
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Bayesian optimization on non-conventional search spaces

Oh, C.

Publication date
2023
Document Version
Final published version

Link to publication

Citation for published version (APA):
Oh, C. (2023). Bayesian optimization on non-conventional search spaces. [Thesis, fully
internal, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:31 Aug 2023

https://dare.uva.nl/personal/pure/en/publications/bayesian-optimization-on-nonconventional-search-spaces(3747b1bd-d04f-4fbf-9a29-ba8481fc890d).html

Bayesian O
ptim

ization on N
on-conventional Search Spaces Changyong O

h

Bayesian Optimization on
Non-conventional Search Spaces

Changyong Oh

1

���������	
����
����������������������������������
����
�

�������������	� ����� !

�������"��#$��$�����%��$���%�����%�����

����%��&����������������������%��

�
�$�
�$�����%�����������$��'��(�

��')�%�)���)��)�)�)�)�*��+��"

����������������������%�������������$�������������������$�����%�����������,

��������
��+����������%�%�$������%���(���%���&�����������

�
�%��%��%�$�-.�#(���/0/1,����--)00�((�

%��������$�2��$�	�

$�+�����������$(

�������������		��

���������
��')�%�)��)�3�����$� &����������������������%��
�

����������	
� %�)��)�4������ &����������������������%��
%�)��)����%����� ��
�����������$��5��%��
��

��	�
�	��	�	��
��')�%�)��)�)����� �3!���������&���������

��')�%�)��)�)�	�+���� &�����������'�	6'��%

��')�%�)��)4)�����(�� &����������������������%��
%�)��)!)���������" &����������������������%��
%�)��)�������
�(� &����������������������%��

 ��(������%������((�7��������

��,�3��"(�%�������'���������

Copyright © 2023 Changyong Oh, Seoul, South Korea

S U M M A R Y

Thanks to its high sample efficiency, BO has been popular and suc-
cessful in high-cost design problems. Nonetheless, the application of
BO in the literature has been restricted to low-dimensional Euclidean
spaces. Along with the ever-increasing complexity and diversity of
design problems, the necessity of effective BO in various spaces is
increasing. In response to such demand, in this thesis, we propose
BO on spaces other than low-dimensional Euclidean ones to broaden
the applicability of BO. Specifically, motivated by the successes of BO
with the Gaussian process (GP) surrogate model on low-dimensional
Euclidean spaces, we focus on BO with the GP surrogate model.

Our contributions are as follows

• We propose Bayesian optimization on high-dimensional Euclid-
ean spaces, BOCK (Chapter 3). To mitigate the excessive ex-
ploration of high-dimensional BO, we use the cylindrical trans-
formation that makes BO focus more on the promising region,
i.e. the center of the search space. We demonstrate that BOCK
achieves competitive performance on high-dimensional prob-
lems up to 500 dimensions without making structural assump-
tions on the objective.

• We propose Bayesian optimization on combinatorial spaces with
ordinal and categorical variables, COMBO (Chapter 4). Repre-
senting a combinatorial space with a graph, called the combi-
natorial graph, we propose the ARD diffusion kernel that effi-
ciently and scalably models the smoothness of functions on a
combinatorial space. The ARD diffusion kernel equips BO with
a variable selection mechanism, which helps improve the sam-
ple efficiency. We demonstrate that COMBO exhibits superior
sample efficiency with scalability up to a combinatorial problem
with 260 choices.

• To model dependence between different types of variables, we
propose frequency modulation (Chapter 5) – modulating the fre-
quency of the ARD diffusion kernel (Chapter 4) with distances
of continuous variables. We find out that BO is degraded with-
out an additional condition – the similarity measure behavior of
the kernel – and thus provide a sufficient condition to guaran-
tee it. We show that, with the similarity measure behavior, BO
with the GP surrogate model can achieve high sample efficiency
on mixed-variable spaces.

v

vi summary

• We propose a batch acquisition method applicable to permuta-
tion spaces, LAW (Chapter 6). To alleviate the difficulty of the
joint optimization of multiple permutations, we adapt Determi-
nantal point processes (DPP) based approach. In LAW, diversity
captured by DPP is augmented with the acquisition weights for
quality. We analyze the effect of weights on the regret bound in
LAW. Empirically, we demonstrate that considering quality en-
ables the batch acquisition method to scale well to large batch
sizes.

• We show the potential of BO for combinatorial optimization
problems in chip design. We adapt LAW for the macro place-
ment of a practical scale (Chapter 7). We demonstrate that BO
significantly outperforms simulated annealing and performs co-
mpetitively to methods specialized to a specific objective. The
experiment supports that BO can be a competitive option for
combinatorial problems in chip design when the objective is ex-
pensive but close to the ultimate chip performance metric.

S A M E N VAT T I N G - S U M M A R Y I N D U TC H

Dankzij zijn hoge sample-efficiëntie is BO populair en succesvol bij
ontwerpproblemen met hoge kosten. Toch is de toepassing van BO
in de literatuur beperkt tot laag-dimensionale Euclidische ruimtes.
In samenhang met de steeds toenemende complexiteit en diversiteit
van ontwerpproblemen neemt de behoefte naar effectieve BO in alter-
natieve ruimtes toe. Als antwoord hierop stellen we in dit proefschrift
BO-methodes voor die functioneren in ruimtes die anders zijn dan
laag-dimensionale Euclidische ruimtes. In het bijzonder, gemotiveerd
door de successen van BO met het Gaussische proces (GP) surrogaat-
model op laag-dimensionale Euclidische ruimtes, richten we ons op
BO met het GP-surrogaatmodel.

Onze bijdragen zijn als volgt:

• We introduceren BOCK (Hoofdstuk 3) voor hoog-dimensionale
Euclidische ruimtes. Om de overmatige verkenning van hoog-
dimensionale BO te vermijden gebruiken we de cilindrische
transformatie, waardoor BO zich meer richt op de veelbelovende
regio, d.w.z. het centrum van de zoekruimte. We demonstreren
dat BOCK competitieve prestaties behaalt op hoog-dimensionale
problemen tot wel 500 dimensies zonder enige structurele aan-
names te maken over het optimalisatie doel.

• We introduceren COMBO (Hoofdstuk 4) voor Bayesiaanse op-
timalisatie op combinatorische ruimten met ordinale en cate-
gorische variabelen. Door een combinatorische ruimte weer
te geven als een graaf, de combinatorische graaf, introduceren
we de ARD-diffusiekernel die efficiënt en schaalbaar de glad-
heid van functies in een combinatorische ruimte modelleert. De
ARD-diffusiekernel rust BO uit met een selectiemechanisme voor
variabelen, wat zorgt voor een betere sample-efficiëntie. We
demonstreren dat COMBO een superieure sample-efficiëntie he-
eft met schaalbaarheid tot een combinatorisch probleem met 260
keuzes.

• Om de afhankelijkheid tussen verschillende soorten variabelen
te modelleren, introduceren we frequentiemodulatie (Hoofdstuk
5), wat de frequentie van de ARD-diffusiekernel (Hoofdstuk 4)
moduleert met afstanden van continue variabelen. We observer-
en dat de prestaties van BO worden gedegradeerd zonder een
aanvullende voorwaarde – namelijk het gedrag van de gelijkenis-
maat van de kernel – en introduceren een voorwaarde die dit

vii

viii samenvatting

garandeert. We laten zien dat BO met het GP-surrogaatmodel
een hoge sample-efficiëntie kan bereiken op gemengde-variabele
ruimten.

• We stellen een batch-acquisitiemethode voor die toepasbaar is
op permutatieruimten, LAW (Hoofdstuk 6). Om de complex-
iteit van de gezamenlijke optimalisatie van meerdere permu-
taties te verminderen, passen we de methode van determinan-
tale puntprocessen (DPP) aan. In LAW wordt diversiteit vast-
gelegd door DPP geschaald met de acquisitiegewichten voor
kwaliteit. We analyseren het effect van gewichten op de spijt-
grens in LAW. We laten empirisch zien dat het in acht nemen
van de kwaliteit ervoor zorgt dat de batch-acquisitiemethode
kan worden opgeschaald naar substantiële batchgroottes.

• We tonen het potentieel van BO aan voor combinatorische opti-
malisatieproblemen bij chipontwerp. We passen LAW aan voor
de macroplaatsing op een praktische schaal (Hoofdstuk 7). We
demonstreren dat BO aanzienlijk beter presteert dan simulated
annealing en competitief is met methodes die gespecialiseerd
zijn in een specifiek doel. Het experiment ondersteunt dat BO
een competitieve optie kan zijn voor combinatorische proble-
men bij het ontwerpen van chips wanneer het optimalisatiedoel
duur is, maar dicht bij de ultieme maatstaf voor chipprestaties
ligt.

L I S T O F P U B L I C AT I O N S

This thesis is based on the following publications:

Changyong Oh, Efstratios Gavves, and Max Welling. "BOCK:
Bayesian optimization with cylindrical kernels." ICML, 2018.

Changyong Oh, Jakub M. Tomczak, Efstratios Gavves, and Max
Welling. "Combinatorial Bayesian Optimization using the Graph
Cartesian Product." NeurIPS, 2019.

Changyong Oh, Efstratios Gavves, and Max Welling. "Mixed
Variable Bayesian Optimization with Frequency Modulated Ker-
nels." UAI, 2021.

Changyong Oh, Roberto Bondesan, Efstratios Gavves, and Max
Welling. "Batch Bayesian Optimization on Permutations using
Acquisition Weighted Kernels." NeurIPS, 2022.

Changyong Oh, Roberto Bondesan, Dana Kianfar, Rehan Ahmed,
Rishubh Khurana, Payal Agarwal, Romain Lepert, Mysore Sri-
ram, and Max Welling. "Bayesian Optimization for Macro Place-
ment." ICML Adaptive Experimental Design and Active Learning in
the Real World Workshop, 2022

Ideas, text, figures, and experiments originate in majority from the
first author. All other authors had important advisory roles, helped
with writing a number of individual sections of the above listed pa-
pers.

The author has further contributed to the following publications:

Changyong Oh, Kamil Adamczewski, and Mijung Park. "Ra-
dial and Directional Posteriors for Bayesian Deep Learning."
AAAI, 2020.

Shuai Liao, Efstratios Gavves, Changyong Oh, and Cees Snoek.
"Quasibinary Classifier for Images with Zero and Multiple La-
bels." ICPR, 2020.

ix

C O N T E N T S

summary v

samenvatting - summary in dutch vii

list of publications ix

1 introduction 3
1.1 Design of Experiments and Bayesian optimization . . . 3
1.2 Research questions . 6
1.3 Thesis structure . 9

2 background 11
2.1 Bayesian Optimization 11
2.2 Gaussian Processes . 14
2.3 Exploration-Exploitation Trade-off 15
2.4 Relevant Topics . 16

2.4.1 Hyperparameter optimization 16
2.4.2 Bandits . 16
2.4.3 Reinforcement Learning (RL) 17
2.4.4 Design of Experiments 18

3 bock : bayesian optimization with cylindrical kernels 21
3.1 Introduction . 21
3.2 Preliminaries . 22

3.2.1 Bayesian Optimization 22
3.2.2 High-dimensional Bayesian Optimization 24
3.2.3 Contributions . 24

3.3 Methods . 25
3.3.1 Prior assumption and search space geometry . 25
3.3.2 Cylindrical transformation of search space . . . 25
3.3.3 Balancing center over-expansion 28

3.4 Experiments . 28
3.4.1 Benchmarks . 29
3.4.2 Optimizing a neural network layer 32
3.4.3 Hyper-optimizing stochastic depth ResNets . . 33

3.5 Conclusion . 34

4 combinatorial bayesian optimization 37
4.1 Introduction . 37
4.2 Methods . 38

4.2.1 Bayesian optimization with Gaussian processes 38
4.2.2 Combinatorial graphs and kernels 39

xi

xii Contents

4.2.3 Scalable combinatorial Bayesian optimization with
the graph Cartesian product 41

4.2.4 COMBO algorithm 43
4.3 Related Works . 44
4.4 Experiments . 45

4.4.1 BO with binary variables 45
4.4.2 BO with ordinal and multi-categorical variables 46
4.4.3 Weighted maximum satisfiability 47
4.4.4 Neural architecture search 48

4.5 Conclusion . 50

5 mixed variable bayesian optimization 53
5.1 Introduction . 53
5.2 Preliminaries . 54

5.2.1 Bayesian Optimization with Gaussian Processes 54
5.2.2 Kernels on discrete variables 55

5.3 Methods . 56
5.3.1 Frequency Regularization of FM kernels 57
5.3.2 Positive Definiteness of FM kernels 58
5.3.3 Frequency Modulation Principle 58
5.3.4 FM kernels in practice 59
5.3.5 Extension of the Frequency Modulation 60

5.4 Related Works . 61
5.5 Experiments . 62

5.5.1 Synthetic problems 63
5.5.2 Hyperparameter optimization problems 64
5.5.3 Joint optimization of neural architecture and SGD

hyperparameters 66
5.6 Conclusion . 68

6 batch bayesian optimization on permutations 71
6.1 Introduction . 71
6.2 Preliminaries . 72

