the surrogate model
parameters using slice sampling (Murray and Adams, 2010; Neal,
2003) (line 8). Sampling begins with 100 steps of the burn-in phase.
With the updated D of evaluated data, 10 points are sampled without
thinning. More details on the surrogate model fitting are given in
Appx. B.2.

Last, we maximize the acquisition function to find the next point for
evaluation (line 9). For this purpose, we begin with evaluating 20,000
randomly selected vertices. Twenty vertices with highest acquisition
values are used as initial points for acquisition function optimization.
We use the breadth-first local search (BFLS), where at a given vertex
we compare acquisition values on adjacent vertices. We then move
to the vertex with the highest acquisition value and repeat until no
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acquisition value on adjacent vertices are higher than the acquisition
value at the current vertex. BFLS is a local search, however, the initial
random search and multi-starts help to escape from local minima.
In experiments (Appx. B.2) we found that BFLS performs on par or
better than non-local search, while being more efficient.

In our framework we can use any acquisition function like GP-UBC,
the Expected Improvement (EI) (Jones et al., 1998), the predictive en-
tropy search (J. M. Herndndez-Lobato, M. W. Hoffman, et al., 2014)
or knowledge gradient (Wu, Poloczek, et al., 2017). We opt for EI that
generally works well in practice (Shahriari et al., 2015).

4.3 RELATED WORKS

While for continuous inputs, X C RP, there exist efficient algo-
rithms to cope with high-dimensional search spaces using Gaussian
processes(GPs) (ChangYong Oh et al., 2018) or neural networks (Snoek,
Rippel, et al., 2015), few Bayesian Optimization(BO) algorithms have
been proposed for combinatorial search spaces (Baptista and Poloczek,
2018; J. Bergstra, Yamins, et al., 2013; Hutter et al., 2011).

A basic BO approach to combinatorial inputs is to represent all com-
binatorial variables using one-hot encoding and treating all integer-
valued variables as values on a real line. Further, for the integer-
valued variables an acquisition function considers the closest integer
for the chosen real value. This approach is used in Spearmint (Snoek,
Larochelle, et al., 2012). However, applying this method naively may
result in severe problems, namely, the acquisition function could re-
peatedly evaluate the same points due to rounding real values to an
integer and the one-hot representation of categorical variables. As
pointed out in (Garrido-Merchan and D. Herndndez-Lobato, 2020),
this issue could be fixed by making the objective constant over regions
of input variables for which the actual objective has to be evaluated.
The method was presented on a synthetic problem with two integer-
valued variables, and a problem with one categorical variable and one
integer-valued variable. Unfortunately, it remains unclear whether
this approach is suitable for high-dimensional problems. Addition-
ally, the proposed transformation of the covariance function seems to
be better suited for ordinal-valued variables rather than categorical
variables, further restricting the utility of this approach. In contrast,
we propose a method that can deal with high-dimensional combina-
torial (categorical and/or ordinal) spaces.

Another approach to combinatorial optimization was proposed in
BOCS (Baptista and Poloczek, 2018) where the sparse Bayesian linear
regression was used instead of GPs. The acquisition function was op-
timized by a semi-definite programming or simulated annealing that
allowed to speed up the procedure of picking new points for next
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evaluations. However, BOCS has certain limitations which restrict its
application mostly to problems with low order interactions between
variables. BOCS requires users to specify the highest order of inter-
actions among categorical variables, which inevitably ignores interac-
tion terms of orders higher than the user-specified order. Moreover,
due to its parametric nature, the surrogate model of BOCS has ex-
cessively large number of parameters even for moderately high order
(e.g. up to the 4th or 5th order). Nevertheless, this approach achieved
state-of-the-art results on four high-dimensional binary optimization
problems. Different from (Baptista and Poloczek, 2018), we use a non-
parametric regression, i.e. GPs and perform variable selection both
of which give more statistical efficiency.

4.4 EXPERIMENTS

We evaluate COMBO on two binary variable benchmarks, one or-
dinal and one multi-categorical variable benchmarks, as well as in
two realistic problems: weighted Maximum Satisfiability and Neural
Architecture Search. We convert all into minimization problems. We
compare SMAC (Hutter et al., 2011), TPE (J. Bergstra, Yamins, et al.,
2013), Simulated Annealing (SA) (Spears, 1993), as well as with BOCS
(BOCS-SDP and BOCS-SA3)"* (Baptista and Poloczek, 2018). All de-
tails regarding experiments, baselines and results are in Appx. B.2
and B.j.

4.4.1  BO with binary variables

Table 4.1: Results on the binary benchmarks (25 runs)

Contamination control Ising sparsification
Method A=0 A=10"1 A=10"72 A=0 A=10" A=10"7
SMAC 21.61+0.04 21.5040.03 21.68£0.04 | 0.15240.040 0.219+0.052 0.35010.045
TPE 21.6440.04 21.69£0.04 21.8440.04 | 0.404£0.109 0.444£0.095 0.609+0.107
SA 21.4740.04 21.49+0.04 21.61£0.04 | 0.09510.033 0.11740.035 0.33440.064

BOCS-SDP | 21.374+0.03 21.384+0.03 21.52+0.03 | 0.105£0.031 0.059+0.013 0.300%0.039

COMBO ‘21.2810.03 21.2840.03  21.4410.03 ‘ 0.103+0.035 0.08140.028 0.317+0.042

CONTAMINATION coNTROL The contamination control in food sup-
ply chain is a binary optimization problem with 21 binary variables
(=~ 2.10 x 10° configurations) (Hu et al., 2010), where one can inter-
vene at each stage of the supply chain to quarantine uncontaminated
food with a cost. The goal is to minimize food contamination while
minimizing the prevention cost. We set the budget to 270 evaluations

We exclude BOCS from ordinal/multi-categorical experiments, because at the time
of the submission of this chapter to NeurIPS 2019, the open source implementation
provided by the authors did not support ordinal/multi-categorical variables. For
the explanation on how to use BOCS for ordinal /multi-categorical variables, please
refer to the supplementary material of (Baptista and Poloczek, 2018).

45



46

including 20 random initial points. We report results in Tab. 4.1 and
figures in Appx. B.4. COMBO outperforms all competing methods.
Although the optimizing variables are binary, there exist higher or-
der interactions among the variables due to the sequential nature of
the problem, showcasing the importance of the modelling flexibility
of COMBO.

ISING SPARSIFICATION A probability mass function(p.m.f) p(x) can
be defined by an Ising model I,,. In Ising sparsification, we approx-
imate the p.m.f p(z) of I, with a p.m.f q(z) of I5. The objective is
the KL-divergence between p and q with a A-parameterized regular-
izer: £(x) = Dxr(pllq) +Al|x||1. We consider 24 binary variable Ising
models on 4 x 4 spin grid (=~ 1.68 x 107 configurations) with a budget
of 170 evaluations, including 20 random initial points. We report re-
sults in Tab. 4.1 and figures in Appx. B.4.1. We observe that COMBO
is competitive, obtaining slightly worse results, probably because in
Ising sparsification there exist no complex interactions between vari-
ables.

4.4.2 BO with ordinal and multi-categorical variables

ORDINAL VARIABLES  The Branin benchmark is an optimization prob-
lem of a non-linear function over a 2D search space (Jones et al., 1998).
We discretize the search space, namely, we consider a grid of points
that leads to an optimization problem with ordinal variables. We
set the budget to 100 evaluations and report results in Appx. B.4.2.
COMBO converges to a better solution faster and with better stabil-

ity.

MULTI-CATEGORICAL VARIABLES The Pest control is a modified ver-
sion of the contamination control with more complex, higher-order
variable interactions, as detailed in Appx. B.4.2. We consider 21 pest
control stations, each having 5 choices (= 4.77 x 10'* combinatorial
choices). We set the budget to 320 including 20 random initial points.
Results are in in the Appx. B.4.2 COMBO outperforms all methods
and converges faster.

Table 4.2: Results on the non-binary benchmarks (25 runs)

Method Branin (Ordinal) Pest Control (Multi-categorical)

SMAC 0.6962+0.0705 14.26141+0.0753
TPE 0.7578+0.0844 14.9776+0.0446
SA 0.4659+0.0211 12.7154+0.0918
COMBO 0.4113+0.0012 12.001240.0033

" We exclude BOCS, as the open source implementation provided by the authors
does not support ordinal/ multi-categorical variables.
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4.4.3 Weighted maximum satisfiability

The satisfiability (SAT) problem is an important combinatorial op-
timization problem, where one decides how to set variables of a
Boolean formula to make the formula true. Many other optimiza-
tion problems can be reformulated as SAT/MaxSAT problems. Al-
though highly successful, specialized MaxSAT solvers (Bacchus et al.,
2018) exist, we use MaxSAT as a testbed for BO evaluation. We run
tests on three benchmarks from the Maximum Satisfiability Compe-
tition 2018."> The wMaxSAT weights are unit normalized. All eval-
uations are negated to obtain a minimization problem. We set the
budget to 270 evaluations including 20 random initial points. We
report results in Tab. 4.3 (Mean + Std.Err. over 25 runs) and fig-
ures in Appx. B.4.3, and runtimes on wMaxSAT43 in Fig. 4.2 on
wMaxSAT28 (Appx. Fig. B.12)"3

Table 4.3: Negated wMaxSAT Minimum (25 runs)

Method wMaxSAT28 wMaxSAT43 wMaxSAT60
SMAC -20.05+0.67 -57.42+1.76 -148.60+1.01
TPE -25.20£0.88 -52.39+1.99 -137.214+2.83
SA -31.8141.19 -75.761+2.30 -187.55+1.50
BOCS-SDP -29.4940.53 -51.131+1.69 -153.67+2.01
BOCS-SA3 -34.79+0.78 -61.0242.28¢ N.AP

COMBO -37.80+0.27 -85.02+2.14 -195.65+0.00

@ 270 evaluations were not finished after 168 hours.
PNot tried due to the computation time longer than
wMaxSAT43.

COMBO performs best in all cases. BOCS benefits from third-order
interactions on wMaxSAT28 and wMaxSAT43. However, this comes
at the cost of large number of parameters (Baptista and Poloczek,
2018), incurring expensive computations. When considering higher-
order terms BOCS suffers severely from inefficient training. This
is due to a bad ratio between the number of parameters and num-
ber of training samples (e.g. for the 43 binary variables case BOCS-
SA3/SA4/SAs with, respectively, 3rd/4th/5th order interactions, has
13288/136698/1099296 parameters to train). In contrast, COMBO
models arbitrarily high order interactions thanks to GP’s nonpara-
metric nature in a statistically efficient way.

Focusing on the largest problem, wMaxSAT60 with ~ 1.15 x 108
configurations, COMBO maintains superior performance. We attribute
this to the sparsity-inducing properties of the Horseshoe prior, after

12 https://maxsat-evaluations.github.io /2018 /benchmarks.html
13 The all runtimes were measured on Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
with python codes.
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Figure 4.2: Runtime vs Minimum on wMaxSAT43

examining non sparsity-inducing priors (Fig. B.11). The Horseshoe
prior helps COMBO attain further statistical efficiency. We can inter-
pret this reductionist behavior as the combinatorial version of meth-
ods exploiting low-effective dimensionality (J. Bergstra and Bengio,
2012) on continuous search spaces (Ziyu Wang, Hutter, et al., 2016).

The runtime - including evaluation time — was measured on a dual
8-core 2.4 GHz (Intel Haswell E5-2630-v3) CPU with 64 GB mem-
ory using Python implementations. SA, SMAC and TPE are faster
but inaccurate compared to BOCS. COMBO is faster than BOCS-SA3,
which needed 168 hours to collect around 200 evaluations. COMBO
— modelling arbitrarily high-order interactions — is also faster than
BOCS-SDP constrained up-to second-order interactions only.

We conclude that in the realistic maximum satisfiablity problem
COMBO yields accurate solutions in reasonable runtimes, easily scal-
ing up to high dimensional combinatorial search problems.

4.4.4 Neural architecture search

— RS —— BOCS-SDP
— RE —— COMBO

Minimum

50 100 150 200 250
Number of Evaluations

Figure 4.3: Neural Architecture Search (4 runs)
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Last, we compare BO methods on a neural architecture search (NAS)
problem, a typical combinatorial optimization problem (Wistuba, Rawat,
et al., 2019). We compare COMBO with BOCS, as well as Regularized
Evolution (RE) (Real et al., 2019), one of the most successful evolution-
ary search algorithm for NAS (Wistuba, Rawat, et al., 2019). We in-
clude Random Search (RS) which can be competitive in well-designed
search spaces (Wistuba, Rawat, et al., 2019). We do not compare with
the BO-based NASBOT (Kandasamy, Neiswanger, et al., 2018). NAS-
BOT focuses exclusively on NAS problems and optimizes over a dif-
ferent search space than ours using an optimal transport-based metric
between architectures, which is out of the scope for this work.

Table 4.4: Neural Architecture search space
Connectivity

(O - connected, X - disconnected)
| IN Hx Hz H3 Hgy Hs OUT

X O X
X O X X

Hg - - - -
Hs - - - - -
ouT - - - - -

Computation type
‘ MaxPool ‘ Conv

OO0 X X0
X O X X0OX

Small | Id = MaxPool(1x1) | Conv(3x3)

Large ‘ MaxPool(3x3) ‘ Conv(5x5)

For the considered NAS problem we aim at finding the optimal cell
comprising of one input node (IN), one output node (OUT) and five
possible hidden nodes (H1-Hs). We allow connections from IN to all
other nodes, from Hz1 to all other nodes and so one. We exclude con-
nections that could cause loops. An example of connections within a
cell can be found in Tab. 4.4 on the left, where the input state IN con-
nects to H1, H1 connects to H3 and OUT, and so on. The input state
and output state have identity computation types, whereas the com-
putation types for the hidden states are determined by combination
of 2 binary choices from the table on the right of Tab. 4.4. In total, the
search space consists of 31 binary variables, 21 for the connectivities
and 2 for 5 computation types.

The objective is to minimize the classification error on validation
set of CIFAR10 (Krizhevsky and Hinton, 2009) with a penalty on the
amount of FLOPs of a neural network constructed with a given cell.
We search for an architecture that balances accuracy and computa-
tional efficiency. In each evaluation, we construct a cell, and stack
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three cells to build a final neural network. More details are given in
the Appx. B.3.

In Fig. 4.3 we can notice that COMBO outperforms other methods
significantly. BOCS-SDP and RS exhibit similar performance, con-
firming that for NAS modeling high-order interactions between vari-
ables is crucial. Furthermore, COMBO outperforms the specialized
RE, one of the most successful evolutionary search (ES) algorithms
shown to perform better on NAS than reinforcement learning (RL)
algorithms (Real et al., 2019; Wistuba, Rawat, et al., 2019). When in-
creasing the number of evaluations to 500, RE still cannot reach the
performance of COMBO with 260 evaluations, see Appx. Fig. B.15.
A possible explanation for such behavior is the high sensitivity to
choices of hyperparameters of RE, and ES requires far more evalua-
tions in general. Details about RE hyperparameters can be found in
the Appx. B.4.4.

Due to the difficulty of using BO on combinatoral structures, BOs
have not been widely used for NAS with few exceptions (Kandasamy,
Neiswanger, et al., 2018). COMBO’s performance suggests that a well-
designed general combinatorial BO can be competitive or even better
in NAS than ES and RL, especially when computational resources are
constrained. Since COMBO is applicable to any set of combinatorial
variables, its use in NAS is not restricted to the typical NASNet search
space. Interestingly, COMBO can approximately optimize continuous
variables by discretization, as shown in the ordinal variable experi-
ment, thus, jointly optimizing the architecture and hyperparameter
learning.

4.5 CONCLUSION

In this work, we propose COMBO, a Bayesian Optimization method
for combinatorial search spaces. To the best of our knowledge, COMB-
O is the first Bayesian Optimization algorithm using Gaussian Pro-
cesses as a surrogate model suitable for problems with complex high
order interactions between variables. To efficiently tackle the expo-
nentially increasing complexity of combinatorial search spaces, we
rest upon the following ideas: (i) we represent the search space as the
combinatorial graph, which combines sub-graphs given to all combi-
natorial variables using the graph Cartesian product. Moreover, the
combinatorial graph reflects a natural metric on categorical choices
(Hamming distance) when all combinatorial variables are categorical.
(ii) we adopt the GFT to define the “smoothness” of functions on
combinatorial structures. (iii) we propose a flexible ARD diffusion
kernel for GPs on the combinatorial graph with a Horseshoe prior
on scale parameters, which makes COMBO scale up to high dimen-
sional problems by performing variable selection. All above features
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together make that COMBO outperforms competitors consistently on
a wide range of problems. COMBO is a statistically and computa-
tionally scalable Bayesian Optimization tool for combinatorial spaces,
which is a field that has not been extensively explored.






MIXED VARIABLE
BAYESIAN OPTIMIZATION
WITH FREQUENCY
MODULATED KERNELS

5.1 INTRODUCTION

Bayesian optimization has found many applications ranging from
daily routine level tasks of finding a tasty cookie recipe (Solnik et al.,
2017) to sophisticated hyperparameter optimization tasks of machine
learning algorithms (e.g. Alpha-Go (Y. Chen, A. Huang, et al., 2018)).
Much of this success is attributed to the flexibility and the quality of
uncertainty quantification of Gaussian Process (GP)-based surrogate
models (ChangYong Oh et al., 2018; Snoek, Larochelle, et al., 2012; K.
Swersky, Snoek, et al., 2013).

Despite the superiority of GP surrogate models, as compared to
non-GP ones, their use on spaces with discrete structures (e.g., chem-
ical spaces (Reymond and Awale, 2012), graphs and even mixtures
of different types of spaces) is still application-specific (Kandasamy,
Neiswanger, et al., 2018; Korovina et al., 2020). The main reason is the
difficulty of defining kernels flexible enough to model dependencies
across different types of variables. On mixed variable spaces which
consist of different types of variables including continuous, ordinal
and nominal variables, current BO approaches resort to non-GP sur-
rogate models, such as simple linear models or linear models with
manually chosen basis functions (Daxberger et al., 2021). However,
such linear approaches are limited because they may lack the neces-
sary model capacity.

There is much progress on BO using GP surrogate models (GP BO)
for continuous, as well as for discrete variables. However, for mixed
variables it is not straightforward how to define kernels ,which can
model dependencies across different types of variables. To bridge the
gap, we propose frequency modulation which uses distances on con-
tinuous variables to modulate the frequencies of the graph spectrum
(Ortega et al., 2018) where the graph represents the discrete part of
the search space (Changyong Oh, Tomczak, et al., 2019).

A potential problem in the frequency modulation is that it does
not always define a kernel with the similarity measure behavior (Vert
et al., 2004). That is, the frequency modulation does not necessarily
define a kernel that returns higher values for pairs of more similar
points. Formally, for a stationary kernel k(x,y) = s(x —y), s should
be decreasing (Remes et al., 2017). In order to guarantee the similar-
ity measure behavior of kernels constructed by frequency modulation,
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we stipulate a condition, the frequency modulation principle. Theoreti-
cal analysis results in proofs of the positive definiteness as well as
the effect of the frequency modulation principle. We coin frequency
modulated (FM) kernels as the kernels constructed by frequency mod-
ulation and respecting the frequency modulation principle.

Different to methods that construct kernels on mixed variables by
kernel addition and kernel multiplication, for example, FM kernels
do not impose an independence assumption among different types
of variables. In FM kernels, quantities in the two domains, that is
the distances in a spatial domain and the frequencies in a Fourier do-
main, interact. Therefore, the restrictive independence assumption is
circumvented, and thus flexible modeling of mixed variable functions
is enabled.

In this chapter, (i) we propose frequency modulation, a new way
to construct kernels on mixed variables, (ii) we provide the condition
to guarantee the similarity measure behavior of FM kernels together
with a theoretical analysis, and (iii) we extend frequency modula-
tion so that it can model complex dependencies between arbitrary
types of variables. In experiments, we validate the benefit of the in-
creased modeling capacity of FM kernels and the importance of the
frequency modulation principle for improved sample efficiency on
different mixed variable BO tasks. We also test BO with GP using
FM kernels (BO-FM) on a challenging joint optimization of the neu-
ral architecture and the hyperparameters with two strong baselines,
Regularized Evolution (RE) (Real et al., 2019) and BOHB (Falkner
et al., 2018). BO-FM outperforms both baselines which have proven
their competence in neural architecture search (X. Dong, L. Liu, et al.,
2021). Remarkably, BO-FM outperforms RE with three times evalua-
tions.

5.2 PRELIMINARIES

5.2.1  Bayesian Optimization with Gaussian Processes

Bayesian optimization (BO) aims at finding the global optimum of
a black-box function g over a search space X. At each round BO per-
forms an evaluation y; on a new point x; € X, collecting the set of
evaluations D¢ = {(xi,Yi)}i=1,.. + at the t-th round. Then, a surro-
gate model approximates the function g given D¢ using the predic-
tive mean p(x, | D) and the predictive variance 02(x, | D¢). Now, an
acquisition function r(x.) = r(p(x« D), o2(x, | Dy)) quantifies how
informative input x € X is for the purpose of finding the global opti-
mum. g is then evaluated at x¢ 1 = argmax, - 7(x), Yt+1 = g(xe41)-
With the updated set of evaluations, D¢y1 = D¢ U{(X¢+1,Yt+1)}, the
process is repeated.
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A crucial component in BO is thus the surrogate model. Specifically,
the quality of the predictive distribution of the surrogate model is
critical for balancing the exploration-exploitation trade-off (Shahriari
etal., 2015). Compared with other surrogate models (such as Random
Forest (Hutter et al., 2011) and a tree-structured density estimator (J. S.
Bergstra et al., 2011)), Gaussian Processes (GPs) tend to yield better
results (ChangYong Oh et al., 2018; Snoek, Larochelle, et al., 2012).

For a given kernel k and data D = (X,y) where X = [xq,--- xnl T
and y = [yi,--- ,ynlT, a GP has a predictive mean p(x.|X,y) =
Kix (kxx + 021) ! y and predictive variance o (x, X, y) = Kux — Kux -
(kxx + 021) " Tkxs where ki = k(xi, %), [kixd1i = k(xi, Xi), kxs =
(kax) " and [oodij = kixi, xj).

5.2.2 Kernels on discrete variables

We first review some kernel terminology (Scholkopf and Smola,
2001) that is needed in the rest of the chapter.

Definition 5.1 (Gram Matrix). Given a function k : X x X — R and
dataxj, - ,xn € X, the n x n matrix K with elements [K];; = k(xi, ;)
is called the Gram matrix of k with respect to x1,-- -, Xn.

Definition 5.2 (Positive Definite Matrix). A real n x n matrix K satisfy-
ing Zi’j ai[Kljja; = 0 for all a; € R is called positive definite (PD)".

Definition 5.3 (Positive Definite Kernel). A function k : X x X — R
which gives rise to a positive definite Gram matrix for all n € IN and
all x7,--+,xn € X is called a positive definite (PD) kernel, or simply
a kernel.

A search space which consists of discrete variables, including both
nominal and ordinal variables, can be represented as a graph (R. L
Kondor and Lafferty, 2002; Changyong Oh, Tomczak, et al., 2019).
In this graph each vertex represents one state of exponentially many
joint states of the discrete variables. The edges represent relations be-
tween these states (e.g. if they are similar) (Changyong Oh, Tomczak,
et al., 2019). With a graph representing a search space of discrete vari-
ables, kernels on a graph can be used for BO. In (Smola and R. Kon-
dor, 2003), for a positive decreasing function f and a graph § = (V, €)
whose graph Laplacian L(G)*> has the eigendecomposition UAUT, it
is shown that a kernel can be defined as

Kaise(v,v'|B) = [UF(AIB)UTT, (5.1)

Sometimes, different terms are used, semi-positive definite for Zi,j ai[Klyja; > 0
and positive definite for Zi,j ai[Kljja; > 0. Here, we stick to the definition
in (Scholkopf and Smola, 2001).

In this chapter, we use a (unnormalized) graph Laplacian L(§) = D — A while, in
(Smola and R. Kondor, 2003), symmetric normalized graph Laplacian, LSY™(G) =
D V2D—-AD V2 (A: adj. mat. / D : deg. mat.) Kernels are defined for both.
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where 3 > 0 is a kernel parameter and f is a positive decreasing
function. It is the reciprocal of a regularization operator (Smola and
R. Kondor, 2003) which penalizes high frequency components in the
spectrum.