6.2.1 Batch Bayesian Optimization 72
6.2.2 Determinantal Point Processes 73

6.3 Methods . 74
6.3.1 Batch Acquisition using LAW 74
6.3.2 Regret Analysis 76
6.3.3 Position Kernel 78

6.4 Related Works . 79
6.5 Experiments . 81

6.5.1 Weight function 81
6.5.2 Combinatorial Optimization Benchmarks 81
6.5.3 Structure Learning 85

6.6 Conclusion . 87

7 bayesian optimization for macro placement 91

Contents xiii

7.1 Introduction . 91
7.2 Background . 93

7.2.1 Sequence pair . 93
7.2.2 Bayesian optimization 94

7.3 Methodology . 95
7.4 Related Work . 98
7.5 Experiments . 101
7.6 Conclusions . 102

8 conclusion 105
8.1 Conclusions . 105
8.2 Future works . 108

bibliography 111

acknowledgments 149

appendix
a bock : bayesian optimization with cylindrical kernels 151

a.1 Special Treatment for the center point 151
a.2 Benchmarks . 153
a.3 Benchmark functions . 153
a.4 Additional Experiments 154

a.4.1 Efficiency vs Accuracy 154
a.4.2 Scalability . 154

b combinatorial bayesian optimization 157
b.1 Graph Cartesian Product 157

b.1.1 Graph Cartesian product and Hamming distance 157
b.1.2 Graph Fourier transform with the graph Carte-

sian product . 157
b.2 Implementation Details 158

b.2.1 GP-parameter posterior sampling 158
b.2.2 Acquisition Function Optimization 161

b.3 Architecture Search Details 161
b.4 Experimental Results . 163

b.4.1 Bayesian optimization with binary variables . . 163
b.4.2 Bayesian optimization with ordinal and multi-

categorical variables 166
b.4.3 Weighted maximum satisfiability(wMaxSAT) . 167
b.4.4 Neural architecture search(NAS) 169

c mixed variable bayesian optimization 173
c.1 Proofs . 173

c.1.1 Positive Definiteness of FM kernels 173
c.1.2 Frequency Modulation Principle 174
c.1.3 Frequency Modulating functions 178

xiv contents

c.2 Implementation Details 181
c.2.1 Acquisition Function Optimization 181
c.2.2 Joint optimization of neural architecture and SGD

hyperparameter 182
c.3 Additional Experimental Results 184

d batch bayesian optimization on permutations 189
d.1 LAW Regret Bound . 189

d.1.1 Outline . 189
d.1.2 Regret Bound of LAW 191
d.1.3 Difference to the analysis of sequential cumula-

tive regret . 197
d.1.4 Growth Rate of UCB/EST hyperparameter . . . 198

d.2 Position Kernel . 199
d.2.1 Information gain of kernels on a finite space . . 199
d.2.2 Positive definiteness of the Position kernel . . . 201
d.2.3 Information Gain of the Position kernel 202

d.3 Implementation & Experiment Details 205
d.3.1 Submodular Maximization 205
d.3.2 Resemblance to Local Penalization 206
d.3.3 Benchmarks of optimization on permutations . 206
d.3.4 Normalized Maximum Likelihood 207

d.4 Additional Experimental Results 208

1 I N T R O D U C T I O N

This chapter provides an overview of the research questions we ad-
dress in this thesis. To motivate our research questions, we first show
the ubiquity of design problems in Sec 1.1. Then we present why
Bayesian optimization (BO) has been successful in such problems and
what needs to be improved to bring these successes to broader classes
of design problems. In Sec. 1.2, we specify research questions. Then
we discuss the motive of each research question and our strategy to
deal with it. In Sec. 1.3, the thesis structure is provided.

1.1 design of experiments and bayesian op-
timization

In many scientific and engineering procedures, influencing factors
are selected to obtain the best possible output. To name a few,

• In machine learning, hyperparameters, e.g. learning rate, neu-
ral architecture, etc. have a huge impact on model performance,
and they are deliberately tuned to optimize the generalization
performance. (Y. Chen, A. Huang, et al., 2018; B. Zhang et al.,
2021; Zoph, Vasudevan, et al., 2018).

• In chemistry, experiments are subject to many conditions, such
as temperature, acidity, constants in chemical reaction models,
parameters of chemical devices, etc. Such factors are deliber-
ately configured to optimize the targets, e.g. selectivity and
reproducibility. (Boelrijk et al., 2021; Hase et al., 2018).

• In chip design, components of integrated circuits (memory bloc-
ks, logic gates) interact in a complex way. These components are
optimally placed and wired to produce high-performing and
robust chips. (Lyu et al., 2018; Mirhoseini et al., 2021; S. Zhang
et al., 2019)

• Even when developing a cookie recipe, the amount of ingredi-
ents can be optimized to find a highly-rated cookie recipe (Sol-
nik et al., 2017).

Even though such problems of selecting an optimal setting of influ-
encing factors occur in various disciplines and have different appear-
ances, many of them have common characteristics below.

3

4 introduction

• A functional form of the relation between influencing factors
and target output is unknown. Consequently, the gradient is
not available.

• The measured value of the target output is corrupted by noise.
Thus repeated evaluations for the same factor value may differ
from each other.

• Evaluating a target output value for a given factor value is ex-
pensive in terms of time, compute resources, etc.

For the problems with the above characteristics, Bayesian optimiza-
tion (BO) has emerged as a competitive option (Brochu et al., 2010;
Shahriari et al., 2015). BO is a black-box function optimizer. It only
requires evaluation at a given point, not demanding additional in-
formation such as a gradient.1 Among various black-box function
optimizers, BO is famous for its high sample efficiency. It is capa-
ble of finding near-optimum solutions with fewer number of eval-
uations. Thanks to the high sample efficiency, BO has successfully
demonstrated its competitiveness in design problems with the above
characteristics, for instance, AlphaGo (Silver et al., 2017) where BO
increased the win rate from 50.0% to 66.5% (Y. Chen, A. Huang, et al.,
2018).

The competitiveness of BO originates from two main components
of BO, the surrogate model and the acquisition function. BO begins by
choosing the search space on which it tries to find an optimum. Then
the surrogate model is constructed to probabilistically model the objec-
tive to optimize. The surrogate model provides not only prediction
of the objective on unevaluated points but also the uncertainty of its
prediction. As a model of the objective, the surrogate model enables
BO to have a global view of the objective. In contrast to methods
using local search, the global view allows search beyond local neigh-
borhoods and thus gives BO global optimization capability. Based
on the predictive distribution provided by the surrogate model, an-
other function on the same search space is defined. This is the acquisi-
tion function, which assesses how informative each point in the search
space is for the optimization of the objective. The acquisition function
considers not only the chance to make a prompt improvement (ex-
ploitation) but also its influence on the optimization afterward (ex-
ploration). Instead of optimizing the expensive-to-evaluate original
objective, a cheap substitute (acquisition function) is optimized to
find the next promising point. With the combination of the surro-
gate model and the acquisition function, BO globally and efficiently
optimizes the objectives with the aforementioned characteristics.

1 BO does not require gradients. However, if the gradient is available, BO can utilize
it to actively use all accessible information as in (Wu, Poloczek, et al., 2017).

1.1 design of experiments and bayesian optimization 5

When the objective is noisy and not differentiable, other alterna-
tives are applicable, for instance, genetic algorithms (Mitchell, 1998),
evolutionary strategy (N. Hansen and Ostermeier, 1996), etc. How-
ever BO stands out, especially when the evaluation is expensive as in
the above examples, thanks to its high sample efficiency. Such high
sample efficiency is attributed to the well-calibrated uncertainty of the
surrogate model (Pleiss et al., 2018; Shahriari et al., 2015). Gaussian
processes (GPs) are famous for their principled and well-calibrated
uncertainty (Williams and Rasmussen, 2006), and the GP surrogate
model has been shown to outperform other surrogate models when
the GP surrogate model is applicable. (Snoek, Larochelle, et al., 2012;
Snoek, K. Swersky, et al., 2014)

Limitations of Existing approaches
As increasingly many success stories of BO are reported, the de-

mand for the utilization of BO in novel scenarios is growing. There
are many cases where vanilla BO is either inapplicable or ineffec-
tive. The optimization may involve several objectives that are opti-
mized simultaneously – multi-objective BO. Sometimes the optimiza-
tion needs to be performed in a few-shot setting with not identical
but related optimization problems – multi-task, contextual, transfer
BO. In practice, the complexity of design problems keeps increasing,
and thus more factors need to be optimized – high-dimensional BO.
Also, many design problems consist of both continuous and combina-
torial variables – combinatorial BO and mixed-variable (hybrid) BO.
Among the above ones, the focus of this thesis is high-dimensional
BO and combinatorial BO. We briefly discuss the difficulty of each of
them.

high-dimensional bo In high-dimensional spaces, it is infeasible
to collect evaluations enough to cover the search space. The surrogate
model is fitted with insufficient data. Thus the point predictions are
inaccurate in most areas of the search space. Moreover, the uncer-
tainty of the prediction is so high that its difference at different areas
of the search space is negligible. Therefore, in high-dimenionsional
BO, it is difficult for the surrogate model to produce actionable in-
formation in most areas of the search space. In practice, BO users
usually select a subset of factors to optimize with the rest of the fac-
tors fixed to manually chosen values, which leads to a suboptimal
result.

combinatorial bo Despite abundant combinatorial choices in de-
sign problems, BO on combinatorial spaces is under-explored. A
simple approach is to embed combinatorial variables into Euclidean
spaces. However, such an approach is not only likely to be subop-
timal (Garrido-Merchán and D. Hernández-Lobato, 2020) but also

6 introduction

inapplicable to non-tabular data, e.g., molecules. Besides, existing
methods developed for Euclidean spaces are not transferable to com-
binatorial spaces since many intuitive structures in Euclidean spaces
such as distance, angle, etc., lack in combinatorial spaces.

1.2 research questions
Building on the many successes of BO in low-dimensional Euclidean

spaces, researchers and practitioners wish and try to bring the high
sample efficiency of BO into the problems on spaces other than low-
dimensional Euclidean spaces. In response to such demand, our gen-
eral goal in this thesis is to answer the question below.

Can we develop efficient BO methods
on search spaces other than low-dimensional Euclidean spaces?

Under the general question, we focus on improving the sample
efficiency of BO by utilizing the well-calibrated uncertainty of GPs.
We propose BO with the GP surrogate model on various types of
search spaces by tackling difficulties arising from each search space.

Research Question 1 What causes the excessive exploration in high-
dimensional Euclidean spaces? And how can we mitigate the excessive ex-
ploration for effective high-dimensional BO? (Chapter 3)

As the dimension increases, the volume is dominated by regions
near the boundary. Moreover the point with the highest uncertainty is
always on the boundary. Thus, in high-dimensional Euclidean spaces,
there is a plethora of points waiting for evaluation due to their high
uncertainty.

Even worse, such drive to evaluate points near the boundary con-
flicts with a common practice of BO. In BO, to the best of users’ prior
knowledge, the search space is set to contain a near-optimal point
around the center of the search space. Even after many evaluations,
there is still huge unprobed area near the boundary. Thus, it is un-
likely to evaluate a point near the center in high-dimensional spaces.

To reconcile the conflict, we propose a geometric transformation
of the search space. Our proposed transformation, the cylindrical
transformation, shrinks the volume near the boundary and expands
the volume near the center. Furthermore, the cylindrical transfor-
mation induces the effect of restraining high uncertainty near the
boundary. With this transformation, we propose BOCK, BO for high-
dimensional Euclidean spaces. We demonstrate that the cylindrical
transformation effectively mitigates the excessive exploration, and
that BOCK can achieve impressive performance on high-dimensional
problems – up to 500 dimension – without relying on assumptions on
the structure of the objective.

1.2 research questions 7

Research Question 2 How can we define smooth surrogate models and
acquisition functions on combinatorial spaces? And can we develop a flexible
GP surrogate model for BO in large combinatorial spaces? (Chapter 4)

In order to define the smoothness of functions on combinatorial
spaces, we propose a graph representation called the combinatorial
graph. On the combinatorial graph, each vertex corresponds to a com-
binatorial value, and edges represent relations between combinatorial
values. With the combinatorial graph, functions on a combinatorial
space can be interpreted as functions on a graph, i.e. graph signal (Or-
tega et al., 2018). We define the smoothness of functions on combina-
torial spaces as the smoothness of the graph signal.

We further equip the above notion of smoothness with computa-
tional efficiency and modeling flexibility. We set the combinatorial
graph to be decomposable into small graphs i.e. the graph Cartesian
product of small graphs (Hammack et al., 2011). Such decomposabil-
ity enables efficient computation of the diffusion kernel (R. I. Kon-
dor and Lafferty, 2002; Smola and R. Kondor, 2003) quantifying the
smoothness of graph signals. Using the decomposability, we propose
the ARD diffusion kernel to equip with a larger modeling capacity.

Compared with the existing surrogate model using Bayesian linear
regression (Baptista and Poloczek, 2018), our GP surrogate model can
model arbitrarily high-order interactions among variables even with
faster computation. We also demonstrate that GP using the ARD dif-
fusion kernel has an improved modeling capacity and that BO with
the ARD diffusion kernel, COMBO, scales well to large combinato-
rial spaces such as one represented by the combinatorial graph with
260 ≈ 1.15× 1018 vertices.

Research Question 3 How can we model dependencies between different
types of variables in kernels? And do we need conditions for kernels other
than positive definiteness? (Chapter 5)

In order to model dependence between different types of variables
in GPs, we propose a kernel construction method called frequency
modulation. In the frequency modulation, the frequency in the ARD
diffusion kernel for combinatorial variables is modulated by the dis-
tance of continuous variables. This construction introduces coupling
between different types of variables.

While developing the frequency modulation, we discover that the
positive (semi-)definiteness of kernels does not provide any guaran-
tee on the natural behavior of the kernels – the similarity measure be-
havior, i.e., the more similar two points are, the higher their kernel
value is. We demonstrate that violation of the similarity measure be-
havior severely degrades the performance in BO and regression tasks.
Therefore, we provide a sufficient condition to guarantee the similar-
ity measure behavior of the kernels from the frequency modulation.