5.3 METHODS

With the goal of obtaining flexible kernels on mixed variables which
can model complex dependencies across different types of variables,
we propose the frequency modulated (FM) kernel. Our objective
is to enhance the modelling capacity of GP surrogate models and,
thereby improve the sample efficiency of mixed-variable BO. FM ker-
nels use the continuous variables to modulate the frequencies of the
kernel of discrete variables defined on the graph. As a consequence,
FM kernels can model complex dependencies between continuous
and discrete variables. Specifically, let us start with continuous vari-
ables of dimension De, and discrete variables represented by the
graph § = (V, &) whose graph Laplacian L(§) has eigendecompos-
tion UAUT. To define a frequency modulated kernel we consider the
function k : (RP¢ x V) x (RP¢ x V) = R of the following form

|V
K((e,), (¢, v)1B,0) = 3 Ul if A, e—c [lolB) Wi (5.2)
i=1
where [[c—c |3 = ?;(cd —c})?/63 and (0, B) are tunable pa-
rameters. f is the frequency modulating function defined below in
Def. 5.4.

The function f in Eq. (5.2) takes frequency A; and distance || c—c’ [|3
as arguments, and its output is combined with the basis [U], ;. That
is, the function f processes the information in each eigencomponent
separately while Eq. (5.2) then sums up the information processed by
f. Note that unlike kernel addition and kernel product,lé, the distance
| ¢ —c’ |3 influences each eigencomponent separately as illustrated in
Fig. 5.1. Unfortunately, Eq. (5.2) with an arbitrary function f does not
always define a positive definite kernel. Moreover, Eq. (5.2) with an
arbitrary function f may return higher kernel values for less similar
points, which is not expected from a proper similarity measure (Vert
et al., 2004). To this end, we first specify three properties of functions
f such that Eq. (5.2) guaranteed to be a positive definite kernel and
a proper similarity measure at the same time. Then, we motivate the
necessity of each of the properties in the following subsections.

e.g kaaallev), (¢, v)) = e le=<ls £ kgise(v,v) and kproallev), (¢,v) =
elle=clia “Kaisc (v, V)
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<Frequency Modulation>

llc—c'llg

A1, [U].4 ['12' [U];,z] [A|V|:TU]:,|V|]
-2

k((c,v), (c',v")
<Kernel product / Kernel addition>
le—c'llg [11. (U] ] "'['1|V|: [U]:,|V|]
x/
|k((c,v), (', v") |

Figure 5.1: Influence on eigencomponents

Definition 5.4 (Frequency modulating function). A frequency mod-
ulating function is a function f : R x R — R satisfying the three
properties below.

FM-P1 For a fixed t € R, f(s, t) is a positive and decreasing func-
tion with respect to s on [0, o).

FM-P2 For a fixed s € R, f(s,||c—c’|[|g) is a positive definite
kernel on (¢,¢’) € RP¢ x RPe.

FM-P3 For t; < t2, hy, 1,(s) = f(s, t1) — f(s, t2) is positive, strictly
decreasing and convex w.r.t s € R".

Definition 5.5 (FM kernel). A FM kernel is a function on (RP¢ x V) x
(RP¢ x V) of the form in Eq. (5.2), where f is a frequency modulating
function on R™ x R.

5.3.1  Frequency Regularization of FM kernels

In (Smola and R. Kondor, 2003), it is shown that Eq. (5.1) defines
a kernel that regularizes the eigenfunctions with high frequencies
when f is positive and decreasing. It is also shown that the reciprocal
of f in Eq. (5.1) is a corresponding regularization operator. For exam-
ple, the diffusion kernel defined with f(A) = exp(—pA) corresponds
to the regularization operator r(A) = exp(pA). The regularized Lapla-
cian kernel defined with f(A) = 1/(1 4 BA) corresponds to the regu-
larization operator r(A) = 1+ BA. Both regularization operators put
more penalty on higher frequencies A.

Therefore, the property FM-P1 forces FM kernels to have the same
regularization effect of promoting a smoother function by penalizing
the eigenfunctions with high frequencies.
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5.3.2 Positive Definiteness of FM kernels

Determining whether Eq.5.2 defines a positive definite kernel is
not trivial. The reason is that the gram matrix [k((ci, vi), (¢j,vj))]i;
is not determined only by the entries v; and vj, but these entries
are additionally affected by different distance terms || ¢; —¢;j|lg. To
show that FM kernels are positive definite, it is sufficient to show
that f(A;, || c—c’ [|g| B) is positive definite on (c,¢’) € RP¢ x RPe.

Theorem 5.1. If f(A, || c—c'||ol B) defines a positive definite kernel with
respect to ¢ and c’, then the FM kernel with such f is positive definite jointly
on c and v. That is, the positive definiteness of f(A, || c—c’[|g] ) on RP¢
implies the positive definiteness of the FM kernel on RP¢ x V.

Proof. See Appx. Thm. C.1. O

Note that Thm. 5.1 shows that the property FM-P2 guarantees that
FMs kernels are positive definite jointly on ¢ and v.

In the current form of Thm. 5.1, the frequency modulating func-
tions depend on the distance || c—c’|lg. However, the proof does
not change for the more general form of f(A, ¢, ¢’ |«, p), where  does
not depend on || c—c’|lp. Hence, Thm. 5.1 can be extended to the
more general case that f(A, ¢, c¢’|x, B) is positive definite on (c,c¢’) €
RPe x RPe,

5.3.3 Frequency Modulation Principle

A kernel, as a similarity measure, is expected to return higher val-
ues for pairs of more similar points and vice versa (Vert et al., 2004).
We call such behavior the similarity measure behavior.

In Eq. (5.2), the distance || ¢ — ¢’ ||¢ represents a quantity in the “spa-
tial” domain interacting with quantities A;s in the “frequency” do-
main. Due to the interplay between the two different domains, the
kernels of the form Eq. (5.2) do not exhibit the similarity measure be-
havior for an arbitrary function f. Next, we derive a sufficient condition
on f for the similarity measure behavior to hold for FM kernels.

Formally, the similarity measure behavior is stated as

[e=c"llo<le=2lle = kllc,v), (c,v) Zk((&v), (&) (53)
or equivalently,

(V]
le—=c"llo < |l€—¢€e = Z Tv,ihe, e (AlB) Ul >0 (5-4)

where hy, ¢, (AIB) = (A t11B) — (A, t2B), t1 = |[c—c'|jp and t, =
€ —&'[le-



Theorem 5.2. For a connected and weighted undirected graph G = (V, €)
with non-negative weights on edges, define a similarity (or kernel) a(v,v') =
[Uh(A)UT],,, where U and A are eigenvectors and eigenvalues of the
graph Laplacian 1(G) = UAUT. If h is any non-negative and strictly
decreasing convex function on [0, 00), then a(v,v’) = 0 forallv,v' € V.

Therefore, these conditions on h(A) result in a similarity measure
a with only positive entries, which in turn proves property Eq. (5.4).
Here, we provide a proof of the theorem for a simpler case with an
unweighted complete graph, where Eq. (5.4) holds without the con-
vexity condition on h.

Proof. For a unweighted complete graph with n vertices, we have
eigenvalues A1 = 0, A, = --- = Ay = n and eigenvectors such that
U, = 1/ymand > iU, iUy i = 8y For v # v/, the con-
clusion in Eq. (5.4), > i ; h(A)[U],:[U], ; becomes h(0)/n + h(n) -
> oMUy iUy i = (h(0) —h(n))/n in which non-negativity follows
with decreasing h. For the complete proof, see Appx. Thm. C.2. [

Thm. 5.2 thus shows that the property FM-P3 is sufficient for Eq. (5.4)
to hold. We call the property FM-P3 the frequency modulation princi-
ple. Thm. 5.2 also implies the non-negativity of many kernels derived
from graph Laplacian.

Corollary 5.3. The random walk kernel derived from the symmetric nor-
malized Laplacian (Smola and R. Kondor, 2003), the diffusion kernels (R. .
Kondor and Lafferty, 2002; Changyong Oh, Tomczak, et al., 2019) and the
regularized Laplacian kernel (Smola and R. Kondor, 2003) derived from sym-
metric normalized or unnormalized Laplacian, are all non-negatived valued.

Proof. See Appx. Coro. C.3. O

5.3.4 FM kernels in practice

scaLABILITY  Since the (graph Fourier) frequencies and basis func-
tions are computed by the eigendecomposition of cubic computa-
tional complexity, a plain application of frequency modulation makes
the computation of FM kernels prohibitive for a large number of dis-
crete variables. Given P discrete variables where each variable can be
individually represented by a graph §,,, the discrete part of the search
space can be represented as a product space, V = V7 x--- x Vp.

In this case, we define FM kernels on RP¢ x V = RPe x (Vg x -+ x
Vp) as

P
k((e,v), (¢, v))l e, B,0) = [ | kpl(c,vp), (<), v})IBp, 6)
p=1

P [Vpl
=TT > Pl o f A, | =< [lglBp)UPTyy 1 (5.5)
p=1i=1
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where v = (vq,---,vp), v/ = (v},--- ,vp), & = (o1, ,ap) B =
(B1,---,Bp) and the graph Laplacian is given as L(G, ) with the eigen-
decomposition Updiag[A}, - - - ,Aﬁ’vp H]ug.

Eq.5.5 should not be confused with the kernel product of kernels
on each V,,. Note that the distance || ¢—c’||¢ is shared, which intro-
duces the coupling among discrete variables and thus allows more
modeling freedom than a product kernel. In addition to the coupling,
the kernel parameter o,s lets us individually determine the strength
of the frequency modulation.

EXAMPLES  Defining a FM kernel amounts to constructing a fre-
quency modulating function. We introduce examples of flexible fam-
ilies of frequency modulating functions.

Proposition 5.4. For S € (0, 00), a finite measure on [0, S], p-measurable
7:[0,S] = [0,2] and p-measurable p : [0, S] = IN, the function of the form
below is a frequency modulating function.

S
1
f(A o e — € [lolB) :J w(ds)  (56)
0 (T+PA+afc—c[|3*))e(s)
Proof. See Appx. Prop. C.8. O

Assuming S = 1 and 1(s) = 2, Prop. 5.4 gives (1+BA+af c—c'[|3) !
with p(s) =1 and p(ds) = ds, and Z§:1 an(1+PA+afc—c’[|3)™
with p(s) = [Ns] and p({n/N}) = an > 0 and p([{n/N}j_; . ) =0.

5.3.5 Extension of the Frequency Modulation

Frequency modulation is not restricted to distances on Euclidean
spaces but it is applicable to any arbitrary space with a kernel de-
fined on it. As a concrete example of frequency modulation by ker-
nels, we show a non-stationary extension where f does not depend on
|lc—c’|le but on the neural network kernel knn (Rasmussen, 2003).
Consider Eq. (5.2) with f = fyn as follows.

1

f Ak | = .
NN (A knn(e, e’ [Z)B) 75 BA —kun (e /5] (5.7)
where knn(c, ¢’ X)) = %arcsin ((1+cT ZZ:)T(iE;/T Zc’)) is the neural net-

work kernel (Rasmussen, 2003).

Since the range of knn is [—1,1], fan is positive and thus satis-
ties FM-P1. Through Eq. (5.7), Eq. (5.2) is positive definite (Sec. C.1,
Prop.C.9) and thus property FM-P2 is satisfied. If the premise t; < t
of the property FM-P3 is replaced by t; > t,, then FM-P3 is also satis-
fied. In contrast to the frequency modulation principle with distances
in Eq. (5.3), the frequency modulation principle with a kernel is for-
malized as

kNN(C/CI ‘Z) = kNN(E,a/‘Z) = k((C,V), (C//vl)) = k((E,V), (é//vl))



Note that knn (¢, ¢’ |Z) is a similarity measure and thus the inequality
is not reversed unlike Eq. (5.3).

All above arguments on the extension of the frequency modulation
using a nonstationary kernel hold also when the knn is replaced by
an arbitrary positive definite kernel. The only required condition is
that a kernel has to be upper bounded, i.e., knn(c,¢’) < C, needed
for FM-P1 and FM-P2z.

5.4 RELATED WORKS

On continuous variables, many sophisticated kernels have been
proposed (ChangYong Oh et al., 2018; Remes et al., 2017; Samo and
S. Roberts, 2015; Andrew Wilson and Nickisch, 2015). In contrast,
kernels on discrete variables have been studied less (Haussler, 1999;
R. I. Kondor and Lafferty, 2002; Smola and R. Kondor, 2003). To our
best knowledge, most of existing kernels on mixed variables are con-
structed by a kernel product (S. Li et al., 2016; K. Swersky, Snoek,
et al., 2013) with some exceptions (Fiducioso et al., 2019; Krause and
Ong, 2011; K. Swersky, Snoek, et al., 2013), which rely on kernel ad-
dition.

In mixed variable BO, non-GP surrogate models are more preva-
lent, including SMAC (Hutter et al., 2011) using random forest and
TPE (J. S. Bergstra et al., 2011) using a tree structured density esti-
mator. Recently, by extending the approach of using Bayesian lin-
ear regression for discrete variables (Baptista and Poloczek, 2018),
(Daxberger et al., 2021) proposes Bayesian linear regression with man-
ually chosen basis functions on mixed variables, providing a regret
analysis using Thompson sampling as an acquisition function. An-
other family of approaches utilizes a bandit framework to handle the
acquisition function optimization on mixed variables with theoretical
analysis (Gopakumar et al.,, 2018; D. Nguyen et al., 2019; Ru, Alvi,
et al., 2020). (D. Nguyen et al., 2019) use GP in combination with
multi-armed bandit to model category-specific continuous variables
and provide regret analysis using GP-UCB. Among these approaches,
(Ru, Alvi, et al., 2020) also utilize information across different cate-
gorical values, which —in combination with the bandit framework-
makes itself the most competitive method in the family.

Our focus is to extend the modelling prowess and flexibility of pure
GPs for surrogate models on problems with mixed variables. We pro-
pose frequency modulated kernels, which are kernels that are specifi-
cally designed to model the complex interactions between continuous
and discrete variables.

In architecture search, approaches using weight sharing such as
DARTS (H. Liu et al., 2018) and ENAS (Pham et al., 2018) are gaining
popularity. In spite of their efficiency, methods training neural net-
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works from scratch for given architectures outperform approaches
based on weight sharing (X. Dong, L. Liu, et al., 2021). Moreover, the
joint optimization of learning hyperparameters and architectures is
under-explored with a few exceptions such as BOHB (Falkner et al.,
2018) and autoHAS (X. Dong, Tan, et al., 2020). Our approach pro-
poses a competitive option to this challenging optimization of mixed
variable functions with expensive evaluation cost.

5.5 EXPERIMENTS

To demonstrate the improved sample efficiency of GP BO using FM
kernels (BO-FM) we study various mixed variable black-box function
optimization tasks, including 3 synthetic problems from (Ru, Alvi, et
al., 2020), 2 hyperparameter optimization problems (SVM (Smola and
R. Kondor, 2003) and XGBoost (T. Chen and Guestrin, 2016)) and the
joint optimization of neural architecture and SGD hyperparameters.

As per our method, we consider MobpLaP which is of the form
Eq. 5.5 with the following frequency modulating function.

1
T+ BA+afe—c'3

fLap()\/HC_C/”G‘(X/ B) (5.8)

Moreover, to empirically demonstrate the importance of the similarity
measure behavior, we consider another kernel following the form of
Eq. 5.5 but disrespecting the frequency modulation principle with the
function

foir(A, [ e—c’ [lolo, B) = exp (—(1 + af c—¢’ [3)BA)  (5.9)

We call the kernel constructed with this function MopDIE.

In each round, after updating with an evaluation, we fit a GP sur-
rogate model using marginal likelihood maximization with 10 ran-
dom initialization until convergence (Williams and Rasmussen, 2006).
We use the expected improvement (EI) acquisition function (Donald,
1998) and optimize it by repeated alternation of L-BFGS-B (Zhu et al.,
1997) and hill climbing (Skiena, 1998) until convergence. More details
on the experiments are provided in Appx. C.2.

BASELINES  For synthetic problems and hyperparameter optimiza-
tion problems below, baselines we consider'” are SMAC™ (Hutter et
al., 2011), TPE™ (J. S. Bergstra et al., 2011), and CoCaBO?*° (Ru, Alvi, et
al., 2020) which consistently outperforms One-hot BO (GPyOpt, 2016)

17 The methods (Daxberger et al., 2021; D. Nguyen et al., 2019) whose code has not

been released are excluded.

18 https://github.com/automl/SMAC3
19 http://hyperopt.github.io/hyperopt/
20 https://github.com/rubinxin/CoCaB0_code



and EXP3BO (Gopakumar et al., 2018). For CoCaBO, we consider 3
variants using different mixture weights.*"

5.5.1

----- ModDif

Synthetic problems

—— ModLap

Func3C

=== CoCaB0-0.0

—~=- CoCaBO-0.5

=== CoCaBO-1.0

AckleysC

R R R R

Figure 5.2: Synthetic functions on mixed-variable spaces (5 runs)

Table 5.1: Synthetic functions on mixed-variable spaces (5 runs)

Func2C Func3C AckleysC
SMAC +0.006 £0.039 | +0.119£0.072 | +2.381 £0.165
TPE —0.192+£0.005 | —0.407 £0.120 | +1.860 +0.125
ModDif —0.066 £0.046 | —0.098 £0.074 | +0.001 £ 0.000
ModLap —0.206 £ 0.000 | —0.722 £ 0.000 | +0.019 £ 0.006
CoCaBO-0.0 | —0.159 £0.013 | —0.673 +0.027 | +1.499 £0.201
CoCaBO-0.5 | —0.202 +0.002 | —0.720 £ 0.002 | +1.372 £0.211
CoCaBO-1.0 | —0.186 £0.009 | —0.714 +0.005 | +1.811£0.217

We test on 3 synthetic problems proposed in (Ru, Alvi, et al., 2020)*.

Each of the synthetic problems has the search space as in Tab. 5.2. De-
tails of synthetic problems can be found in (Ru, Alvi, et al., 2020).

Table 5.2: Synthetic Problem Search Spaces

Conti. Space | Num. of Cats.
FuncaC [—1,1]? 3,5
Func3C [—1,1]? 3,54
AckleysC [—1,1] 17,17, 17, 17, 17

On all 3 synthetic benchmarks, MopLAP shows competitive per-
formance (Fig. 5.2). On Func2C and Func3C, MobLAP performs the
best, while on Ackley5C MopLArP is at the second place, marginally
further from the first. Notably, even on Func2C and Func3C, where

21 Learning the mixture weight is not supported in the implementation, we did not
include it. Moreover, as shown in (Ru, Alvi, et al., 2020), at least one of 3 variants
usually performs better than learning the mixture weight.

22 In the implementation provided by the authors, only Func2C and Func3C are sup-
ported. We implemented AckleysC.
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MobpDrr underperforms significantly, MopLar exhibits its competi-
tiveness, which empirically supports that the similarity measure be-
havior plays an important role in the surrogate modeling in Bayesian
optimization.

Hyperparameter optimization problems

552

SMAC —— ModLap -=-=- CoCaBO0-0.0

—=- CoCaBO-0.5

—=- CoCaBO-1.0

Figure 5.3: Hyperparameter optimization of SVM and XGBoost (5 runs)

Table 5.3: Hyperparameter optimization of SVM and XGBoost (5 runs)

SVM Method XGBoost
4.759 + 141 SMAC 1215 4.0045
4399 +.163 TPE .1084 £+ .0007
4.188 £ .001 ModDif 1071 % .0013
4.186 £ .002 ModLap .1038 + .0003
4412 +.170 | CoCaBO-0.0 | .1184 +.0062
4196 +£.004 | CoCaBO-0.5 | .1079 £.0010
4.196 +.004 | CoCaBO-1.0 | .1086 £ .0008

Now we consider a practical application of Bayesian optimization
over mixed variables. We take two machine learning algorithms,
SVM (Smola and R. Kondor, 2003) and XGBoost (T. Chen and Guestrin,
2016) and optimize their hyperparameters.

svM  We optimize hyperparameters of v-SVR in scikit-learn (Pe-
dregosa et al., 2011). We consider 3 categorical hyperparameters and
3 continuous hyperparameters (Tab. 5.4) and for continuous hyperpa-
rameters we search over log;, transformed space of the range.

For each of 5 split of Boston housing dataset with train:test(7:3) ratio,
v-SVR is fitted on the train set and RMSE on the test set is computed.
The average of 5 test RMSE is the objective.

23 https://scikit-learn.org/stable/modules/generated/sklearn.svm.$\nu$-SVR
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Table 5.4: v-SVR hyperparameters

v-SVR param.* Range
kernel {linear, poly, RBE, sigmoid}
gamma {scale, auto }
shrinking {on, off }
C (10-4,10]
tol [1076,1]
nu [10-6,1]

xGeoosT  We consider 1 ordinal, 3 categorical and 4 continuous hy-
perparameters (Tab. 5.5).

Table 5.5: XGBoost hyperparameters

XGBoost param.?+ Range
max_depth {1,---,10}
booster {gbtree, dart}
grow_policy {depthwise, lossguide}
objective {multi:softmax, multi:softprob}
eta [10-°,1]
gamma [10—4,10]
subsample [10-3,1]
lambda [0,5]

For 3 continuous hyperparameters, eta, gamma and subsample, we
search over the log;, transformed space of the range. With a strati-
fied train:test(y:3) split, the model is trained with 50 rounds and the
best test error over 50 rounds is the objective of SVM hyperparameter
optimization.

In Fig. 5.3 and Tab. 5.3, MoDLAP performs the best. On XGBoost hy-
perparameter optimization, MopLAP exhibits clear benefit compared
to the baselines. Here, MopDir wins the second place in both prob-
lems.

COMPARISON TO DIFFERENT KERNEL COMBINATIONS In Appx. C.3,
we also report the comparison with different kernel combinations on
all 3 synthetic problems and 2 hyperparameter parameter optimiza-
tion problems. We make two observations. First, MopDi1r, which
does not respect the similarity measure behavior, sometimes severely
degrades BO performance. Second, MopLar obtains equally good
final results and consistently finds the better solutions faster than the
kernel product. This can be clearly shown by comparing the area
above the mean curve of BO runs using different kernels. The area
above the mean curve of BO using MopLapP is larger than the are
above the mean curve of BO using the kernel product. Moreover, the
gap between the area from MopLAP and the area from kernel product

24 https://xgboost.readthedocs.io/en/latest/parameter.html
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increases in problems with larger search spaces. Even on the smallest
search space, Func2C, MobLAP lags behind the kernel product up to
around goth evaluation and outperforms after it. The benefit of Mop-
Lar modeling complex dependency among mixed variables is more
prominent in higher dimension problems.

5.5.3 Joint optimization of neural architecture and SGD hyperpa-
rameters

0.080

BOHB —— ModLap — RE

0.078 4

0.076

0.074

Minimum

0.072 4

0.070 q

0.068

0 50 200

100 150
The number of evaluations

Figure 5.4: Joint optimization of the architecture and SGD hyperparame-
ters (4 runs)

Table 5.6: Joint optimization of the architecture and SGD hyperpa-

rameters

Method | Num.Evaluations Mean + Std.Err. (4 runs)
BOHB 200 7.158 x 10~ 2+1.0303 x 103
BOHB 230 7.151 x 107249.8367 x 10~4
BOHB 350 7.061 x 107245.9322 x 10~*
RE 200 7.067 x 107241.1417 x 10—3
RE 230 7.061 x 10724£1.1329 x 103
RE 400 6.929 x 1072+6.4804 x 10~4
RE 600 6.879 x 1072+£1.0039 x 103
MobLar 200 6.850 x 1072+3.7914 x 10—4

" For the figure with all numbers above, see Appx. C.3.

Next, we experiment with BO on mixed variables by optimizing
continuous and discrete hyperparameters of neural networks. The
space of discrete hyperparameters A is modified from the NASNet
search space (Zoph and Q. Le, 2017), which consists of 8,153,726,976
choices. The space of continuous hyperparameters J{ comprises 6
continuous hyperparameters of the SGD with a learning rate sched-
uler: learning rate, momentum, weight decay, learning rate reduc-
tion factor, 1st reduction point ratio and 2nd reduction point ratio.



A good neural architecture should both achieve low errors and be
computationally modest. Thus, we optimize the objective f(a, h) =
erryatia(a, h) +0.02 x FLOP(a)/ maxq e FLOP(a’). To increase the
separability among smaller values, we use log f(a, h) transformed val-
ues whenever model fitting is performed on evaluation data. The
reported results are still the original non-transformed f(a, h).