On many BO and GP regression tasks, we show that the similarity
measure behavior is another crucial property for robust and stable

8 introduction

performance. We demonstrate that, also in mixed-variable spaces, the
well-calibrated uncertainty of GP enables BO to achieve high sample
efficiency, for example, in the joint optimization of neural architecture
and learning hyperparameters.

Research Question 4 Can we develop a batch acquisition method appli-
cable to permutation spaces? And how can we maintain the quality of the
batch acquisition method as the batch size increases? (Chapter 6)

In super-exponentially growing2 permutation spaces, sequential
BO on a large permutation space is likely to require unaffordable
wall-clock runtime. Therefore, we investigate batch acquisition on
permutation spaces. For more economical use of each evaluation, we
aim for a batch acquisition method that makes BO keep its perfor-
mance for large batch sizes.

We choose the Determinantal point process (DPP) (Kulesza and
Taskar, 2012) as a feasible framework for batch acquisition on permu-
tation spaces. DPP is not only widely used for diversity modeling,
but it also has a property called submodularity (Kulesza and Taskar,
2012) which makes the optimization of a function on multiple permu-
tations tractable (Buchbinder et al., 2014; Nemhauser et al., 1978).

Retaining the strengths of DPPs, we augment DPPs with the acqui-
sition value to take into account the quality of each point in the batch.
Theoretically, we analyze the cumulative regret taking into account
the effect of the quality. We demonstrate that the batch acquisition
considering diversity and quality significantly outperforms the one
considering diversity only.

Research Question 5 Can BO be an effective method for combinatorial
optimization problems in chip design? And can it be efficient enough to scale
to problems of a practical scale? (Chapter 7)

Recently, BO has been applied to problems arising in chip design,
most of which focus on continuous optimization (Lyu et al., 2018; S.
Zhang et al., 2019). However, there are numerous combinatorial op-
timization problems in chip design (A. Kahng et al., 2011). Among
others, we focus on the macro placement in which components with
a large area, e.g., memory and IP blocks, are placed on a chip can-
vas (Shahookar and Mazumder, 1991).

While applying BO to the macro placement of a practical scale, two
computational challenges arise. First, the macro placement is subject
to many constraints and the computation of the feasibility with re-
spect to such constraints takes up nonnegligible time. Second, for
a large number of macros, batch acquisition can be time-consuming,
which prevents the use of large batch sizes.

We adapt LAW (Chapter 6) to handle such issues. We incorporate
a parallel version of the feasibility check into the acquisition function
optimization and propose a parallel heuristic to accelerate the batch

2 Let SN be the symmetric group (permutation space) of length N. Super-exponential
growth is formally expressed as limN→∞

|SN|
cN = ∞ for all c ∈ (0,∞).

1.3 thesis structure 9

acquisition. We test the adapted LAW on the macro placement bench-
marks and compare it with other black-box optimizers and methods
specialized to a specific form of the objective.

1.3 thesis structure
In this thesis, we propose BO methods for search spaces other than

low-dimensional Euclidean spaces. We demonstrate that the well-
calibrated uncertainty of GPs improves sample efficiency of BO on
search spaces other than low dimensional Euclidean spaces and that
the principled formulation of GP uncertainty opens opportunities to
improve the efficiency of batch acquisition.

We cover five different types of search spaces in the thesis.

Chapter 3 High dimensional Euclidean spaces

Chapter 4 Combinatorial spaces

Chapter 5 Mixed-variable spaces

Chapter 6 Permutation spaces (Symmetric group)

Chapter 7 Constrained product spaces of two permutation spaces

Between the two components of BO, the surrogate model and the
acquisition function, in each chapter, we focus on one component. In
the first three chapters, we focus on devising effective kernels for GP
surrogate model on each search space. In the last two chapters, we
focus on effective batch acquisition in terms of both the number of
samples and the wall-clock runtime.

The rest of the thesis is structured as follows. In Chapter 2, we
briefly overview BO, GPs and relevant topics. In Chapter 3, we
present BOCK, BO for high dimensional Euclidean spaces. In Chap-
ter 4, we present COMBO, BO for combinatorial spaces with cate-
gorical and ordinal variables. In Chapter 5, we present frequency
modulation, a novel kernel combination method with the application
to mixed-variable BO. In Chapter 6, we present LAW, a batch acqui-
sition method applicable to permutation spaces. In Chapter 7, we
extend LAW for the application of BO on a combinatorial optimiza-
tion problem appearing in chip design. Then, we conclude the thesis
with a discussion on the limitations of the proposed methods and the
future works which we believe are promising.

2 B A C KG R O U N D

This chapter explains prerequisite knowledge of the research in this
thesis. In Sec. 2.1, we explain the basics of Bayesian optimization (BO),
the workflow of Bayesian optimization (BO) and two key components
– the surrogate model and the acquisition function. Among others,
the surrogate model of our interest, Gaussian processes, is explained
in more detail in Sec. 2.2. In Sec. 2.3, the central notions of gen-
eral sequential decision-making – exploration and exploitation – are
elaborated in the context of BO. Lastly, in Sec. 2.4, we compare and
contrast BO to relevant topics to better position our research from a
broader perspective.

2.1 bayesian optimization
Bayesian optimization (BO) aims at finding a global minimum of

the objective fobj on the search space X

xopt = argmin
x∈X

fobj(x). (2.1)

Distinctively, BO typically targets the optimization with the con-
straints below

• Functional form and thus gradients of the objective fobj are not
accessible.

• Evaluating fobj at a given point x is expensive.

• The evaluation is noisy fobj(x) = fground truth(x) + ε.

Due to the inaccessibility to the gradient of the objective, BO takes
a black-box function optimization approach where it relies on the
evaluation of the objective fobj at given points.3 Due to the high
cost of evaluations, BO puts emphasis on high sample efficiency. BO
tries to find x∗ whose evaluation fobj(x∗) is as close to the optimum
minx∈X fobj(x) as possible with fewer evaluations.

In pursuit of a sample-efficient global optimizer, BO takes a model-
based approach. In contrast with model-free approaches such as sim-
ulated annealing (Van Laarhoven and Aarts, 1987) and genetic algo-
rithm (Mitchell, 1998), BO builds a probabilistic model approximating

3 When the gradient of the objective is available, certain BO methods leverage this
information to improve the performance (Wu, Poloczek, et al., 2017)

11

12 background

Set the search space

Set the initial evaluation data
Dn =

{
(xi,yi = f(xi) + εi)

}
i∈[n]

Have the Evaluation budget?
Report the result

(xiopt ,yiopt)
iopt = argminiyi

Fit the Surrogate model
f(x) ∼ N

(
µ(x| Dn),σ2(x| Dn)

)

Maximize the acquisition function
xn+1 = argmaxxa

(
p(f(x)| Dn)

)

Evaluate the objective
yn+1 = f(xn+1) + εn+1

Expand the evaluation data
Dn+1 = Dn ∪

{
(xn+1,yn+1)

}

No

Yes

Figure 2.1: Bayesian optimization workflow

the objective, called the surrogate model M conditioned on the pre-
viously evaluated data Dn−1 = (xi,yi)i=1,··· ,n−1, yi = fobj(xi) + εi
and εi ∼ N(0,σ2

obs). The surrogate model is the primary channel
leveraging the evaluation data Dn−1 in BO and the prediction made
by the surrogate model provides a global view of the objective.

In addition to the accurate prediction, another key requirement for
the surrogate model is well-calibrated uncertainty. Due to the lim-
ited size of evaluation data Dn−1, it is unlikely that the surrogate
model makes fairly accurate predictions on the entire search space X.
Well-calibrated uncertainty complements the predictions by inform-
ing how trustworthy the predictions are, which, in turn, guides the
optimization.

The way that the surrogate model steers the optimization is via
balancing between two modes of information utilization, exploita-
tion and exploration. Exploitation is to evaluate the point of low
objective but not high predictive value which is conferred with uncer-
tain predictions, expecting the probable improvement of the optimiza-
tion process. Exploration is to evaluate the point of high uncertainty,
which not only aids optimization later to be based on more reliable

2.1 bayesian optimization 13

information, but also helps to probe unexplored areas. If lucky, ex-
ploration sometimes happens to evaluate the point making a huge
improvement in the optimization.

Mathematically, the surrogate model takes the data of points eval-
uated, D, as an input and generates predictive distributions on all
x ∈ X, which is typically in the form of the predictive mean µn−1(x) =
µ(x | Dn−1) and the predictive variance σn−1(x) = σ(x | Dn−1).

Quantitatively balancing between exploitation and exploration is
the responsibility of another key component of BO, the acquisition
function a(x). By using the probabilistic prediction made by the sur-
rogate model M, the acquisition function represents a good balancing
score between exploitation and exploration as a single number. Many
interesting acquisition functions have been proposed, and all reflect
the intuition that points with low predictive mean (in minimization)
and high predictive uncertainty have high acquisition values.

Some acquisition functions only summarize the predictive distribu-
tion at x to compute the acquisition value x. Such local acquisition
functions include probability of improvement (PI) (Kushner, 1964)
and expected improvement (EI) (Jones et al., 1998).

aPI(x) = Py∼N(µn−1(x),σ2
n−1(x))[y ! ỹmin]

aEI(x) = Ey∼N(µn−1(x),σ2
n−1(x))[(ỹmin − y)+]

where ỹmin = mini=1,··· ,n−1 yi. Others take into account predictive
distributions at other locations, which are more global such as en-
tropy search (ES) (Hennig and Schuler, 2012) and predictive entropy
search (PES) (J. M. Hernández-Lobato, M. W. Hoffman, et al., 2014)

aES(x) =H[p(x∗ | Dn−1)]

− Ey∼N(µn−1(x),σ2
n−1(x))[H[p(x∗ | Dn−1 ∪{(x,y)})]]

aPES(x) =H[N(µn−1(x),σ2
n−1(x))]

− Ep(x∗ |Dn−1)[H[p(y| Dn−1, x, x∗]]

where the predictive distributions at other locations are considered
indirectly via p(x∗ |−).

Now the acquisition function a(x) is maximized to select the most
promising point with respect to a chosen acquisition function. a(x)
is a function defined on the same space X as the search space of the
original optimization task. However, a(x) is much cheaper to evaluate
than the original objective f and if the search space is continuous, then
a(x) is differentiable.

With these two key components of BO, the surrogate model and the
acquisition function, the BO algorithm proceeds as given in Fig. 2.1.

14 background

2.2 gaussian processes
Different probabilistic models have been used as surrogate mod-

els of BO including random forests (Hutter et al., 2011), the tree-
structured Parzen estimator (J. Bergstra, Yamins, et al., 2013; J. S.
Bergstra et al., 2011), Bayesian neural networks (Springenberg et al.,
2016), deep ensembles (Belanger et al., 2019; K. Swersky, Rubanova,
et al., 2020), Bayesian linear models (Baptista and Poloczek, 2018;
Daxberger et al., 2021; Perrone, Jenatton, et al., 2018; Snoek, Rippel,
et al., 2015) and Gaussian processes (Eriksson, Pearce, et al., 2019; E.
Lee et al., 2020; Snoek, Larochelle, et al., 2012; Snoek, K. Swersky, et
al., 2014; Zi Wang, Gehring, et al., 2018; Zi Wang, C. Li, et al., 2017).

Gaussian processes (GPs) have proven their competitiveness over
others in black-box function optimization tasks (Ru, Alvi, et al., 2020;
Snoek, Larochelle, et al., 2012; Springenberg et al., 2016), mainly due
to their well-calibrated uncertainty.

GP is a Bayesian nonparametric method to model a function (Ras-
mussen, 2003). As a surrogate model in BO, it probabilistically mod-
els the objective function fobj whose evaluation is often noisy. GP
is an infinite dimensional generalization of the multivariate Gaussian
distribution. The corresponding infinite dimensional mean parameter
vector and infinite dimensional covariance parameter matrix are spec-
ified by the mean function m(x) and the covariance function k(x, x ′).
In order to define an appropriate covariance, the covariance function
should satisfy the following condition, which is called positive (semi-)
definite. ∑

i,j

ci k(xi, xj)cj " 0 ∀ci ∈ R ∀ xi ∈ X

More commonly, the covariance function is called the (positive semi-
definite) kernel.

For a given mean function and a kernel, conditioned on the data
D = (X, y), X = [x1, · · · , xn]T and y = [y1, · · · ,yn]T , the predic-
tive distribution of f∗(x∗ | D) at x∗ is given as N(µ(x∗ | D),σ2(x∗ | D))
where

µ(x∗ | D) = m(x∗) + k(x∗, X)[k(X, X) + σ2
obs In]

−1(y−m(X))

σ2(x∗ | D) = k(x∗, x∗)− k(x∗, X)[k(X, X) + σ2
obs In]

−1 k(X, x∗)

Model predictive performance is heavily affected by the hyperpa-
rameters of GPs θ, including mean function parameters, kernel pa-
rameters, and noise variance. GP hyperparameters can be chosen by
optimizing the (log-)marginal likelihood.

logp(y |X, θ) =−
1

2
(y−m(X))T k(X, X +σ2

obs I)−1(y−m(X))

−
1

2
log det k(X, X)−

n

2
log(2π)

2.3 exploration-exploitation trade-off 15

Alternatively, taking full Bayesian approach, the posterior of θ can
be used. For a given prior p(θ), the posterior

p(θ|y, X) =
p(y |X, θ)p(θ)

p(y |X)
.

is used to construct the predictive distribution marginalized over θ

Ep(θ|y,X)[f∗(x∗ | D, θ)] =
∫
N(µ(x∗ | D, θ),σ2(x∗ | D, θ))p(θ| D)dθ

The posterior is approximated by MCMC (Snoek, Larochelle, et al.,
2012) or variational inference (M. Titsias, 2009).

2.3 exploration-exploitation trade-off
Among black-box function optimization methods, BO is famous for

its high sample efficiency, i.e. it finds an optimum with fewer num-
ber of evaluations.4 Its high sample efficiency makes BO a method
of choice in the situation where the objective is expensive to eval-
uate. The high sample efficiency of BO is attributed to the capa-
bility of balancing between exploration and exploitation (Brochu et
al., 2010; Shahriari et al., 2015). In the context of BO, the exploita-
tion is to utilize the previous evaluations conservatively, which corre-
sponds to evaluating a point near the best evaluation in hand. On the
other hand, the exploration is to make an aggressive step by trying a
point in the unprobed region with high uncertainty. With exploratory
moves, we can expect two scenarios. With any luck, an exploratory
move may find an input better than the current best input outside the
neighborhood of the current best input. Even in the worst case, an
exploratory move reveals a region unlikely to have a good input by
supplying the evaluation to the surrogate model in future BO rounds.

In BO, the exploration-exploitation trade-off is controlled by the
uncertainty from the surrogate model and the acquisition function.
Compared with other surrogate models, random forests (Hutter et al.,
2011) and the tree-structured Parzen estimator (J. Bergstra, Yamins, et
al., 2013; J. S. Bergstra et al., 2011), Gaussian processes (GPs) (Snoek,
Larochelle, et al., 2012) provide principled and well-calibrated un-
certainty (Rasmussen, 2003). The well-calibrated uncertainty of GPs
enables better exploration-exploitation trade-off and, in turn, better
sample efficiency (Brochu et al., 2010; Shahriari et al., 2015; Snoek,
Larochelle, et al., 2012).

4 Strictly speaking, optimization methods find an optimum or a point whose evalua-
tion is close to the evaluation of an optimum unless there is a guarantee to find an
optimum.

16 background

2.4 relevant topics
2.4.1 Hyperparameter optimization

In machine learning communities, BO has received attention as a
hyperparameter optimization method (Hutter et al., 2011; Ru, Alvi,
et al., 2020; Snoek, Larochelle, et al., 2012). These days, deep learn-
ing models are becoming more complex. Accordingly, the size of the
hyperparameter space far exceeds the scope of human researchers’
ability to search it, and the evaluation of a configuration of hyper-
parameters becomes increasingly costly. Thanks to its high sample-
efficiency, BO has proved its competitiveness in many deep learning
hyperparameter optimization tasks (J. Bergstra, Yamins, et al., 2013;
J. S. Bergstra et al., 2011; Snoek, Larochelle, et al., 2012; Snoek, Rip-
pel, et al., 2015). Among others, BO was successfully deployed to
optimize the hyperparameters of AlphaGo (Silver et al., 2017) agent
training with the impressive result of improving the agent’s win rate
from 50% to 66.5% (Y. Chen, A. Huang, et al., 2018).

Among other hyperparameters of deep learning models, the search
for an optimal architecture has been extensively studied (Elsken et al.,
2019; Wistuba, Rawat, et al., 2019). The search for an architecture of
deep learning models, a.k.a. neural architecture search (NAS) began
with reinforcement learning (Zoph and Q. Le, 2017). As a black-box
function optimization problem, NAS was also tackled by BO (Kan-
dasamy, Neiswanger, et al., 2018; Changyong Oh, Tomczak, et al.,
2019; Ru, Wan, et al., 2020). Recently, the differentiable approach
which is prevalent since its inception (H. Liu et al., 2018) has becomes
the mainstream of NAS. Its popularity is attributable to its scalabil-
ity. BO requires the training of many neural networks, on the other
hand, the differentiable approach trains a single large neural network
within which many sub-architectures are included (Pham et al., 2018).
Even though the differentiable approach is more promising than BO
in NAS, non-differentiable sample-based approaches including BO
tend to obtain better and more stable results at the cost of compute
time (X. Dong, L. Liu, et al., 2021). Moreover, while joint optimization
of architecture and other hyperparameters can be handled in the BO
framework (Falkner et al., 2018; Changyong Oh, Gavves, et al., 2021),
a differentiable correspondent is still missing.

2.4.2 Bandits

Bayesian optimization has been studied under different names such
as Gaussian process bandit optimization (Bogunovic, Scarlett, et al.,
2016; Grünewälder et al., 2010; Janz et al., 2020; Krause and Ong,
2011; Srinivas et al., 2010), kernelized bandit (Bogunovic and Krause,
2021; Chowdhury and Gopalan, 2017), etc.

2.4 relevant topics 17

There are subtle differences between the BO perspective and the
bandit perspective. Works from the bandit perspective tend to take
more rigorous approaches stressing theoretical guarantees on the re-
gret. Such guarantees do not come for free. They make regularity
assumptions on the objective such as Lipschitz, small RKHS norm,
etc. (De Freitas et al., 2012; Srinivas et al., 2010) which are oftentimes
too complex to validate in practice. On the other hand, BO tends
to focus more on heuristically designed methods emphasizing exten-
sive empirical validation on complex objectives (Eriksson, Pearce, et
al., 2019; Snoek, Rippel, et al., 2015).

The way they handle the surrogate model slightly differs. Methods
from the bandit framework often use GPs with fixed kernel hyperpa-
rameters (Chowdhury and Gopalan, 2017). However, in BO, fitting
the kernel hyperparameters is a crucial step to improve sample effi-
ciency, which is almost always adopted.

The seminal work of (Srinivas et al., 2010) shows that the cumula-
tive regret from GP-UCB acquisition function can be analyzed in the
bandit framework. Beginning with GP-UCB, it is shown that other ac-
quisition functions can enjoy similar theoretical analysis, for example,
EI (Gupta et al., 2022; V. Nguyen, Gupta, et al., 2017) and TS (Kan-
dasamy, Krishnamurthy, et al., 2018). Although the ultimate objective
of BO is usually the simple regret, the analysis of BO usually finds a
cumulative regret bound as an intermediate step (Contal et al., 2013;
Desautels et al., 2014; Kandasamy, Krishnamurthy, et al., 2018) since
the simple regret is bounded above by the cumulative regret.

There is no clear-cut distinction between BO and bandits, but the
difference is more of a tendency of the focus under different names.
From the bandit perspective, BO can be described as a heuristic struc-
tured bandit where the performance takes precedence over the theo-
retical guarantee.

2.4.3 Reinforcement Learning (RL)
In RL, the goal is to find a policy taking an optimal sequence of

actions in a given environment (Sutton and Barto, 2018). Since a
bandit is a simplified RL agent5 (Sutton and Barto, 2018), on problems
that can be reformulated without state transition, BO can be adopted
in place of RL.

Examples include the neural architecture search (NAS) (Elsken et
al., 2019; Zoph and Q. Le, 2017; Zoph, Vasudevan, et al., 2018),
drug discovery (Gómez-Bombarelli et al., 2018; Korovina et al., 2020;
Popova et al., 2018; Pyzer-Knapp, 2018), chip design (R. Cheng and
Yan, 2021; Deshwal, Belakaria, J. R. Doppa, and D. H. Kim, 2022;

5 A contextual bandit can be regarded as reinforcement learning where states are given
solely by the environment not affected by the agent’s actions. Bandit without context
can be regarded as stateless reinforcement learning.

18 background

Mirhoseini et al., 2021; Changyong Oh, Bondesan, et al., 2022), etc.
In Zoph and Q. Le, 2017, NAS was initially formulated as a RL
problem where the architecture specification is a sequence of actions
imposing constraints on possible next actions. Later, many BO ap-
proaches were developed for NAS by reformulating architecture spec-
ification as a combinatorial choice (Kandasamy, Neiswanger, et al.,
2018; Ru, Wan, et al., 2020).

In drug discovery, desirable properties of molecules are optimized.
In RL (H. Chen et al., 2018; Popova et al., 2018), molecules are searched
by gradually constructing valid molecules. In BO (Gómez-Bombarelli
et al., 2018; Korovina et al., 2020; Pyzer-Knapp, 2018; K. K. Yang et al.,
2019), the search for optimal molecules is conducted by performing a
constrained optimization.

In chip design, there are many optimization problems with com-
plex constraints. RL (R. Cheng and Yan, 2021; Mirhoseini et al., 2021)
readily handles constraints by taking a sequence of actions respect-
ing constraints. However, RL requires many evaluations and thus
resorts to a cheap proxy for the original objective. On the other hand,
BO (Deshwal, Belakaria, J. R. Doppa, and D. H. Kim, 2022; Lyu et al.,
2018; Changyong Oh, Bondesan, et al., 2022) requires a well-designed
representation to handle constraints, but it can optimize the objective
directly.

In Markov Decision Processes, many constraints can be easily han-
dled by masking infeasible actions in the state transition. Such flexi-
bility is one of the reasons for the popularity of RL in many complex
problems. However, it comes at the cost of fragile training stabil-
ity. Compared with RL, BO is deployed with a formulation without
state transition, and thus, in some cases, BO produces more stable
results (X. Dong, L. Liu, et al., 2021).

2.4.4 Design of Experiments

The design of experiments is concerned with identifying factors
that affect the response of the experiment, approximating the rela-
tion of the factors and the response, finding an optimal setting of the
factors with respect to the response, etc. (Montgomery, 2017; STAN-
DARDS and TECHNOLOGY/SE-MATECH, 2013) BO also has been
actively employed to find an optimal setting for the experiment in
science and engineering (Greenhill et al., 2020; Shahriari et al., 2015).

Traditional experimental design methods, such as factorial design
and space-filling design, do not consider the responses of the experi-
ments (Greenhill et al., 2020; Montgomery, 2017). A more advanced
method is response surface methodology (RSM) (Box and K. B. Wil-
son, 1992; Greenhill et al., 2020). RSM adaptively determines which
factor values to try based on the responses of the experiments.

2.4 relevant topics 19

The general procedure of RSM resembles that of BO, but there are
key differences. RSM does not consider the uncertainty, but BO ac-
tively utilizes the uncertainty to balance exploitation and exploration.
RSM makes incremental changes purely based on a local search on
its response surface, but BO searches globally based on the global
viewpoint granted by the surrogate model.

In many design problems, not only in hyperparameter optimiza-
tion but also in various fields in science and engineering, BO is be-
coming the method of choice. (Char et al., 2019; Frazier and Jialei
Wang, 2016; R.-R. Griffiths and J. M. Hernández-Lobato, 2020; Jalas
et al., 2021; X. Lu et al., 2018; Pang et al., 2017; Perdikaris and Karni-
adakis, 2016).

3
B O C K : B AY E S I A N
O P T I M I Z AT I O N W I T H
C Y L I N D R I C A L K E R N E L S

3.1 introduction
When we talk about stars and galaxies we use parsecs to describe

structures, yet when we discuss the world around us we use meters. In
other words, the natural lengthscale scale with which we describe the
world increases with distance away from us. We believe this same
idea is useful when performing optimization in high dimensional
spaces.

In Bayesian Optimization (or other forms of hyperparameter op-
timization) we define a cube or a ball and search for the solution
inside that volume. The origin of that sphere is special in the sense
that this represents the part of space with the highest probability if
finding the solution. Moreover, in high dimensions, when we move
outwards, the amount of volume contained in an annulus with width
δR, A(c;R− δR,R) = {x |R− δR < ‖ x− c ‖ < R}, grows exponentially
with distance R. As such, if we would spend an equal amount of time
searching each volume element δV , we would spend all our time at
the boundary of our search region. This effective attraction to the
places with more volume is the equivalent of an "entropic force" in
physics, and in the case of optimization is highly undesirable, since
we expect the solution at a small radius R.

*
*x1

x2

x*2

x*1

*

*
T(x1) T(x2)

T(x*1)

T(x*2)

Figure 3.1: Cylindrical transformation

21

22 bock : bayesian optimization with cylindrical kernels

Algorithm 2 Bayesian Optimization pipeline.
1: Input: surrogate model M, acquisition function α, search space

X, initial training data Dinit, function f

2: Output: optimum xopt ∈ X of f
3: Initialize D = Dinit

4: while evaluation budget available do
5: Set µ(·|D),σ2(·|D) ← M|D // Surrogate function returns predictive

mean function and predictive variance function by fitting M to D

6: Maximize x̂ = argmax
x∈X

α(µ(x |D),σ2(x |D))

// Acquisition function suggests next evaluation by maximization
7: Evaluate ŷ = f(x̂) // Evaluate the score of the point selected by the

acquisition function
8: Set D ← D ∪ {(x̂, ŷ)} // Update the training dataset by including the

newly evaluated pair (x̂, ŷ)
9: end while

In this chapter we, therefore, reformulate Bayesian Optimization
in a transformed space, where a ball, B(x;R) = {x |‖ x− c ‖ ! R}, is
mapped to a cylinder, C(p,q; c,L = {(r, a)‖r ∈ [p,q], ‖d− c ‖ = L} (see
Fig. 3.1). In this way, every annulus of width δR contains an equal
amount of volume for every radius R, and the entropic force pulling
the optimizer to the boundary disappears. We call our method BOCK,
for Bayesian Optimization with Cylindrical Kernel. BOCK is effective
in handling the boundary issue – too much volume near the bound-
ary (K. J. Swersky, 2017)). By mitigating the boundary issue, BOCK
spends the evaluation budget in a promising region of the search
space, the center, which is aligned with the prior assumption that the
solution most likely lies close to the origin. We find that our algo-
rithm is able to successfully handle much higher dimensional prob-
lems than standard Bayesian optimizers. As a result, we manage to
not only optimize modestly sized neural network layers (up to 500
dimensions in our experiments), obtaining solutions competitive to
SGD training, but also hyper-optimize stochastic depth Resnets (G.
Huang et al., 2016).