We compare with two strong baselines. One is BOHB (Falkner et
al., 2018) which is an evaluation-cost-aware algorithm augmenting
unstructured bandit approach (L. Li et al., 2017) with model-based
guidance. Another is RE (Real et al., 2019) based on a genetic algo-
rithm with a novel population selection strategy. In (X. Dong, L. Liu,
et al., 2021), on discrete-only spaces, these two outperform competi-
tors including weight sharing approaches such as DARTS (H. Liu et
al., 2018), SETN (X. Dong and Yi Yang, 2019), ENAS (Pham et al,,
2018) and etc. In the experiment, for BOHB, we use the public imple-
mentation®> and for RE, we use our own implementation.

For a given set of hyperparameters, with MobLAr or RE, the neu-
ral network is trained on FashionMNIST for 25 epochs while BOHB
adaptively chooses the number of epochs. For further details on the
setup and the baselines we refer the reader to Appx. C.2 and C.3.

We present the results in Fig. 5.4. Since BOHB adaptively chooses
the budget (the number of epochs), BOHB is plotted according to the
budget consumption. For example, the y-axis value of BOHB on 100-
th evaluation is the result of BOHB having consumed 2,500 epochs (25
epochs x 100).

We observe that MopLaP finds the best architecture in terms of
accuracy and computational cost. What is more, we observe that
MobLAP reaches the better solutions faster in terms of numbers of
evaluations. Even though the time to evaluate a new hyperparameter
is dominant, the time to suggest a new hyperparameter in MopLar
is not negligible in this case. Therefore, we also provide the com-
parison with respect the wall-clock time. It is estimated that RE and
BOHB evaluate 230 hyperparameters while MobLAP evaluate 200 hy-
perparameters (Appx. C.2). For the same estimated wall-clock time,
MobLAP(200) outperforms competitors(RE(230), BOHB(230)).

In order to see how beneficial the sample efficiency of BO-FM is
in comparison to the baselines, we perform a stress test in which
more evaluations are allowed for RE and BOHB. We leave RE and
BOHB for 600 evaluations and 350 evaluations, respectively. Notably,
the RE with 600 evaluations almost reaches MopLAP with 200 evalu-
ations (Fig. 5.4 and Appx. C.3). We conclude that MopLAr exhibits
higher sample efficiency than the baselines.

25 https://github.com/automl/HpBandSter
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5.6 CONCLUSION

We propose FM kernels to improve the sample efficiency of mixed
variable Bayesian optimization.

On the theoretical side, we provide and prove conditions for FM
kernels to be positive definite and to satisfy the similarity measure
behavior. Both conditions are not trivial due to the interactions be-
tween quantities on two disparate domains, the spatial domain and
the frequency domain.

On the empirical side, we validate the effect of the conditions for
FM kernels on multiple synthetic problems and realistic hyperparam-
eter optimization problems. Further, we successfully demonstrate the
benefits of FM kernels compared to non-GP based Bayesian Optimiza-
tion on a challenging joint optimization of neural architectures and
SGD hyperparameters. BO-FM outperforms its competitors, includ-
ing Regularized evolution, which requires three times as many evalu-
ations.

We conclude that an effective modeling of dependencies between
different types of variables improves the sample efficiency of BO. We
believe the generality of the approach can have a wider impact on
modeling dependencies between discrete variables and variables of
arbitrary other types, including continuous variables.
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BATCH BAYESIAN
OPTIMIZATION ON
PERMUTATIONS USING
THE ACQUISITION
WEIGHTED KERNELS

6.1 INTRODUCTION

From the celebrated traveling salesman problem(Gutin and Pun-
nen, 2006) to flowshop and jobshop scheduling problems(Garey et
al., 1976), permutations are ubiquitous representations in combina-
torial optimization. Such combinatorial problems on permutations
arise in highly impactful application areas. For example, in chip de-
sign, permutations specify relative placements of memories and log-
ical gates on a chip(Alpert et al., 2008). As another example, in 3D
printing, scheduling is an important factor to determine the produc-
tion time(Chergui et al., 2018; V. Griffiths et al., 2019; Xu Song et al.,
2020). In both cases, as well as in many others, evaluating the cost
associated to a given permutation is expensive.

In situations where the evaluation is expensive, Bayesian optimiza-
tion (BO) has shown good performance in many problems(Snoek,
Larochelle, et al., 2012; Snoek, Rippel, et al.,, 2015). Recently, BO
on combinatorial spaces has made significant progress for categorical
variables (Baptista and Poloczek, 2018; Dadkhahi et al., 2020; Desh-
wal, Belakaria, J. R. Doppa, and Fern, 2020; Changyong Oh, Tomczak,
et al., 2019; K. Swersky, Rubanova, et al., 2020). However, BO on per-
mutations is yet under-explored with a few exceptions (Bachoc et al.,
2020; Zaefferer et al., 2014; J. Zhang et al., 2019).

In this work we present a framework to deal with BO on permuta-
tions where the evaluation of the objective is expensive. We extend
batch Bayesian optimization, which allows one to speed up the opti-
mization by acquiring a batch of multiple points and evaluating the
batch in parallel(Azimi, Fern, et al., 2010; Gonzélez et al., 2016), to the
case of permutations. Then, motivated by the observation that both
the diversity of the points in the batches and the informativeness of
the individual points in the batch improve the performance(Gong et
al., 2019), we propose a new batch acquisition method which is ap-
plicable to the search space of permutations and takes into account
both the diversity of the batch and the informativeness of each point.
This method is based on determinantal point processes (DPPs), which
have been widely used to model sets of diverse points(Kulesza and
Taskar, 2012), and can be conveniently incorporated into the Gaus-
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sian Process framework since DPPs are specified by a kernel. To
overcome the lack of informativeness of DDPs(Kathuria et al., 2016)
(more specifically, the selection of points in batches relies solely on
the predictive variance of the surrogate model), we enhance DPPs
by using a kernel weighted by acquisition values. Therefore, we
propose a new batch acquisition method using the so-called DPP L-
ensemble(Borodin and Rains, 2005; Kulesza and Taskar, 2012) aug-
mented with the Acquisition Weight, dubbed LAW. The whole proce-
dure to find the optimal ordering (permutation) through LAW is thus
dubbed LAW20RDER. We compare LAW20RDER and other com-
petitors, firstly, on three combinatorial optimization benchmarks on
permutations such as quadratic assignment problem, the flowshop
scheduling problem, and the traveling salesman problem. We also
make comparisons on the structure learning problem. In the struc-
ture learing problem, LAW20RDER performs the best and the perfor-
mance gap is more significant for larger permutation spaces. More-
over, LAW20RDER still outperforms significantly genetic algorithms
which use twice as many evaluations.

6.2 PRELIMINARIES

In this section, we briefly discuss some prerequisites for our pro-
posed method and introduce notation. Below we will denote a func-
tion f with one input as f(-), and function K with two inputs as K(,-).
For B € IN, [B] = {1,---,B} while for a set X, | X| is the number of
elements in X.

6.2.1 Batch Bayesian Optimization

Bayesian Optimization (BO) aims at finding the global optimum
of a black-box function f over a search space X, namely, Xopt =
argmin, - f(x). Two main components are the probabilistic model-
ing of the objective f(x) and the acquisition of new points to evaluate.
Probabilistic modeling is performed by the surrogate model. At the t-
th round, the surrogate model attempts to approximate f(x) based on
the evaluation data D¢_1, producing the predictive mean p¢_1(x) =
(x| D¢_1) and the predictive variance o2 ;(x) = o2(x|D¢_1). In
the acquisition of a new point, the acquisition function is specified
ai(x) = aseq(X[pe—1 (‘),057] (+)), which is based on the predictive
mean p_1(-) and the predictive variance o2 ;(-) to score how infor-
mative points are for the optimization. Next, the point that maxi-
mizes the acquisition function is obtained, x; = argmax, a¢(x), and
the objective evaluated, y. = f(x¢). Then, the new evaluation point is
appended to the old dataset, Dy = D¢_1 U{(x¢,y¢)} and the process
repeats by fitting the surrogate model with D;. The process con-



tinues until the evaluation budget is depleted. To contrast with the
proposed method, we call this basic BO as sequential BO. For a more
extensive overview of Bayesian optimization, please refer to (Frazier,
2018; Shahriari et al., 2015).

With more computational resources, such as more GPUs and CPUs,
we can speed up Bayesian optimization by allowing multiple evalu-
ations in parallel. For this, we acquire a batch of multiple points, a
method known as Batch Bayesian Optimization (BBO) (Azimi, Fern,
et al.,, 2010; Gonzdlez et al., 2016). In BBO, we need an acquisition
function apqtch scoring the quality of batches of B points {xy}pe(p)
instead of individual points. At time t, a batch of B points is acquired,
{xtploep) = argmax, ;- ai({xvlvep)), where ai({xplvep)) is given
as apatch ((Xptoemilte—1(-), crff] (+)). Then the points in the acquired
batch are evaluated in parallel and the evaluation data is updated by
Dy = D1 W(Xet,b, Yt,0)bel]-

6.2.2 Determinantal Point Processes

Determinantal point processes (DPPs) are stochastic point processes
well-suited to model sets of diverse points (Kulesza and Taskar, 2012).
Let us assume that we want to sample a set of diverse points from
a finite set X. One way to define DPP is to use the so-called L-
ensemble (Kulesza and Taskar, 2012). For a given kernel L(-,-) on
X, the L-ensemble is defined as the random point process with den-

. det([L(xy)lx ;
sity PPPP(X) = W where X C X and [L(x,y)lxyex is a

submatrix of L restricted to X (Borodin and Rains, 2005).

For a batch of just two points, X = {x,y} it is easy to observe that
DPP encourages diversity — PPPP({x,y}) o L(x,x)L(y,y) — L(x,y)?.
Indeed, for more similar points the value of L(x,y) is higher, result-
ing in a lower density. In DPPs there is no cardinality constraint
on X. We, therefore, define k-DPP, which is a DPP with the re-
striction that sampled sets have precisely k points. Denoting the
set of subsets of X with k points by Xy, the k-DPP density is de-

. N det([L(xy)]xyex)
fined for X € Xy by PFPPP(X) = Sex, det([L(x,)yji,yex/)' Therefore,

X* = argmaxy o, PrPPP(X) is the most diverse set of k points with
respect to the similarity encoded by the kernel L(, ).

In our algorithm, we use that log of k-DPP density is submodu-
lar (Kulesza and Taskar, 2012; Srinivas et al., 2010) and can be greedily
maximized with approximation guarantees (Nemhauser et al., 1978;
Sakaue, 2020) (See Appx. D.3.1 for a brief discussion).
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6.3 METHODS

Batch acquisition on a combinatorial space poses two difficulties.
First, the batch acquisition objectives of existing batch Bayesian op-
timization are designed based on the properties and intuition appli-
cable to continuous spaces (Gong et al., 2019; Gonzalez et al., 2016).
This may not always be suitable for discrete spaces. For instance,
the method in (Gonzalez et al., 2016) is defined by using Euclidean
distance. Also, the difficulties of combinatorial optimization are ex-
acerbated when optimizing a batch jointly. This is in stark contrast
to the continuous case where gradient based optimization is easily
extended to batch optimization of multiple points in parallel (Jialei
Wang et al., 2020).

To cope with these challenges, we introduce a new batch acquisi-
tion method for Bayesian optimization, the maximization of the deter-
minantal point process (DPP) density defined by an L-ensemble with
Acquisition Weights, dubbed LAW. We describe LAW in Subsec. 6.3.1
and its regret analysis is provided in Subsec. 6.3.2 and 6.3.3.

6.3.1  Batch Acquisition using LAW

We start to define the main components of LAW.

Definition 6.1 (Weight function). We call a function w : R — R a
weight function if it is positive (r € R, w(r) > 0), increasing (r1 <
T2 = w(r1) < w(r2)), and bounded below and above by a positive
number (W_ = inf,eg w(r) > 0 and w = sup . W(T) < 00).

Definition 6.2 (Posterior covariance function). Given a (prior) ker-
nel K(xj,x2), data D and noise variance o2, the posterior (predic-
tive) covariance function Kpos¢(x1,%x2 1D, 02) is defined as K(x1,x2) —
K(x1, D) (K(D, D) + o21)~TK(D, x2).