3.2 preliminaries
3.2.1 Bayesian Optimization

Bayesian optimization aims at finding the global optimum of black-
box functions, namely

xopt = argmin
x

f(x) (3.1)

3.2 preliminaries 23

The general pipeline of Bayesian Optimization is given in Alg. 1.
Prior to starting, a search space must be defined, where the opti-
mum f(xopt) will be searched for. Given this search space, the initial
training dataset must be set, typically by naive guessing where the
solution might lie or by informed expert knowledge of the problem.
Having completed these two steps, Bayesian Optimization proceeds
in an iterative fashion. At each round, in the absence of any other in-
formation regarding the nature of f(x) a surrogate model attempts to
approximate the behavior of f(x) based on the so far observed points
(xi,yi),yi = f(xi). The surrogate function is then followed by an ac-
quisition function that suggests the next most interesting point xi+1

that should be evaluated. The pair (xi,yi) is added to the training
dataset, D = D∪(xi,yi), and the process repeats until the optimiza-
tion budget is depleted.

The first design choice of the Bayesian Optimization pipeline is the
surrogate model. The task of the surrogate model is to model proba-
bilistically the behavior of f(·) in the x-space in terms of (a) a predic-
tive mean µ(x∗ | D) that approximates the value of f(x) at any point
x∗, and (b) a predictive variance that represents the uncertainty of the
surrogate model in this prediction. Any model that can provide a
predictive mean and variance can be used as a surrogate model, in-
cluding random forests (Hutter et al., 2011), tree-based models (J. S.
Bergstra et al., 2011) and neural networks (Snoek, Rippel, et al., 2015;
Springenberg et al., 2016). Among other things, Gaussian Processes
not only provide enough flexibility it terms of kernel design but also
allow for principled and tractable quantification of uncertainty (Ras-
mussen, 2003). Therefore, we choose Gaussian Processes as our sur-
rogate model. The predictive mean and the predictive variance of
Gaussian processes are given as below

µ(x∗ | D) = K∗D(KDD + σ2I)−1y (3.2)

σ2(x∗ | D) = K∗∗ −K∗D(KDD + σ2
obsI)

−1KD∗ (3.3)

where K∗∗ = K(x∗, x∗), K∗D is a row vector whose ith entry is K(x∗, xi),
KD∗ = (K∗D)T , [KDD]i,j = K(xi, xj), σ2

obs is the variance of observa-
tional noise and D = {(xi,yi)}i is the dataset of observations so far.

The second design choice of the Bayesian Optimization pipeline
is the acquisition function. The predictive mean and the predictive
variance from the surrogate model is input to the acquisition function
that quantifies the significance of every point in x as a next evaluation
point. While different acquisition functions have been explored in the
literature (Hennig and Schuler, 2012; J. M. Hernández-Lobato, M. W.
Hoffman, et al., 2014; Kushner, 1964; Močkus, 1975; Srinivas et al.,
2010; Thompson, 1933), they all share the following property: they
return high scores at regions of either high predictive variance (high
but uncertain reward), or low predictive mean (modest but certain
reward).

24 bock : bayesian optimization with cylindrical kernels

Last, the third design choice of the Bayesian Optimization pipeline,
often overlooked, is the search space. In (Snoek, K. Swersky, et al.,
2014) the kernel of the surrogate model is defined on a warped search
space, thus allowing for a more flexible modeling of f(x) by the sur-
rogate function. As the search space defines where optimal solutions
are to be sought for, the search space definition is a means of infusing
prior knowledge into the Bayesian Optimization. Usually, a search
space is set so that the expected optimum is close to the center.

3.2.2 High-dimensional Bayesian Optimization
Even with its successes in many applications, several theoretical as

well as practical issues (Shahriari et al., 2015) still exist when employ-
ing Bayesian Optimization to real world problems. Among others,
many Bayesian optimization algorithms are restricted in practice to
problems of moderate dimensions. In high dimensional problems,
one suffers from the curse of dimensionality. To overcome the curse
of dimensionality, several works make structural assumptions, such
as low effective dimensionality (J. Bergstra and Bengio, 2012; Ziyu
Wang, Hutter, et al., 2016) or additive structure (Kandasamy, Schnei-
der, et al., 2015).

Because of the way Gaussian Processes quantify uncertainty, the
curse of dimensionality is a serious challenge for Gaussian Processes-
based Bayesian Optimization in high dimensions. Since in high di-
mensions data points typically lie mostly on the boundary, and any-
ways far away from each other, the predictive variance tends to be
higher in the regions near the boundary. Thus, the acquisition func-
tion is somewhat biased to choose evaluations near the boundary,
hence, biasing Bayesian Optimization towards solution near the bound-
ary and away from the center, contradicting with the prior assump-
tion. This is the boundary issue(K. J. Swersky, 2017).

3.2.3 Contributions
Different from the majority of the Bayesian Optimization methods

that rely on a Euclidean geometry of the search space implicitly or ex-
plicitly(J. S. Bergstra et al., 2011; Hutter et al., 2011; Snoek, Larochelle,
et al., 2012; Snoek, Rippel, et al., 2015; Snoek, K. Swersky, et al.,
2014; K. Swersky, Snoek, et al., 2013; Zi Wang, C. Li, et al., 2017),
the proposed BOCK applies a cylindrical geometric transformation
on it. The effect is that the volume near the center of the search space
is expanded, while the volume near the boundary is shrunk. Com-
pared to (Snoek, K. Swersky, et al., 2014), where warping functions
were introduced with many kernel parameters to be learned, we do
not train transformations. Also, we avoid learning many additional
kernel parameters for better efficiency and scalability. Because of the

3.3 methods 25

transformation, the proposed BOCK solves also the issue of flat op-
timization surfaces of the acquisition function in high dimensional
spaces (Rana et al., 2017). And compared to REMBO (Ziyu Wang,
Hutter, et al., 2016), BOCK does not rely on assumptions of low di-
mensionality of the latent search space.

3.3 methods
3.3.1 Prior assumption and search space geometry

The flexibility of a function f on a high-dimensional domain X can
be, and usually is, enormous. To control the flexibility and make the
optimization feasible some reasonable assumptions are required. A
standard assumption in Bayesian Optimization is the prior assump-
tion K. J. Swersky, 2017, according to which the optimum of f(x)
should lie somewhere near the center of the search space X. Since
the search space is set with the prior assumption in mind, it is reason-
able for Bayesian Optimization to spend more evaluation budget in
areas near the center of X.

It is interesting to study the relation of the prior assumption and
the geometry of the search space. The ratio of the volume of two
concentric balls B(c;R− δR) and B(c;R), with a radius difference of
δR, is

volume(B(c;R− δR))

volume(B(c;R))
= o((1− δ)D), (3.4)

which rapidly goes to zero with increasing dimensionality D. This
means that the volume of B(c;R) is mostly concentrated near the
boundary, which in combination with Gaussian processes’ behavior
of high predictive variance at points far from data, creates the bound-
ary issue K. J. Swersky, 2017.

It follows, therefore, that with a transformation of the search space
we could avoid excessively biasing our search towards large values of
R.

3.3.2 Cylindrical transformation of search space
The search space geometry has a direct influence on the kernel

K(x, x ′) of the Gaussian Process surrogate model, and, therefore, its
predictive variance σ2(x), see eq. (3.3). A typical design choice for
Gaussian Processes González et al., 2016; Snoek, Larochelle, et al.,
2012; Snoek, K. Swersky, et al., 2014 are stationary kernels, K(x, x ′) ∝
f(x− x ′). Unfortunately, stationary kernels are not well equipped to
tackle the boundary issue. Specifically, while stationary kernels com-
pute similarities only in terms of relative locations x− x ′, the bound-
ary issue dictates the use of location-aware kernels K(x, x ′) to recog-

26 bock : bayesian optimization with cylindrical kernels

nize whether x, x ′ lie near the boundary or the center areas of the
search space.

A kernel that can address this should have the following two prop-
erties. First, the kernel must define the similarity between two points
x, x ′ in terms of their absolute locations, namely the kernel has to be
non-stationary. Second, the kernel must transform the geometry of its
input (i.e., the search space for the Gaussian Process surrogate model)
such that regions near the center and the boundaries are equally rep-
resented. To put it otherwise, we need a geometric transformation of
the search space that expands the region near the center while con-
tracting the regions near the boundary. A transformation with these
desirable properties is the cylindrical one, separating the radius and
angular components of a point x, namely

T(x) =

{
(‖x‖2, x/‖x‖2) for ‖x‖2)= 0

(0, aarbitrary) for ‖x‖2 = 0
(3.5)

T−1(r, a) = ra

where aarbitrary is an arbitrarily chosen vector with unit '2-norm 6.
After applying the geometric transformation we arrive at a new

kernel Kcyl(x1, x2), which we will refer to as the cylindrical kernel.
The geodesic similarity measure (kernel) of Kcyl on the transformed
cylinder, T(X), is defined as

Kcyl(x1, x2) = K̃(T(x1), T(x2)) = Kr(r1, r2) ·Ka(a1, a2) (3.6)

where the final kernel decomposes into a 1-D radius kernel Kr mea-
suring the similarity of the radii of r1, r2 and a angle kernel Ka.

For the angle kernel Ka(a1, a2), we opt for a continuous radial ker-
nel on the (hyper-)sphere Jayasumana et al., 2014,

Kd(a1, a2) =
P∑

p=0

cp(aT1a2)p, cp " 0, ∀p (3.7)

with trainable kernel parameters of c0, · · · , cP and P user-defined.
The advantages of a continuous radial kernel is two-fold. First, with
increasing P a continuous radial kernel can approximate any con-
tinuous positive definite kernel on the sphere with arbitrary preci-
sion Jayasumana et al., 2014. Second, the cylindrical kernel has P+ 1

parameters, which is independent of the dimensionality of X. This
means that while the continuous radial kernel retains enough flexibil-
ity, only few additional kernel parameters are introduced, which are
independent of the dimensionality of the optimization problem and

6 Another possible geometric transformation could be from rectangular to spherical
coordinates. Unfortunately, the inverse transformation from spherical to rectangular
coordinate entails multiplication of many trigonometric functions, causing numeri-
cal instabilities because of large products of small numbers.

3.3 methods 27

(0, aarbitrary1) (0, aarbitrary2)

T(x*1) T(x*)

VS
T(x*2)

Figure 3.2: Similarity to the center point in the transformed geometry.

can, thus, easily scale to more than 50 dimensions. This compares
favorably to Bayesian optimization with ARD kernels that introduce
at least d kernel parameters for a d-dimensional search space.

Although the boundary issue is mitigated by the cylindrical trans-
formation of the search space, the prior assumption (good solutions
are expected near the center) can be promoted. To this end, and to
reinforce the near-center expansion of the cylindrical transformation,
we consider input warping Snoek, K. Swersky, et al., 2014 on the
radius kernel Kr(r1, r2). Specifically, we use the cumulative distri-
bution function of the Kumaraswamy distribution, Kuma(r|α,β) =
1− (1− rα)β (with α > 0,β > 0),

Kr(r1, r2) =Kbase(Kuma(r1|α,β),Kuma(r1|α,β))

=Kbase(1− (1− rα1)
β, 1− (1− rα2)

β|α,β)

where the non-negative a,b are learned together with the kernel pa-
rameters. Kbase is the base kernel for measuring the radius-based
similarity. Although any kernel is possible for Kbase, in our imple-
mentations we opt for the Matern52 kernel used in Spearmint Snoek,
Larochelle, et al., 2012. By making radius warping concave and non-
decreasing, Kr and, in turn, Kcyl focus more on areas with small
radii.

Overall, the transformation of the search space has two effects. The
first effect is that the volume is redistributed, such that areas near the
center are expanded, while areas near the boundaries are contracted.
Bayesian optimization’s attention in the search space, therefore, is
also redistributed from the boundaries to the center of the search
space. The second effect is that the kernel similarity changes, such
that the predictive variance depends mostly on the angular difference
between the existing data points and the ones to be evaluated. An
example is illustrated in Fig. 3.1, where our dataset comprises of D =

28 bock : bayesian optimization with cylindrical kernels

{x1, x2} and the acquisition function must select between two points,
x∗,a and x∗,b. Whereas in the original Euclidean geometry (Fig. 3.1
to the left) x∗,a is further away from D, thus having higher predictive
variance, in the cylindrical geometry both x∗,a and x∗,b are equally
far, thus reducing the artificial preference to near-boundary points.

3.3.3 Balancing center over-expansion
The transformation T maps an annulus A(0;R − δR,R) of width

δR to the cylinder C(R − δR,R; 0, 1), where (0, 1) is the center and
the radius of the cylinder. For almost any point in the original ball
there is a one-to-one mapping to a point on the cylinder. The only
exception is the extreme case of the ball origin, which is mapped to
the 0-width sphere C(0, 0; 0, 1) = {(0, a)|‖a‖ = 1} on the base of the
cylinder (bright green circle in the Fig. 3.2 to the right). Namely, the
center point xcenter is overly expanded, corresponding to a set of
points. Because of the one-to-many correspondence between xcenter

and C(0, 0; 0, 1), an arbitrary point is selected in eq. (3.5).
Unfortunately, the dependency on a point that is both arbitrary and

fixed incurs an arbitrary behavior of Kcyl as well. For any point x∗ ∈
X \ {0} the kernel Kcyl(xcenter, x∗) changes arbitrarily, depending on
the choice of aarbitrary, see Fig. 3.2. Having a fixed arbitrary point,
therefore, is undesirable as it favors points lying closer to it. To this
end, we define aarbitrary as the angular component of a test point x∗,
aarbitrary = x∗ /‖ x∗ ‖, thus being not fixed anymore. Geometrically,
this is equivalent to using the point in C(0, 0; 0, 1) closest to T(x∗), see
Fig. 3.2 to the right. This implies that, if the origin is in the dataset,
the Gram matrix needed for computing the predictive density now
depends on the angular location of the test point under consideration.
This is somewhat unconventional but still well behaved (the kernel is
still positive definite and the predictive mean and variance change
smoothly). More details can be found in Appx. A.1.

3.4 experiments
In Bayesian optimization experiments, we need to define (a) how to

train the surrogate model, (b) how to optimize the acquisition func-
tion and (c) how to set the search space. For BOCK we use Gaussian
Process surrogate models, where following (Snoek, Larochelle, et al.,
2012; Snoek, K. Swersky, et al., 2014) we train parameters of BOCK
with MCMC (slice sampling (Murray and Adams, 2010; Neal, 2003))
. For the acquisition function, we use the Adam (Kingma and Ba,
2015) optimizer, instead of L-BFGS-B (Zhu et al., 1997). To begin the
optimization we feed 20 initial points to Adam. To select the 20 initial
points, a sobol sequence (Bratley and B. L. Fox, 1988) of 20,000 points

3.4 experiments 29

Table 3.1: Performance on benchmarks of 20 and 200 dimensions

Benchmark Repeated Branin Repeated Hartmann6 Rosenbrock Levy

Dimensions 20 100 20 100 20 100 20 100

Minimum 0.3979 0.3979 -3.3223 -3.3223 0.0000 0.0000 0.0000 0.0000

SMAC 15.95±3.71 20.03±0.85 -1.61±0.12 -1.16±0.19 8579.13± 58.45 8593.09± 18.80 2.35±0.00 9.60±0.04
TPE 7.59±1.20 23.55±0.73 -1.74±0.10 -1.01±0.10 8608.36± 0.00 8608.36± 0.00 2.35±0.00 9.62±0.00
Spearmint 5.07±3.01 2.78±1.06 -2.60±0.42 -2.55±0.19 7970.05± 1276.62 8608.36± 0.00 1.88±0.59 4.87±0.35
Spearmint+ 6.83±0.32 - -2.91±0.25 - 5909.63± 2725.76 - 2.35±0.00 -
Additive BO* 5.75±0.93 14.07±0.84 -3.03±0.13 -1.69±0.22 3632.25± 1642.71 7378.27± 305.24 2.32±0.02 9.59±0.04
Elastic BO 6.77±4.85 - -2.85±0.57 - 5346.96± 2494.89 - 1.35±0.34 -
Matern 0.41±0.00 0.54±0.06 -3.29±0.04 -2.91±0.26 230.25± 187.41 231.42± 28.94 0.38±0.13 2.17±0.18

BOCK 0.50±0.12 1.03±0.17 -3.30±0.02 -3.16±0.10 47.87± 33.94 128.69± 52.84 0.54±0.13 6.78±2.16

+ Spearmint+ (Snoek, K. Swersky, et al., 2014) and Elastic BO (Rana et al., 2017) are evaluated only on the 20-dimensional cases
because of prohibitive execution times. * Additive BO (Kandasamy, Schneider, et al., 2015) requires a user-specified “maximum
group size” to define the additive structure. In each experiment we tried 5 different values and reported the best result.

is generated on the cube (we used the cube for fair comparison with
others). The acquisition function is evaluated on these points and
the largest 20 points are chosen as the initial ones. Instead of using
a static sobol sequence in the entire course of Bayesian optimization
(Snoek, Larochelle, et al., 2012; Snoek, K. Swersky, et al., 2014), we
generate different sobol sequences for different evaluations, as fixed
grid point impose too strong constraints in high dimensional prob-
lems. In the d-dimensional space, our search space is a ball B(0,

√
d)

circumscribing a cube [−1, 1]d, which is the scaled and translated ver-
sion of the typical search region, unit cube [0, 1]d. Our search space is
much larger than a cube. By generating sobol sequence on the cube,
the reduction of the boundary issue mostly happens at corners of the
cube [−1, 1]d.

3.4.1 Benchmarks
First, we compare different Bayesian Optimization methods and

BOCK on four benchmark functions. Specifically, following (Eggensp-
erger et al., 2013; Laguna and Marti, 2005) we use the repeated Branin,
repeated Hartmann6 and Levy to assess Bayesian Optimization in
high dimensions. To test the ability of Bayesian Optimization meth-
ods to optimize functions with more complex structure and stronger
intra-class dependencies, we additionally include the Rosenbrock ben-
chmark, typically used as benchmark for gradient-based optimiza-
tion (Laguna and Marti, 2005). The precise formulas for the four
benchmark functions are added to Appx. A.2. We solve the bench-
mark functions in 20 and 100 dimensions7, using 200 and 600 func-
tion evaluations respectively for all Bayesian Optimization methods.
We compare the proposed BOCK with the following Bayesian Op-
timization methods using publicly available software: SMAC (Hut-
ter et al., 2011), TPE (J. S. Bergstra et al., 2011), Spearmint (Snoek,

7 We also solve the 50-dimensional cases. As conclusions are similar, we report these
results in Appx. A.4.

30 bock : bayesian optimization with cylindrical kernels

Larochelle, et al., 2012), Spearmint+ (Snoek, K. Swersky, et al., 2014),
additive BO (Kandasamy, Schneider, et al., 2015), elastic BO (Rana
et al., 2017). We also report an in-house improved Spearmint imple-
mentation, which we refer to as Matern.8

We focus on four aspects: (a) accuracy, (b) efficiency (wall clock
time) vs accuracy, (c) scalability (number of dimensions) vs efficiency,
and (d) robustness of BOCK to hyperpararameters and other design
choices. We study (a) in all four benchmark functions. For brevity,
we report (b)-(d) on the Rosenbrock benchmark only, the hardest of
the four benchmark functions for all Bayesian Optimization methods
in terms of accuracy, and report results the rest of the benchmark
functions in Appx. A.4.

Figure 3.3: Accuracy vs wall clock time for 20 dim. Rosenbrock

20 40 60 80 100
0

20

40

60

80

100

20

Dimension

Hours
Matern

Spearmint
BOCK

Figure 3.4: Wall clock time on Rosenbrock of 20, 50 and 100 dim.

Accuracy. We first present the results regarding the accuracy of BOCK
and the Bayesian Optimization baselines in Tab. 3.1. BOCK and
Matern outperform others with large margin in discovering near opti-
mal solutions. For benchmark functions with complicated dependen-

8 Differences with standard Spearmint: (a) a non-ARD, Matern52 kernel for the surro-
gate model, (b) dynamic search grid generation per evaluation, (c) Adam (Kingma
and Ba, 2015) instead of L-BFGS-B (Zhu et al., 1997), (d) more steps for optimizer.

3.4 experiments 31

cies between variables, such as the repeated Hartmann6 and Rosen-
brock, BOCK consistently discovers smaller values compared to other
baselines, while not being affected by an increasing number of di-
mensions. What is more, BOCK is on par even with methods that
are designed to exploit the specific geometric structures, if the same
geometric structures can be found in the the evaluated functions. For
instance, the repeated Branin and Levy have an additive structure,
where the same low dimensional structure is repeated. The non-ARD
kernel of Matern can exploit such special, additive structures. BOCK
is able to reach a similar near-optimum solution without being explic-
itly designed to exploit such structures.

We conclude that BOCK is accurate, especially when we have no
knowledge of the geometric landscape of the evaluated functions.
In the remaining of the experiments we focus on the Bayesian Op-
timization methods with competitive performance, namely BOCK,
Spearmint and Matern.
Efficiency vs accuracy. Next, we compare in Fig. 3.3 the accuracy of
the different Bayesian Optimization methods as a function of their
wall clock times for the 20-dimensional case for Rosenbrock. As the
function minimum is f(xopt) = 0, the optimal operating point is at
(0, 0). BOCK is the closest to the optimal point. Matern is the second
most accurate, while being considerably slower to run. SMAC (Hutter
et al., 2011) and AdditiveBO (Kandasamy, Schneider, et al., 2015) are
faster than BOCK, however, they are also considerably less accurate.
Scalability. In Fig. 3.4 we evaluate the most accurate Bayesian Opti-
mization methods from Tab. 3.1 (Spearmint, Matern and BOCK.) with
respect to how scalable they are, namely measuring the wall clock
time for an increasing number of dimensions. We test on Rosenbrock
of 20, 50 and 100 dimensions with 200, 400 and 600 function evalu-
ations respectively for all methods. We report mean and standard
error of 5 runs. Compared to Spearmint, BOCK is less affected by
the increasing number of dimensions. Not only the BOCK surrogate
kernel requires fewer parameters, but also the number of surrogate
kernel parameters is independent of the number of input dimensions,
thus making the surrogate model fitting faster. BOCK is also faster
than Matern, although the latter uses a non-ARD kernel that is also
independent of the number of input dimensions. Presumably, this is
due to a better, or smoother, optimization landscape after the cylindri-
cal transformation of geometry of the input space, affecting positively
the search dynamics. We conclude that BOCK is less affected by the
increasing number of dimensions, thus scaling better.
Robustness. To study the robustness of BOCK to design choices, we
compare three BOCK variants. The first is the standard BOCK as
described in Sec. 3.3. The second variant, BOCK-W, removes the in-
put warping on the radius component. The third variant, BOCK+B,
includes an additional boundary treatment to study whether further

32 bock : bayesian optimization with cylindrical kernels

reduction of the predictive variance is beneficial. Specifically, we re-
duce the predictive variance by adding “fake” data. 9 We report the
result in Tab. 3.2.

Table 3.2: Ablation study on BOCK variants

Dimensions 20 50 100

BOCK 47.87± 33.94 29.65±11.56 128.69± 52.84
BOCK-W 1314.03± 1619.73 51.14±58.18 157.89± 161.92
BOCK+B 48.87± 18.33 33.90±21.69 87.00± 36.88

Removing the input warping on the radius is hurting the robust-
ness, as BOCK-W tends to reach slightly worse minima than BOCK.
However, introducing further boundary treatments has a marginal
effect.

Further, we assess the sensitivity of BOCK with respect to the hy-
perparameter P in eq.(3.5). For P = 3, 5, 7, 9, we observe that higher
P tends to give slightly better minima, while increasing the computa-
tional cost.

For clarity of presentation, as well as to maintain the experimental
efficiency, in the rest of the experiments we focus on BOCK with
P = 3.

3.4.2 Optimizing a neural network layer

100 dim, W2 : 10× 10 200 dim, W2 : 20× 10 500 dim, W2 : 50× 10

Figure 3.5: Neural network parameter optimization (100, 200, 500) dim.

As BOCK allows for accurate and efficient Bayesian Optimization
for high-dimensional problems, we next perform a stress test, at-
tempting to optimize neural network layers of 100, 200 and 500 di-

9 Predictive variance depends only on the inputs x, not the evaluations y = f(x).
Thus we can manipulate the predictive variance only with input data. BOCK+B
uses one additional “fake data”, which does not have output value(evaluation),
in its predictive variance. BOCK’s predictive variance σ2(x∗ | D) becomes
σ2(x∗ | D∪{(R x∗ /‖ x∗ ‖, ∼)}) in BOCK+B on the search space of the ball B(0;R),
where (R x∗ /‖ x∗ ‖, ∼) is the fake data.

3.4 experiments 33

mensions. Specifically, we define a two-layered neural network with
architecture: 784 x W1,b1−−−−→ Nhidden x W2,b2−−−−→ 10, using ReLU as the
intermediate non-linearity.

In this experiment we are only interested in the optimization abil-
ity of BOCK of the parameters of a neural network, not in its abil-
ity to find solutions that generalize well. Thus, we intentionally fol-
low a procedure that tests if BOCK is able to even overfit to the test
set. Specifically, for all Bayesian optimization experiments W1, b1

and b2 are optimized with Adam (Kingma and Ba, 2015) and W2

with Bayesian Optimization. The training proceeds as follows. First,
Bayesian Optimization suggests a W2 based on evaluations on the test
set. Given this W2 we train on the train+validation sets the W1,b1,b2

with Adam, then repeat. We show results in Fig. 3.5, where we report
mean and standard deviation over 5 runs for all methods. We com-
pare BOCK with the competitive Spearmint and Matern. As baseline,
we train a network with Adam (Kingma and Ba, 2015) on the train-
ing set and report the test loss. To the best of our knowledge we are
the first to apply Gaussian Process-based Bayesian Optimization in
so high-dimensional and complex, representation learning spaces. 10.

We observe that BOCK clearly outperforms Spearmint and Matern,
with the gap increasing for higher W2 dimensions. What is more sur-
prising, however, is that BOCK is able to match and even outperform
the Adam-based SGD in the 200 and 500-dimensional experiments
for all 5 runs. There are two reasons for this. First, in this experiment,
all Bayesian optimization algorithms directly optimize the test loss.
Second, in its sophistication Adam (Kingma and Ba, 2015) probably
overfits to the training set.

In the end, the final neural network is obviously not optimal in
terms of generalization, as to optimize W2 BOCK has access to the
test set. However, even the fact that it is possible to optimize such
high-dimensional and complex (representation learning) functions
with Bayesian Optimization is noteworthy. We conclude that BOCK is
able to optimize complex, multiple-optima functions, such as neural
network layers.