Let us assume that we are running batch Bayesian optimization
with Gaussian process surrogate model using the kernel K(-,-) and
the acquisition function a(-), and that we acquire a batch of B points
in each round. At the t-th round, we have the evaluation data D;_1,
the posterior covariance function K(-,-) = Kpost(-, K, Dt_1,0§bs)
and the acquisition function a({xv}pep]) = al{Xvpbepilne—1(-), 0%71 )
where 1y 1(-) and Gi] (-) are the predictive mean and the predictive
variance conditioned on Dy 1.

In the existing work (Kathuria et al., 2016) on batch Bayesian op-
timization using DPP, the posterior covariance function is used as
the kernel defining DPP. Even though the use of DPP in (Kathuria et
al., 2016) encourages diversity among points in batches, it essentially
chooses points of high predictive variance.

However, the predictive mean also provides valuable information
in Bayesian optimization. It is the acquisition function which harmo-



Algorithm 4 Batch Acquisition by LAW
1: Input: weight function w(.), diversity gauge L(-,-), acquisition
function a(-), batch size B

: Output: batch of B points {x¢,1, - ,X¢,8}

N

3 Xt,1 = argmax,, a(x) = argmax .y w(a(x))

4 forb=2,--- ,Bdo

5 Xgp = argmax, log(L(x, x [{x¢,i}icp_11))w(a(x))?
6: end for

nizes the predictive mean and the predictive variance to quantify how
useful each point is. Therefore, we propose a new batch acquisition
method which actively uses the acquisition function while retaining
the strength of DPP encouraging diversity in each batch.

We define the Acquisition Weighted kernel LAY as follows

AW (x1,x2) = wla(x1)) - Lix1,x2) - wla(x2)).

Here w is a positive weight function. We call the kernel L in LAW
the diversity gauge of LAW.

With the posterior covariance function as the diversity gauge L =
K¢ and the acquisition function a = ay, the acquisition weighted ker-
nel becomes

LY, x2) = wlai(x1)) - Kelxa, x2) - wlag(x2)) (6.1)
Due to the dependency of L = K¢ and at to the round index t, we
subscript LAW and L with t.

We optimize the density of DPP using the acquisition weighted
kernel to choose the points in the batch. Before introducing how this
optimization is actually performed, we provide an interpretation by
rewriting the numerator of the density of the k-DPP defined by LW
as

B
det([LMY (xi, %)) jerp)) = det([Ke(xi, )] jers)) HW(at(Xi))z (6.2)

i=1

This shows that the maximization of eq. (6.2) can be obtained by
increasing both det([L(xi,x;)];je87) and HF:1 w(ag(xq))? in a bal-
anced way. Increasing the determinant term and increasing the prod-
uct term promote diversity and acquisition values, respectively.

Now, we provide details on how the optimization is implemented.
In combinatorial spaces where the optimization of a single point is
challenging, the joint optimization of multiple points is daunting.
Thanks to the submodularity of the log of the determinant (Kulesza
and Taskar, 2012), the joint optimization of multiple points can be
approximated by a sequence of single point optimizations with an
approximation guarantee (See Appx. D.3.1 for submodularity).

The first point is obtained as in sequential Bayesian optimization by
optimizing an acquisition function (line 3 in Alg. 4). The rest of the
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B — 1 points are obtained by maximizing the k-DPP density defined
by the acquisition weighted kernel, which we approximately perform
with a greedy method (line 4 in Alg. 4). Having chosen b — 1 points
{X¢,i}icp—1), the greedy maximization selects xy, as follows:

Xp = argmaxlog det(H—‘f\W('/ 'H{Xihe[b—l]U{X})
xeX

= argmaxlog(L¢ (x, x {xt,i}iep—11) - wlat(x))
xeX

%)

where L¢(x,x[{x¢,i}ic[p—1]) is the posterior variance of the kernel L
conditioned on {Xi}icb_1]-

6.3.2 Regret Analysis

In this subsection, we provide a theoretical analysis on the perfor-
mance of LAW with two acquisition functions, GP-UBC (Srinivas et
al,, 2010) and EST (Zi Wang, B. Zhou, et al., 2016).

We begin with definitions needed in the analysis.

Definition 6.3. In the minimization of f using batch acquisition, where
x* = argmin_ f(x), 1¢p = f(x¢,p) — f(x*) is called instantaneous regret
and riB) =mingcp) Te,b = Ming ) (f(xe,p) — f(x*)) is called batch in-
stantaneous regret. Simple regret is defined as the minimum of batch

instantaneous regrets R(TB ),

S(B) s (B) _ . .
T = min_r; = min_ min vy
t=1,--,T t=1,-,Tbe([B]

Batch cumulative regret R(TB) is defined as the sum of batch instanta-

neous regrets
-

R(TB) = Z r,(cB] = min Ty p.
t=1 t=1

Remark 6.1. Note that S(TB) < %R(TB). Vanishing simple regret is
proved by showing %R(TB) — 0.

Definition 6.4. For Gaussian processes with the kernel K and the
variance of observation noise 02, the maximum information gain yT
is defined as

1
=v(T;X,K,0%) = ~1 I+ o 2K(X,X)).
v =v(T; X, K, 07) XCIDE?)E(l:TZ ogdet(I+o (X, X))

For UCB and EST, we have the following regret bound.

Theorem 6.1. Assume a kernel such that X(-,-) < 1, |X| < oo and f :
X — R is sampled from GP(o,K). In each round t € [T] of batch Bayesian
optimization, LAW acquires a batch using the evaluation data Dy_4, the



diversity measure L (-, -) = K(-, | Dy_1), an acquisition function a(-) and
a weight function w(-) (Def. 6.1).

Let Cy = log(ﬁﬁ where o2 is the variance of the observation noise
and & € (0,1).

2 2

At round t, define Bgal)ucs = 2log (W) and vy =

n’;in (%) where Y is the estimate of the optimum (Zi Wang, B.
1/2

Zhou, et al., 2016), {; = (2 log (g—g)) , ¢ > 0 such that ) 2, 7[{1 <
1.

Then batch cumulative regret satisfies the following bound

R(TB) TI(TB) (B) W+ YTB
L) e Jo, B L) S .
P T ST +Ny W Cq TB >1-9% (6.3)

where for EST, n,([B) = vy + (¢ and for UBC, n,(LB) = Z(Biﬁ)UCB)]/Z, and
t* = argmax vs.
se(t]

Proof. See. Appx. D.1. O

Remark 6.2. This theorem shows that, for the same kernel, the regret
bound of LAW also enjoys the same asymptotic behavior as the regret
bound of existing works (Contal et al., 2013; Desautels et al., 2014;
Kathuria et al., 2016).

Remark 6.3. Note that Thm. 6.1 is about a bound on %R(TB) while the
analysis in (Desautels et al., 2014; Kandasamy, Krishnamurthy;, et al.,
2018) is to bound %RT,B where Ry = Zt,b Typ. Since %R(TB) <
T1—BRT,3, bounding TLBRT/B implies bounding %R(TB). For the purpose
of showing vanishing simple regret, both approaches are viable. Tech-
nically, two approaches require different treatments. See Appx. D.1.3

for the discussion on the differences between two approaches.

Remark 6.4. The ratio 7+ in Thm. 6.1 determines how LAW balances
between the quality and the diversity. If the ratio is large, then the
acquisition value is more influential in Eq. 6.2. Otherwise, Eq. 6.2 is
dominated by the determinant of the diversity gauge, and the diver-
sity of the batch is more emphasized. The bound in Eq. 6.3 reveals
the necessity of the upper bound of % Without the upper bound,
i.e. virtually considering the acquisition value only, the batch acqui-
sition may result in non-vanishing regret. However, the bound is not
tight enough considering the extreme case % = 1. Nonetheless, the
necessity of the upper bound of 7= guides how the weight function
w(-) is set (See for details). Moreover, the benefit of considering the
acquisition weight is supported by the experimental results (Sec. 6.5)

Note that n(TB) = 0(y/10g(TB)) (See Appx. D.1.4 for details). In

Thm. 6.1, we need n(TB) -/ ¥# — 0 to prove vanishing simple regret.
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We provide a bound for the maximum information gain yt of a kernel
on a finite space, which we use later to show the vanishing simple
regret.

Theorem 6.2. K is a kernel on a finite set X (| X| < o0), o2 is the variance
of the observation noise and A = {An}y ... x| (An = Any1 > 0) is the set
of eigenvalues of the gram matrix K(X, X). Then

1
v1 < 5 min{T - logdet(1 + o~ % maxK(x,x)),
2 xeX

1] log(1+ 0 *AmaxT)} (6.4)
where Ay ax is the largest eigenvalue of K(X, X).

Proof. See. Appx. D.2.1 O

6.3.3 Position Kernel

Based on the comparative experiments in (Zaefferer et al., 2014)
showing that the Position kernel outperforms others consistently,26,
we use the position kernel in our BBO on permutations

K(mr, malt) = exp (=7 ) Iy (1) =75 ' (0)]).

The positive definiteness of the position kernel was empirically tested
via simulation (Zaefferer et al., 2014) and has not been shown rigor-
ously. Therefore, we show the positive definiteness of the position
kernel and bound its eigenvalues.

Theorem 6.3. The position kernel K(-,-|t) defined on Sy is positive definite

N
and the eigenvalues of K(X,X) where X C X lie between (}%z) and

N
(}%S) where p = exp(—T1).

Proof. See Appx. D.2.2 O

By utilizing the property of the position kernel, we provide a bound
on the maximal information gain which is tighter than the one ob-
tained in Thm. 6.2.

Theorem 6.4. K(-,-|T) is the position kernel defined on SN, o2 is the
variance of the observation noise, p = exp(—1) and, Dmax = (N2 —
(N mod 2))/2.

We also compared different kernels on regression tasks, including Kendall, Mal-
low (Jiao and Vert, 2015), Hamming, Manhattan, Position (Zaefferer et al., 2014) and
Neural Kernel Network (NKN) (S. Sun, G. Zhang, C. Wang, et al., 2018) using men-
tioned kernels as building blocks. The position kernel and NKN performs similarly
the best. NKN uses the position kernel as a building block kernel which is attributed
to the position kernel in the performance of NKN.



Then

¥r < 3 min(A(T), 1] 1og(1 + 0 ApaxT)

where A ax 15 the largest eigenvalue of K(X, X) and

A(T) =log(1+ 0 2(1+ (T —1)pPmax))
+(T—=1)log(1 + o 2(1 — pPmex))

which is smaller than T - log(1 + 02 maxyex K(x,x)).
Proof. See Appx. D.2.3 O

Remark 6.5. When p € (0,1) is close to one, ie. log(1+ o 2(1 —
pPmax)) & 0, we can observe that even in the finite-time regime, the
regret is almost sublinear since it is dominated by log(1 + o~ 2(1 +
(T —1)pPmax)). In this case, the theorem provides a bound which is
significantly tighter than the bound in Thm. 6.2 even in the finite-time
regime.

Remark 6.6. If Ay qx is bounded, Thm. 6.2 can show the vanishing sim-
ple regret. For a kernel K on a finite space X, Amax < trace(K(X, X)) <
oo. Therefore, vyt = O(log(T)) for any kernel. However, considering
the magnitude of | X | and Ay qx for large spaces, Eq. 6.4 is quite loose.
Amax in Eq. 6.4 reflects kernel-dependent behavior of yt. Therefore,
in Thm. 6.4 we bound Ao« for a specific kernel and analyze further
kernel-dependent non-asymptotic behavior.

The regret bounds of LAW are most informative in the asymptotic
regime of large T. However, in Bayesian optimization where, typically,
only a small number of evaluations can be afforded, the asymptotic
bound may not be informative in terms of practical performance. In
Sec. 6.5, we show that, in practice, LAW significantly outperforms
other methods.