3.4.3 Hyper-optimizing stochastic depth ResNets
As BOCK allows for accurate and efficient Bayesian Optimization,

in our last experiment we turn our attention to a practical hyperpa-
rameter optimization application. Stochastic Depth ResNet (SDRes-
Net) (G. Huang et al., 2016) was shown to obtain better accuracy and
faster training by introducing a stochastic mechanism that randomly
suppresses ResNet blocks (ResBlock) (He et al., 2016a). The stochastic

10 To our knowledge, running Bayesian Optimization on 200 or 500 dimensional prob-
lems has only been tried with methods assuming low effective dimensionality (B.
Chen et al., 2012; Ziyu Wang, Hutter, et al., 2016)

34 bock : bayesian optimization with cylindrical kernels

Table 3.3: Optimization of the “death rates” of a Stochastic Depth ResNet-
110

Method Test Acc. Val. Acc. Exp. Depth

ResNet-110 72.98±0.43 73.03±0.36 110.00
SDResNet-110+Linear 74.90±0.15 75.06±0.04 82.50
SDResNet-110+BOCK 75.06±0.19 75.21±0.05 74.51±1.22

mechanism for dropping ResBlocks is controlled by a vector p ∈ [0, 1]t

of probabilities for t ResBlocks, called “death rate”. In (G. Huang et
al., 2016) a linearly increasing (from input to output) death rate was
shown to improve accuracies.

Instead of pre-defined death rates, we employ BOCK to find the
optimal death date vector for SDRes-110 on CIFAR100 (Krizhevsky
and Hinton, 2009). We first train an SD-ResNet for 250 epochs and
linear death rates with exactly the same configuration in (G. Huang
et al., 2016) up to 250 epochs. In this experiment BOCK has access
to the training and validation set only. Then, per iteration BOCK
first proposes the next candidate p based on evaluation on the vali-
dation set. Given the candidate p we run 100 epochs of SGD on the
training set and repeat with an annealed learning rate (0.01 for 50
epochs, then 0.001 for 50 more). We initialize the death rate vector to
p = [0.5, 0.5, ..., 0.5]. We report the final accuracies computed in the
unseen test set in Tab. 3.3, using only 50 evaluations.

We observe that BOCK learns a p-value that results in an improved
validation accuracy compared to SDResNet, all the while allowing
for a lower expected depth. The improved validation accuracy ma-
terializes to an only slightly better test accuracy, however. One rea-
son is that optimization is not directly equivalent to learning, as also
explained in Sec. 3.4.2. What is more, it is likely that the accuracy
of SDResNet-110 on CIFAR-100 is maxed out, especially considering
that only 50 evaluations were made. We conclude that BOCK allows
for successful and efficient Bayesian Optimization even for practical,
large-scale learning problems.

3.5 conclusion
We propose BOCK, Bayesian Optimization with Cylindrical Ker-

nels. Many of the problems in Bayesian Optimization relate to the
boundary issue (too much value near the boundary), and the prior
assumption (optimal solution probably near the center). Because of
the boundary issue, not only much of the evaluation budget is un-
evenly spent to the boundaries, but also the prior assumption is vio-

3.5 conclusion 35

lated. The basic idea behind BOCK is to transform the ball geometry
of the search space with a cylindrical transformation, expanding the
volume near the center while contracting it near the boundaries. As
such, the Bayesian optimization focuses less on the boundaries and
more on the center.

We test BOCK extensively in various settings. On standard bench-
mark functions BOCK is not only more accurate, but also more effi-
cient and scalable compared to state-of-the-art Bayesian Optimization
alternatives. Surprisingly, optimizing a neural network (on the test
set) up to 500 dimensions with BOCK allows for even better (albeit
overfitting) parameters than SGD with Adam Kingma and Ba, 2015.
And hyper-optimizing the “death rate” of stochastic depth ResNet G.
Huang et al., 2016 results in smaller ResNets while maintaining accu-
racy.

We conclude that BOCK allows for accurate, efficient and scalable
Gaussian Process-based Bayesian Optimization. We plan to make the
code public upon acceptance.

4
C O M B I N ATO R I A L
B AY E S I A N O P T I M I Z AT I O N
U S I N G T H E G R A P H
C A R T E S I A N P R O D U C T

4.1 introduction
This chapter focuses on Bayesian Optimization (BO) for objectives

on combinatorial search spaces consisting of ordinal or categorical
variables. Combinatorial BO (Jones et al., 1998) has many applica-
tions, including finding optimal chipset configurations, discovering
the optimal architecture of a deep neural network or the optimiza-
tion of compilers to embed software on hardware optimally. All
these applications, where Combinatorial BO is potentially useful, fea-
ture the following properties. They (i) have black-box objectives for
which gradient-based optimizers (Aaron Wilson et al., 2014) are not
amenable, (ii) have expensive evaluation procedures for which meth-
ods with low sample efficiency such as, evolution (Freitas, 2009) or
genetic (Davis, 1991) algorithms are unsuitable, and (iii) have noisy
evaluations and highly non-linear objectives for which simple and ex-
act solutions are inaccurate (Brochu et al., 2010; Frazier, 2018; Shahri-
ari et al., 2015).

Interestingly, most BO methods in the literature have focused on
continuous (Močkus, 1975) rather than combinatorial search spaces.
One of the reasons is that the most successful BO methods are built on
top of Gaussian Processes (GPs) (Kandasamy, Dasarathy, J. B. Oliva,
et al., 2016; ChangYong Oh et al., 2018; Snoek, Larochelle, et al., 2012).
As GPs rely on the smoothness defined by a kernel to model un-
certainty (Rasmussen, 2003), they are originally proposed for, and
mostly used in, continuous input spaces. In spite of the presence of
kernels proposed on combinatorial structures (Haussler, 1999; R. I.
Kondor and Lafferty, 2002; Smola and R. Kondor, 2003), to date the
relation between the smoothness of graph signals and the smoothness
of functions defined on combinatorial structures has been overlooked
and not been exploited for BO on combinatorial structures. A simple
solution is to use continuous kernels and round them up. This round-
ing, however, is not incorporated when computing the covariances at
the next BO iteration (Garrido-Merchán and D. Hernández-Lobato,
2020), leading to unwanted artifacts. Furthermore, when considering
combinatorial search spaces the number of possible configurations
quickly explodes: for M categorical variables with k categories the
number of possible combinations scales with O(kM). Applying BO
with GPs on combinatorial spaces is, therefore, not straightforward.

37

38 combinatorial bayesian optimization

We propose COMBO, a novel Combinatorial BO designed to tackle
the aforementioned problems of lack of smoothness and computa-
tional complexity on combinatorial structures. To introduce smooth-
ness of a function on combinatorial structures, we propose the com-
binatorial graph. The combinatorial graph comprises sub-graphs –one
per categorical (or ordinal) variable– later combined by the graph
Cartesian product. The combinatorial graph contains as vertices all
possible combinatorial choices. We define then smoothness of func-
tions on combinatorial structures to be the smoothness of graph sig-
nals using the Graph Fourier Transform (GFT) (Ortega et al., 2018).
Specifically, we propose as our GP kernel on the graph a variant
of the diffusion kernel, the automatic relevance determination(ARD)
diffusion kernel, for which computing the GFT is computationally
tractable via a decomposition of the eigensystem. With a GP on a
graph COMBO accounts for arbitrarily high order interactions be-
tween variables. Moreover, using the sparsity-inducing Horseshoe
prior (Carvalho et al., 2009) on the ARD parameters COMBO per-
forms variable selection and scales up to high-dimensional. COMBO
allows for accurate, efficient and large-scale BO on combinatorial
search spaces.

In this work, we make the following contributions. First, we show
how to introduce smoothness on combinatorial search spaces by in-
troducing combinatorial graphs. On top of a combinatorial graph
we define a kernel using the GFT. Second, we present an algorithm
for Combinatorial BO that is computationally scalable to high dimen-
sional problems. Third, we introduce individual scale parameters
for each variable making the diffusion kernel more flexible. When
adopting a sparsity inducing Horseshoe prior (Carvalho et al., 2009,
2010), COMBO performs variable selection which makes it scalable to
high dimensional problems. We validate COMBO extensively on (i)
four numerical benchmarks, as well as two realistic test cases: (ii) the
weighted maximum satisfiability problem (P. Hansen and Jaumard,
1990; Resende et al., 1997), where one must find boolean values that
maximize the combined weights of satisfied clauses, that can be made
true by turning on and off the variables in the formula, (iii) neural ar-
chitecture search (Elsken et al., 2019; Wistuba, Rawat, et al., 2019).
Results show that COMBO consistently outperforms all competitors.

4.2 methods
4.2.1 Bayesian optimization with Gaussian processes

Bayesian optimization (BO) aims at finding the global optimum
of a black-box function f over a search space X, namely, xopt =
argminx∈X f(x). At each round, a surrogate model attempts to ap-

4.2 methods 39

proximate f(x) based on the evaluations so far, D = {(xi,yi = f(xi))}.
Then an acquisition function suggests the most promising point xi+1

that should be evaluated. The D is appended by the new evaluation,
D = D∪({xi+1,yi+1)}. The process repeats until the evaluation bud-
get is depleted.

The crucial design choice in BO is the surrogate model that models
f(·) in terms of (i) a predictive mean to predict f(·), and (ii) a predic-
tive variance to quantify the prediction uncertainty. With a GP sur-
rogate model, we have the predictive mean µ(x∗ | D) = K∗D(KDD +
σ2
nI)

−1 y and variance σ2(x∗ | D) = K∗∗ − K∗D(KDD + σ2
nI)

−1KD∗
where K∗∗ = K(x∗, x∗), [K∗D]1,i = K(x∗, xi), KD∗ = (K∗D)T , [KDD]i,j =
K(xi, xj) and σ2

n is the noise variance.

4.2.2 Combinatorial graphs and kernels

In BO on continuous search spaces the most popular surrogate
models rely on GPs (Kandasamy, Dasarathy, J. B. Oliva, et al., 2016;
ChangYong Oh et al., 2018; Snoek, Larochelle, et al., 2012). Their
popularity does not extend to combinatorial spaces, although kernels
on combinatorial structures have also been proposed (Haussler, 1999;
R. I. Kondor and Lafferty, 2002; Smola and R. Kondor, 2003). To
design an effective GP-based BO algorithm on combinatorial struc-
tures, a space of smooth functions –defined by the GP– is needed.
We circumvent this requirement by the notion of the combinatorial
graph defined as a graph, which contains all possible combinatorial
choices as its vertices for a given combinatorial problem. That is, each
vertex corresponds to a different joint assignment of categorical or or-
dinal variables. If two vertices are connected by an edge, then their
respective set of combinatorial choices differ only by a single com-
binatorial choice. As a consequence, we can now revisit the notion
of smoothness on combinatorial structures as smoothness of a graph
signal (Chung, 1997; Ortega et al., 2018) defined on the combinatorial
graph. On a combinatorial graph, the shortest path is closely related
to the Hamming distance.

the combinatorial graph To construct the combinatorial graph,
we first define one sub-graph per combinatorial variable Ci, G(Ci).
For a categorical variable Ci, the sub-graph G(Ci) is chosen to be a
complete graph while for an ordinal variable we have a path graph.
We aim at building a search space for combinatorial choices, i.e. a
combinatorial graph, by combining sub-graphs G(Ci) in such way
that a distance between two adjacent vertices corresponds to a change
of a value of a single combinatorial variable. It turns out that the
graph Cartesian product (Hammack et al., 2011) ensures this prop-
erty. Then, the graph Cartesian product of subgraphs G(Cj) = (Vj,Ej)
is defined as G = (V,E) = #i G(Ci), where V = ×i Vi and (v1 =

40 combinatorial bayesian optimization

(c(1)1 , · · · , c(1)N), v2 = (c(2)1 , · · · , c(2)N)) ∈ E if and only if ∃j such that
∀i)= j c

(1)
i = c

(2)
i and (c(1)j , c(2)j) ∈ Ej.

As an example, let us consider a simplistic hyperparameter opti-
mization problem for learning a neural network with three combina-
torial variables: (i) the batch size, c1 ∈ C1 = {16, 32, 64}, (ii) the opti-
mizer c2 ∈ C2 = {AdaDelta,RMSProp,Adam} and (iii) the learning
rate annealing c3 ∈ C3 = {Constant,Annealing}. The sub-graphs
{G(Ci)}i=1,2,3 for each of the combinatorial variables, as well as the
final combinatorial graph after the graph Cartesian product, are il-
lustrated in Fig. 4.1. For the ordinal batch size variable we have a
path graph, whereas for the categorical optimizer and learning rate
annealing variables we have complete graphs. The final combinato-
rial graph contains all possible combinations for batch size, optimizer
and learning rate annealing.

Figure 4.1: Combinatorial Graph: graph Cartesian product
G(C1)#G(C2)#G(C3)

cartesian product and hamming distance The Hamming dis-
tance is a natural choice of distance on categorical variables. With all
complete sub-graphs, the shortest path between two vertices in the
combinatorial graph is exactly equivalent to the Hamming distance
between the respective categorical choices.

Theorem 4.1. Assume a combinatorial graph G = (V,E) constructed from
categorical variables, C1, . . . ,CN, that is, G is a graph Cartesian prod-
uct #i G(Ci) of complete sub-graphs {G(Ci)}i. Then the shortest path
s(v1, v2;G) between vertices v1 = (c(1)1 , · · · , c(1)N), v2 = (c(2)1 , · · · , c(2)N) ∈
V on G is equal to the Hamming distance between (c(1)1 , · · · , c(1)N) and
(c(2)1 , · · · , c(2)N).