6.4 RELATED WORKS

Most existing batch Bayesian optimization methods using Gaussian
process surrogate models focus on continuous search spaces. Many
of them are not applicable to combinatoral spaces because the algo-
rithms use specific properties of Euclidean spaces, e.g, Euclidean dis-
tance (Azimi, Fern, et al., 2010; Gonzélez et al., 2016; Kathuria et
al., 2016; Lyu et al., 2018; Zi Wang, B. Zhou, et al., 2016; Wu and
Frazier, 2016), grid partitioning (Zi Wang, Gehring, et al., 2018; Zi
Wang, C. Lj, et al., 2017), projection using Euclidean geometry (Jialei
Wang et al., 2020). The methods (Gong et al., 2019; Kandasamy, Kr-
ishnamurthy, et al., 2018; Shah and Ghahramani, 2015) using Thomp-
son sampling (TS) (Thompson, 1933; ]J. Wilson et al., 2020), random
feature (Rahimi, Recht, et al., 2007) or entropy search (Hennig and
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Schuler, 2012; J. M. Hernandez-Lobato, M. W. Hoffman, et al., 2014)
require either closed-form expression of eigenfunctions or Choleksy
decomposition of the gram matrix on all points in the search space.
In general, a closed-form expression of eigenfunctions (RBF) is not
available. For large combinatorial spaces, Choleksy decomposition is
infeasible. LAW is a batch acquisition method applicable to general
spaces including permutation spaces.

Recently, BO on combinatorial spaces has made significant progress
for categorical variables (Baptista and Poloczek, 2018; Dadkhahi et
al., 2020; Deshwal, Belakaria, J. R. Doppa, and Fern, 2020; Changy-
ong Oh, Tomczak, et al., 2019; K. Swersky, Rubanova, et al., 2020).
However, relatively few works in Bayesian optimization have focused
on permutations (Bachoc et al., 2020; Zaefferer et al., 2014; J. Zhang
et al., 2019). While existing works focus on the effect of the kernel
on performance, our focus is to scale up Bayesian optimization on
permutations via batch acquisition, which has not been studied in
previous works.

The application of determinantal point processes (DPPs) to Bayesian
optimization is not new. The use of DPP and the regret analysis on
continuous search spaces (Kathuria et al., 2016) is closely related to
our work. We focus on optimization problems on permutations rather
than continuous spaces and use acquisition weighted kernels in our
DPP. We provide a regret bound, which includes the unweighted case
as a special case. Moreover, we show the behavior of the information
gain of the position kernel, which, in turn, helps to understand the
behavior of BO on permutations.

The idea of using weighted kernels was investigated in DPP (Kulesza
and Taskar, 2010, 2012), also recently in the context of active learn-
ing (Biyik et al., 2019) and more recently in architecture search (V.
Nguyen, T. Le, et al., 2021). In addition to the use of the acquisition
weights, we provide a regret analysis and the bound on the informa-
tion gain of the position kernel for BO on permutations.

In existing works on regret analysis of batch Bayesian optimization,
the cumulative regret is analyzed as an end goal (Desautels et al.,
2014) and as a medium to show vanishing simple regret (Kandasamy,
Krishnamurthy, et al., 2018). On the other hand, we analyze the batch
cumulative regret not the cumulative regret (see Def. 6.3 and remarks
thereafter). The batch cumulative regret is analyzed in (Contal et al.,
2013) but without the acquisition weight. More detailed discussion on
the difference among all these analyses is provided in Appx. D.1.3.
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6.5 EXPERIMENTS

We empirically demonstrate the benefit of LAW on many optimiza-
tion problems on permutations.?”

In all Gaussian process (GP) based BO including baselines, we use
the position kernel (see. Subsec. 6.3.3). At each round, evaluation
outputs are normalized. GP surrogate models are trained with output
normalized evaluation data by optimizing the marginal likelihood
until convergence with 10 different random initializations. We use the
Adam optimizer (Kingma and Ba, 2015) with default PyTorch (Paszke
et al., 2017) settings except for the learning rate of 0.1.

When the optimization is performed on a single permutation vari-
able, for example in greedy optimization, hill climbing is used until
convergence and the neighbors are defined as the set of permutations
obtainable by swapping two locations.

6.5.1  Weight function

The motivation of the acquisition weight is to promote the quality
of the queries in the batch by using acquisition weights. In order to
reflect this motivation, the weight function should be monotonically
increasing. The better the quality (acquisition value) is, the larger the
batch acquisition objective is.

In Eq. 6.2, the batch acquisition objective is factorized into the DPP
with the diversity gauge and the product of weights, thus the weight
function should be positive to prevent the product of an even num-
ber of large negative values becomes a large positive value. Also, in
Eq. 6.2, zero weight value nullifies the diversity component, thus the
weights function is required to be nonzero.

In Thm. 6.1, for vanishing regret, the ratio =+ should be upper-
bounded. Not only it facilitates the proof, but the upper bound is also
intuitively appealing because we do not want to overly emphasize
the quality of the queries. We want to balance quality and diversity.
Weight functions with an unbounded ratio may erase the diversity
consideration.

Combining the rationale behind LAW and its regret analysis, we set
the weight function to be, monotonically increasing, positive valued,
bounded below, bounded above.

6.5.2 Combinatorial Optimization Benchmarks

We consider LAW with two acquisition functions®®, EST (Zi Wang,
B. Zhou, et al., 2016) and EI (Jones et al., 1998), LAW-EST and LAW-EL

The code is available at https://github.com/ChangYong-0h/LAW20RDER
The ¢ in UCB balancing between exploitation and exploration increases as the size
of the search space increases in the finite search space case (Srinivas et al., 2010). In
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| BATCH BAYESIAN OPTIMIZATION ON PERMUTATIONS

Even though the regret bound of LAW-EI is not provided in Thm. 6.1,
we include LAW-EI because EI is the most popular acquisition func-
tion and this reveals the effect of the acquisition weights with differ-
ent acquisition functions. We use the sigmoid w(a) = 0.01 +0.99(1 +
exp(—0.2-a))~! for LAW-EST and w(a) = 0.01 + a for LAW-EI.2

= BUCB  ~—— DPP-MAX-EST

DPP-MAX-SAMPLE

= MACE-UCB = MACE-EST == gqEl = QqEST = LAW-El ~—— LAW-EST

QP-esc320(5)

BEEEEE

Figure 6.1: Quadratic Assignment Problems (15 runs)

Table 6.1: Quadratic Assignment Problems (15 runs)

Benchmarks QAP-chriza QAP-nug22 | QAP-esc32a
Batch 5 5 10
BUCB 18105 + 955 (8) - -
DPP-MAX-EST | 14732+ 634 (7) | 3900 £23 (5) | 276.5£3.9 (6)
DPP-SMP-EST | 19970 +719 (9) | 4446 +£22 (8) | 319.6 £3.8 (8)
MACE-UCB 13440 + 348 (5) | 4031 +26 (6) | 250.3 +3.5 (5)
MACE-EST 14126 +£596 (6) | 4086 + 20 (7) | 285.6 +3.1 ()
q-EI 12769 +457 (4) | 3653+ 10 (1) | 172.7 £3.2 (2)
q-EST 11790 £498 (1) | 3690 +15(2) | 171.2+1.8 (1)
LAW-EI 11914 +£345 (2) | 3724 +13 (3) | 1925+5.3 (4)
LAW-EST 12067 £238 (3) | 3731+ 9(4) | 191.74+2.9 (3)

The baselines are BUCB (Desautels et al., 2014), DPP-MAX-EST,
DPP-SAMPLE-EST (Kathuria et al., 2016)3° MACE-UCB, MACE-EST
(Lyu et al., 2018)3" and q-EI, q-EST (Ginsbourger et al., 2008). Even
though the original names of the baselines are used to emphasize
their batch acquisition strategy, all baselines use the position kernel.
Hence, the batch acquisition strategy is the only differentiating factor
among baselines and LAW(ours). Note that DPP-MAX-EST (Kathuria

the experiments, due to the size of the search space, GP-UCB virtually becomes the
predictive variance. Thus we exclude LAW-UCB.

LAW-EL is included to check the influence of different acquisition functions despite
the lack of regret analysis. Therefore, the weight function is chosen to prevent zero
values from numerical truncation.

PE (Contal et al., 2013) is equivalent to DPP-MAX-UCB (Kathuria et al., 2016). Since
on continuous problems DPP-MAX-EST outperforms DPP-MAX-UCB (Kathuria et
al., 2016), we exclude PE.

The MACE requires multi-objective optimization on permutations. We use NSGA-
II (Deb et al., 2002) in Pymoo (Blank and Deb, 2020). MACE-UCB uses the original
set of acquisition functions: PI, EI and UCB (Lyu et al., 2018), while MACE-EST
replaces UCB with EST.
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et al., 2016) corresponds to LAW-EST with w(:) = const., i.e. no
acquisition weight.

Note that, due to the reasons discussed in Sec. 6.4, existing works
based on Thompson sampling or the properties of Euclidean space
are excluded from the baselines.

= BUCB = DPP-MAX-EST DPP-MAX-SAMPLE =~ == MACE-UCB = MACE-EST === gEl = GEST = LAW-El = LAW-EST

Fspcars(sio) FSPhe2(S)

LR B B O O |

Figure 6.2: Permutations Benchmarks (15 runs)

Table 6.2: Flowshop Scheduling Problems (15 runs)

Benchmarks FSP-cars FSP-hel2 FSP-reC19
Batch 5 5 10
BUCB 7887 £32 (8) - -

DPP-MAX-EST | 7796 £ 11 (7) | 142.5+0.48 (5) | 2262+ 7.7 (6)
DPP-SMP-EST | 7973 +£26 () | 151.7£0.58 (8) | 2410+ 6.1 (8)
MACE-UCB 7776 £10 (1) | 143.1£042 (7) | 2252+ 5.8 (5)
MACE-EST 7791+ 9(5) | 142542045 (5) | 2282+ 5.9 (7)

q-EI 778311 (4) | 1412+0.66 (3) | 2231+ 8.4 (3)
q-EST 7782+ 9(3) | 141.0£0.49 (2) | 2242+£12.1 (4)
LAW-EI 7794+ 8(6) | 141.2+045 (3) | 2211+ 45 (2)
LAW-EST 7780+ 7 (2) | 140.7+£0.31 (1) | 2202+ 4.2 (1)

We consider three types of combinatorial optimization on permuta-
tions, Quadratic Assignment Problems (QAP), Flowshop Scheduling
Problems (FSP) and Traveling Salesman Problems (TSP) (See Appx.
D.3.3 for data source).

For each benchmark, all methods share 5 randomly generated ini-
tial evaluation data sets of 20 points and for each initial evaluation
data set, each method is run three times — 15 runs in total.

DPP-MAX-EST uses the position kernel as LAW-EST, this is equiv-
alent to LAW-EST without the acquisition weight, i.e. w(a) = 1. By
comparing LAW-EST with DPP-MAX-EST, we can directly evaluate
the benefits of using the acquisition weight.

As shown in Tab. 6.1,6.2,6.3 and Fig. 6.1,6.2,6.3, LAW-EI, LAW-EST,
g-EI and q-EST are in top four except for FSP-car5 and TSP-att48.
LAW-EST performs the best on FSP and TSP while g-EI or g-EST per-
form the best on QAP. Along with the experiment on the structure
learning (Subsec. 6.5.3), we conjecture that QAP has a certain struc-
ture more friendly to g-EI and q-EST. Also LAW-EI exhibits compa-
rable performance with g-EI and q-EST while outperforming other
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= BUCB —— DPP-MAX-EST DPP-MAX-SAMPLE ~ = MACE-UCB = MACE-EST = qEl =—— GEST =—— LAW-El —— LAW-EST

TSP-bayg29(sm) TSPattaa(Sie)
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Figure 6.3: Traveling Salesman Problems (15 runs)

Table 6.3: Traveling Salesman Problems (15 runs)

Benchmarks TSP-burmai4 | TSP-bayg2g TSP-att48
Batch 5 5 10
BUCB 4184 +£132 (8) - -
DPP-MAX-EST | 3786+ 74 (7) | 2727 £50 (6) | 39539 £487 (7)
DPP-SMP-EST | 4603+ 52 (8) | 3653 £ 29 (8) | 40893 + 265 (8)
MACE-UCB 3583+ 21(6) | 2698 +£50 (5) | 25773 £ 371 (4)
MACE-EST 3576+ 25(5) | 2940 +£49 () | 32711 £ 212 (6)
q-EI 3427+ 40 (3) | 2065 +£36 (3) | 20472 £502 (2)
q-EST 3527+ 75(4) | 2060 £48 (2) | 21199 £+ 620 (3)
LAW-EI 3466+ 26 (2) | 2487 £47 (4) | 26864 + 589 (5)
LAW-EST 3369+ 7 (1) | 2038 £36 (1) | 19846 £485 (1)

baselines, which supports the benefit of the acquisition weight. In
terms of the average rank over all benchmarks, LAW-EST performs
the best with the average rank of 1.89 against g-EST (2.44) and g-
EI (2.78). Overall, among the baselines, LAW-EST exhibits stable and
competitive performance across different benchmarks.

Comparison to the local penalization (LP)

Two additional variants of LAW, LAW-PRIOR-EST and LAW-PRIOR-
EL are also compared (Appx. D.4), which use the prior covariance
function as the diversity gauge, L = K, of Lf\W. These variants do not
use evaluation data in the diversity gauge.

Interestingly, LAW-PRIOR-EST and LAW-PRIOR-EI resemble the
local penalization (LP) (Gonzélez et al., 2016) (Appx. D.3.2), and thus
this allows an indirect comparison to LP which is not applicable to
combinatorial spaces.3*

These variants using the prior covariance function performs worse
than LAW using the posterior covariance function, which is natural
since using more data for the diversity gauge enhances the perfor-
mance. More importantly, LAW-PRIOR-EST and LAW-PRIOR-EI out-
perform DPP-MAX-EST which uses the posterior covariance function

LAW variants use the kernel of the GP surrogate model as the diversity gauge which
is more guided by data while LP uses the local penalizer which is heuristically de-
signed. We expect that this distinction will still make a difference on the perfor-
mance.
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without the acquisition weight, which supports that the acquisition
weight is key in the performance improvement.

Based on the empirical analysis above, we choose LAW-EST as our
final recommendation, which we call LAW20RDER.

6.5.3 Structure Learning

— GA

SACHS(S11)

— gl

—— qEST

—— LAW-EST

CHILD(S20)
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Figure 6.4: Neg. log NML minimization for the structure learning (5 runs)

Table 6.4: Neg. log NML minimization for the structure learning (5 runs)

BN(#Node) Sachs(11) Child(20) Insurance(27) Alarm(3y)
Sec. to eval. 60 ~ 8o 120 ~ 140 150 ~ 170 200 ~ 220
Method #Eval C =76100 C = 124000 C =135000 C =117000
GA 620 | 5346+ 4.99 1387.12+79.26 | 3330.60+406.92 4825.19 +£570.55
GA 1240 | 31.90+ 5.86 1368.07 £ 92.26 | 2814.04 £418.49 4114.97 £449.93
q-EI 620 | 55.98+10.11 864.85 £ 0.16 433.23 £357.18 2969.00 £518.67
q-EST 620 | 70.67 £16.31 928.834+32.97 | 1215.75 £ 556.36 2739.77 £554.12
LAW-EST 620 2958+ 6.36 866.64 £ 0.39 33.95 + 174.04 1409.27 + 227.57

We apply LAW20RDER to the score-based structure learning prob-
lem (Drton and Maathuis, 2017). Existing score-based methods as-
sume a computationally amenable structure of the score to be opti-
mized (decomposability) (Koller and Friedman, 2009; Scutari et al.,
2019). Distinctively our approach does not necessitate the decompos-
ability of the score to be optimized.

We consider the NML score as below

SnMmL(G, D) = —1logpen(D1G,0mrL(S, D)) + REGNML(S, | DI)

where pgn (-G, 0) is the density of Bayesian Network (BN) with DAG
G and the parameter 6, and REGnmp is the normalized marginal
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likelihood (NML) which is a complexity measure from the minimum
description length principle (P. D. Griinwald and Grunwald, 2007).
NML is not decomposable, and thus the methods assuming a decom-
posable score are not applicable. Since it is infeasible to compute
NML exactly and we resort on MC estimate, the NML score evalua-
tion is noisy. In addition to not being decomposable, noisy evaluation
also makes existing methods inapplicable to the NML score objective.
For more details of NML and its MC estimate, see Appx. D.3.4.

Similarly to (Raskutti and Uhler, 2018; Solus et al., 2021) we search
over permutations specifying topological order of DAGs and the ex-
istence of edges is determined by the conditional independence test.
In addition to q-EI and g-EST performing well on the benchmarks,
we compare LAW20ORDER with the genetic algorithm (GA), which
is one of the most popular choices for optimization problems on per-
mutations including TSP (Potvin, 1996).

We generated 5 sets of 20 random initial points. LAW20RDER,
q-EI and g-EST is run on each of these 5 sets using a batch size 2o0.
Assuming the same resource constraint (at most 20 evaluations in
parallel), GA generates 20 off-springs in each generation. GA is also
run 5 times with a population size of 100 points using Pymoo (Blank
and Deb, 2020). The first 20 points of each initial population in the 5
runs are equal to the 20 initial points used in LAW20RDER, g-EI and
q-EST. Even though the real deployment of Bayesian optimization
assumes that the cost of evaluation is expensive enough to render the
time to acquire new batches negligible, as a stress test, we allowed
twice the evaluation budget for GA.

On data generated from 4 real-world BNs (Scutari, 2010; Scutari et
al., 2019), the results are reported in Fig. 6.4 and Tab. 6.4. LAW20RD-
ER outperforms g-EI and g-EST with a significant margin except for
Child where all three find the putative optimum quickly. Still, in
Child, LAW20RDER finds a point of negligible differences with the
putative optimum the most quickly. Also, except for Sachs, we ob-
serve that the performance gap increases as the permutation size (the
size of the search space) increases. On this realistic problem, our ar-
gument that LAW20RDER is stable and efficient batch acquisition
method on permutations is reinforced.

In comparison with GA, we consider GA(620) with the same evalua-
tion budget and GA(1240) with twice large evaluation budget. LAW2-
ORDER dominates GA(620) in all problems with a significant margin.
Even compared with GA(1240), LAW20RDER significantly outper-
forms except for Sachs which has one of the smallest search spaces
(See Tab. 6.4 and Appx. D.4). Contrary to our expectation that BO has
the sample efficiency higher than GA, GA(620) outperforms g-EI and
q-EST on Sachs. LAW20ORDER shows robust performance even in the
problem where the performance of q-EI and g-EST is degraded.



Together with the experiments on the benchmarks, LAW20ORDER
is shown to be a robust batch acquisition method on permutations.
Moreover, promoting the diversity in batches while taking into ac-
count the acquisition weight appears more beneficial with larger batch
size (20) as shown in the structure learning experiment.

6.6 CONCLUSION

In this chapter we have focused on combinatorial optimization prob-
lems over permutations where each evaluation is assumed to be ex-
pensive. This class of problems has many interesting applications,
ranging from chip design (where we wish to place cells while min-
imizing area and wire-length), warehouse optimization (where we
need to order the retrieval of items from a warehouse using a robot),
neural architecture search and so on. In spite of its practical signifi-
cance, BO on permutations is under-explored in contrast to the recent
progress on combinatorial BO with categorical variables.

In response to this, we have proposed a batch Bayesian optimiza-
tion algorithm on permutations, LAW20ORDER, which uses an exten-
sion of the determinantal point processes with the acquisition weight-
ed kernel. This allows the search process over the surrogate function
to make optimal use of all parallel available computational resources
and be guided by both the expected objective value and its posterior
uncertainty.

On the theory side we offer a regret analysis, which shows that
the regret bound of LAW enjoys the same asymptotic behavior as
existing methods. On the empirical side, we show that LAW vari-
ants consistently exhibit competitive performance on a wide range of
combinatorial optimization tasks, including a challenging structure
learning problem.

From these we conclude that the acquisition weights are indeed
a key factor in the success of the proposed method, and that the
performance gains increase for large batch sizes.

LAW is applicable to general search spaces for which a kernel can
be defined. We leave the exploration of our method to applications
outside searching over permutations for future work.

LAW achieves improved sample efficiency in the sense that the
quality of batches from LAW is maintained for large batch sizes.
However, due to the sequential nature of the greedy maximization
of LAW objective, its computational complexity is linear with respect
to the batch size. Especially for large permutation spaces, this may
be a nonnegligible cost. We hope that the sample efficiency of LAW
is complemented by the computational efficiency allowing massive
parallelization.
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Even though the regret bound in Thm. 6.1 describes the effect of
the acquisition weight, as mentioned in Rmk. 6.4, it only sheds light
on the demerit of excessive emphasis on the acquisition weights but it
does not detect the demerit of considering the diversity only. We hope
our work inspires the regret bound for acquisition methods taking
into account properties other than diversity.
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BAYESIAN OPTIMIZATION
FOR MACRO PLACEMENT

Macro placement is the problem of placing memory blocks on a
chip canvas. It can be formulated as a combinatorial optimization
problem over sequence pairs, a representation which describes the
relative positions of macros. Solving this problem is particularly
challenging since the objective function is expensive to evaluate. In
this chapter, we develop a novel approach to macro placement using
Bayesian optimization (BO) over sequence pairs. BO is a machine
learning technique that uses a probabilistic surrogate model and an
acquisition function that balances exploration and exploitation to ef-
ficiently optimize a black-box objective function. BO is more sample-
efficient than reinforcement learning and therefore can be used with
more realistic objectives. Additionally, the ability to learn from data
and adapt the algorithm to the objective function makes BO an ap-
pealing alternative to other black-box optimization methods such as
simulated annealing, which relies on problem-dependent heuristics
and parameter-tuning. We benchmark our algorithm on the fixed-
outline macro placement problem with the half-perimeter wire length
objective and demonstrate competitive performance.

7-1 INTRODUCTION

In chip placement two different types of objects are placed on a
chip canvas: macros, which are large memory blocks, and standard
cells, which are small gates performing logical operations. Compared
to macros, standard cells are typically thousands of times smaller but
tens or hundreds of thousands of times more numerous. While stan-
dard cell placement can be efficiently solved using continuous opti-
mization, e.g. (C.-K. Cheng et al., 2019), macro placement is typically
framed as a combinatorial optimization problem due to their larger
physical size. This involves searching over the discrete set of rela-
tive positions between pairs of macros, e.g. whether macro i is to the
left or right of macro j, which act as constraints against overlapping
macros. The most popular combinatorial representation of relative
positions is called the sequence pair which is composed of a pair of
permutations, one per spatial dimension (Murata et al., 1996).

The goal of macro placement is to place macros in such a way that
the power, performance and area metrics are jointly optimized. The
combinatorial nature and varying sizes of macros and standard cells,
together with the cost of evaluating the objective function (several
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Figure 7.1: Bayesian optimization for a macro placement workflow for N =
3 macros and batch size B = 2. First we fit a surrogate model
(Gaussian process) to the data, updating the mean p and stan-
dard deviation o of the cost function estimate for each sequence
pair, here represented as a pair of N dimensional arrays where
permutations correspond to different colors patterns. Then we
optimize an acquisition function a conditioned on the data ob-
served so far to find new sequence pairs x1,...,xg. Next we
evaluate x1,...,xp by placing macros to minimize HPWL while
respecting the sequence pair constraints, and compute the cor-
responding objective values yy,...,yg. Here P; is the perimeter
of the i-th bounding box of the net between macros and I/O
pads. Finally we add these new points to the dataset and repeat
the procedure until the computational budget is exhausted.

days for complex designs), make macro placement a notoriously chal-
lenging step in physical design. Macro placement is also related to
floorplanning, where standard cells are clustered in soft rectangles
that are jointly placed with hard rectangles that represent macros (A.
Kahng et al., 2011). In practice, designers manually place macros
based on their intuition which is likely sub-optimal.

Machine learning algorithms offer an advantage over traditional
optimization algorithms for macro placement since they can learn
from past designs and improve over time in an automated fashion,
adapting the algorithms to specific use cases. Applying machine
learning to physical design has therefore recently emerged as a main
research effort in electronic design automation (A. B. Kahng, 2018).
In particular, reinforcement learning (RL) provides a natural frame-
work for automating design decisions, where an agent plays the role
of a designer in carefully selecting parameter configurations to eval-
uate next while searching for optimal solutions. However, in practice
applying RL is very costly because of the large number of samples
required for learning a good policy, due in part to the very large de-
sign space and costly evaluation as remarked above. For this reason,
to the best of our knowledge, applications of RL in the literature are
either limited to a handful of parameters (Agnesina et al., 2020) or
require the use of cheap proxies instead of the real objective (Mirho-
seini et al., 2021), which changes the focus towards designing good
proxies.

Bayesian optimization (BO) is a technique that is well-known for
its sample-efficiency, whereby it carefully explores the optimization