Proof. See Appx. Thm. B.1

When there is a sub-graph which is not complete, the below result
follows from the Thm. 4.1:

Corollary 4.2. If a sub-graph is not a complete graph, then the shortest path
is equal to or bigger than the Hamming distance.

The combinatorial graph using the graph Cartesian product is a nat-
ural search space for combinatorial variables that can encode a widely
used metric on combinatorial variables like Hamming distance.

4.2 methods 41

kernels on combinatorial graphs . In order to define the GP
surrogate model for a combinatorial problem, we need to specify a
a proper kernel on a combinatorial graph G = (V,E). The role of
the surrogate model is to smoothly interpolate and extrapolate neigh-
boring data. To define a smooth function on a graph, i.e. a smooth
graph signal f : V .→ R, we adopt Graph Fourier Transforms (GFT)
from graph signal processing (Ortega et al., 2018). Similar to Fourier
analysis on Euclidean spaces, GFT can represent any graph signal as
a linear combination of graph Fourier bases. Suppressing the high
frequency modes of the eigendecomposition approximates the signal
with a smooth function on the graph. We adopt the diffusion kernel
which penalizes basis-functions in accordance with the magnitude of
the frequency (R. I. Kondor and Lafferty, 2002; Smola and R. Kondor,
2003).

To compute the diffusion kernel on the combinatorial graph G, we
need the eigensystem of graph Laplacian L(G) = DG − AG, where AG

is the adjacency matrix and DG is the degree matrix of the graph G.
The eigenvalues {λ1, λ2, · · · , λ|V |} and eigenvectors {u1,u2, · · · ,u|V |}

of the graph Laplacian L(G) are the graph Fourier frequencies and
bases, respectively. Eigenvectors paired with large eigenvalues cor-
respond to high-frequency Fourier bases. The diffusion kernel is de-
fined as

k([p], [q]|β) =
∑n

i=1
e−βλiui([p])ui([q]), (4.1)

from which it is clear that higher frequencies, λi / 1, are penal-
ized more. In a matrix form, with Λ = diag(λ1, · · · , λ|V |) and U =
[u1, · · · ,u|V |], the kernel takes the following form:

K(V,V) = U exp(−βΛ)UT , (4.2)

which is the Gram matrix on all vertices whose submatrix is the Gram
matrix for a subset of vertices.

4.2.3 Scalable combinatorial Bayesian optimization with the graph
Cartesian product

The direct computation of the diffusion kernel is infeasible because
it involves the eigendecomposition of the Laplacian L(G), an oper-
ation with cubic complexity with respect to the number of vertices
| V |. As we rely on the graph Cartesian product #i Gi to construct
our combinatorial graph, we can take advantage of its properties and
dramatically increase the efficiency of the eigendecomposition of the
Laplacian L(G). Further, due to the construction of the combinatorial
graph, we can propose a variant of the diffusion kernel: automatic
relevance determination (ARD) diffusion kernel. The ARD diffusion
kernel has more flexibility in its modeling capacity. Moreover, in com-
bination with the sparsity-inducing Horseshoe prior (Carvalho et al.,

42 combinatorial bayesian optimization

2009) the ARD diffusion kernel performs variable selection automati-
cally that allows to scale to high dimensional problems.

speeding up the eigendecomposition with graph cartesian
products . Direct computation of the eigensystem of the Laplacian
L(G) naively is infeasible, even for problems of moderate size. For
instance, for 15 binary variables, eigendecomposition complexity is
O(| V |3) = (215)3.

The graph Cartesian product allows to improve the scalability of
the eigendecomposition. The Laplacian of the Cartesian product of
two sub-graphs G1 and G2, G1#G2, can be algebraically expressed
using the Kronecker product ⊗ and the Kronecker sum ⊕ (Hammack
et al., 2011):

L(G1#G2) = L(G1)⊕ L(G2) = L(G1)⊗ I1 + I2 ⊗ L(G2), (4.3)

where I denotes the identity matrix. Considering the eigensystems
{(λ(1)i ,u(1)

i)} and {(λ(2)j ,u(2)
j)} of G1 and G2, respectively, the eigensys-

tem of G1#G2 is {(λ(1)i +λ
(2)
j ,u(1)

i ⊗u
(2)
j)}. Given Eq. (4.3) and matrix

exponentiation, for the diffusion kernel of m categorical (or ordinal)
variables we have

K = exp
(
−β

⊕m

i=1
L(Gi)

)
=

⊗m

i=1
exp

(
−β L(Gi)

)
. (4.4)

This means we can compute the kernel matrix by calculating the Kro-
necker product per sub-graph kernel. Specifically, we obtain the ker-
nel for the i-th sub-graph from the eigendecomposition of its Lapla-
cian as per eq. (4.2).

Importantly, the decomposition of the final kernel into the Kro-
necker product of individual kernels in Eq. (4.4) leads to the following
proposition.

Proposition 4.3. Assume a graph G = (V,E) is the graph cartesian product
of sub-graphs G = #i,Gi. The graph Fourier Transform of G can be com-
puted in O(

∑m
i=1 |Vi|

3) while the direct computation takes O(
∏m

i=1 |Vi|
3).

Proof. See Appx. Prop. B.2.

variable-wise edge scaling . We can make the kernel more flexi-
ble by considering individual scaling factors {βi}, a single βi for each
variable. The diffusion kernel then becomes:

K = exp
(⊕m

i=1
−βi L(Gi)

)
=

⊗m

i=1
exp

(
−βi L(Gi)

)
, (4.5)

where βi " 0 for i = 1, . . . ,m. Since the diffusion kernel is a discrete
version of the exponential kernel, the application of the individual
βi for each variable is equivalent to the ARD kernel (MacKay, 1994;
Neal, 1995). Hence, we can perform variable (sub-graph) selection
automatically. We refer to this kernel as the ARD diffusion kernel.

4.2 methods 43

Algorithm 3 COMBO: Combinatorial Bayesian Optimization on the
combinatorial graph

1: Input: N combinatorial variables {Ci}i=1,··· ,N
2: Set a search space and compute Fourier frequencies and bases: #

See Subsec. 4.2.2
3: $ Set sub-graphs G(Ci) for each variables Ci.
4: $ Compute eigensystem {(λ(i)k ,u(i)

k)}i,k for each sub-graph G(Ci)
5: $ Construct the combinatorial graph G = (V,E) = #i G(Ci) using

graph Cartesian product.
6: Initialize D.
7: repeat
8: Fit GP using ARD diffusion kernel to D with slice sampling :

µ(v∗| D),σ2(v∗| D)
9: Maximize acquisition function :

vnext = argmaxv∗∈V a(µ(v∗| D),σ2(v∗| D))
10: Evaluate f(vnext), append to D = D∪{(vnext, f(vnext))}
11: until stopping criterion

prior on βi . To determine βi, and to prevent GP with ARD ker-
nel from overfitting, we apply posterior sampling with a Horseshoe
prior (Carvalho et al., 2009) on the {βi}. The Horseshoe prior encour-
ages sparsity, and, thus, enables variable selection, which, in turn,
makes COMBO statistically scalable to high dimensional problems.
For instance, if βi is set to zero, then L(Gi) does not contribute in
Eq (4.5).

4.2.4 COMBO algorithm

We present the COMBO approach in Algorithm 3. More details
about COMBO could be found in the Appx. B.2.

We start the algorithm with defining all sub-graphs. Then, we cal-
culate GFT (line 4 of Alg. 3), whose result is needed to compute the
ARD diffusion kernel, which could be sped up due to the application
of the graph Cartesian product. Next, we fit the surrogate model
parameters using slice sampling (Murray and Adams, 2010; Neal,
2003) (line 8). Sampling begins with 100 steps of the burn-in phase.
With the updated D of evaluated data, 10 points are sampled without
thinning. More details on the surrogate model fitting are given in
Appx. B.2.

Last, we maximize the acquisition function to find the next point for
evaluation (line 9). For this purpose, we begin with evaluating 20,000
randomly selected vertices. Twenty vertices with highest acquisition
values are used as initial points for acquisition function optimization.
We use the breadth-first local search (BFLS), where at a given vertex
we compare acquisition values on adjacent vertices. We then move
to the vertex with the highest acquisition value and repeat until no

44 combinatorial bayesian optimization

acquisition value on adjacent vertices are higher than the acquisition
value at the current vertex. BFLS is a local search, however, the initial
random search and multi-starts help to escape from local minima.
In experiments (Appx. B.2) we found that BFLS performs on par or
better than non-local search, while being more efficient.

In our framework we can use any acquisition function like GP-UBC,
the Expected Improvement (EI) (Jones et al., 1998), the predictive en-
tropy search (J. M. Hernández-Lobato, M. W. Hoffman, et al., 2014)
or knowledge gradient (Wu, Poloczek, et al., 2017). We opt for EI that
generally works well in practice (Shahriari et al., 2015).

4.3 related works
While for continuous inputs, X ⊆ RD, there exist efficient algo-

rithms to cope with high-dimensional search spaces using Gaussian
processes(GPs) (ChangYong Oh et al., 2018) or neural networks (Snoek,
Rippel, et al., 2015), few Bayesian Optimization(BO) algorithms have
been proposed for combinatorial search spaces (Baptista and Poloczek,
2018; J. Bergstra, Yamins, et al., 2013; Hutter et al., 2011).

A basic BO approach to combinatorial inputs is to represent all com-
binatorial variables using one-hot encoding and treating all integer-
valued variables as values on a real line. Further, for the integer-
valued variables an acquisition function considers the closest integer
for the chosen real value. This approach is used in Spearmint (Snoek,
Larochelle, et al., 2012). However, applying this method naively may
result in severe problems, namely, the acquisition function could re-
peatedly evaluate the same points due to rounding real values to an
integer and the one-hot representation of categorical variables. As
pointed out in (Garrido-Merchán and D. Hernández-Lobato, 2020),
this issue could be fixed by making the objective constant over regions
of input variables for which the actual objective has to be evaluated.
The method was presented on a synthetic problem with two integer-
valued variables, and a problem with one categorical variable and one
integer-valued variable. Unfortunately, it remains unclear whether
this approach is suitable for high-dimensional problems. Addition-
ally, the proposed transformation of the covariance function seems to
be better suited for ordinal-valued variables rather than categorical
variables, further restricting the utility of this approach. In contrast,
we propose a method that can deal with high-dimensional combina-
torial (categorical and/or ordinal) spaces.

Another approach to combinatorial optimization was proposed in
BOCS (Baptista and Poloczek, 2018) where the sparse Bayesian linear
regression was used instead of GPs. The acquisition function was op-
timized by a semi-definite programming or simulated annealing that
allowed to speed up the procedure of picking new points for next

4.4 experiments 45

evaluations. However, BOCS has certain limitations which restrict its
application mostly to problems with low order interactions between
variables. BOCS requires users to specify the highest order of inter-
actions among categorical variables, which inevitably ignores interac-
tion terms of orders higher than the user-specified order. Moreover,
due to its parametric nature, the surrogate model of BOCS has ex-
cessively large number of parameters even for moderately high order
(e.g. up to the 4th or 5th order). Nevertheless, this approach achieved
state-of-the-art results on four high-dimensional binary optimization
problems. Different from (Baptista and Poloczek, 2018), we use a non-
parametric regression, i.e. GPs and perform variable selection both
of which give more statistical efficiency.

4.4 experiments
We evaluate COMBO on two binary variable benchmarks, one or-

dinal and one multi-categorical variable benchmarks, as well as in
two realistic problems: weighted Maximum Satisfiability and Neural
Architecture Search. We convert all into minimization problems. We
compare SMAC (Hutter et al., 2011), TPE (J. Bergstra, Yamins, et al.,
2013), Simulated Annealing (SA) (Spears, 1993), as well as with BOCS
(BOCS-SDP and BOCS-SA3)11 (Baptista and Poloczek, 2018). All de-
tails regarding experiments, baselines and results are in Appx. B.2
and B.4.

4.4.1 BO with binary variables
Table 4.1: Results on the binary benchmarks (25 runs)

Contamination control Ising sparsification
Method λ = 0 λ = 10−4 λ = 10−2 λ = 0 λ = 10−4 λ = 10−2

SMAC 21.61±0.04 21.50±0.03 21.68±0.04 0.152±0.040 0.219±0.052 0.350±0.045
TPE 21.64±0.04 21.69±0.04 21.84±0.04 0.404±0.109 0.444±0.095 0.609±0.107
SA 21.47±0.04 21.49±0.04 21.61±0.04 0.095±0.033 0.117±0.035 0.334±0.064
BOCS-SDP 21.37±0.03 21.38±0.03 21.52±0.03 0.105±0.031 0.059±0.013 0.300±0.039

COMBO 21.28±0.03 21.28±0.03 21.44±0.03 0.103±0.035 0.081±0.028 0.317±0.042

contamination control The contamination control in food sup-
ply chain is a binary optimization problem with 21 binary variables
(≈ 2.10× 106 configurations) (Hu et al., 2010), where one can inter-
vene at each stage of the supply chain to quarantine uncontaminated
food with a cost. The goal is to minimize food contamination while
minimizing the prevention cost. We set the budget to 270 evaluations

11 We exclude BOCS from ordinal/multi-categorical experiments, because at the time
of the submission of this chapter to NeurIPS 2019, the open source implementation
provided by the authors did not support ordinal/multi-categorical variables. For
the explanation on how to use BOCS for ordinal/multi-categorical variables, please
refer to the supplementary material of (Baptista and Poloczek, 2018).

46 combinatorial bayesian optimization

including 20 random initial points. We report results in Tab. 4.1 and
figures in Appx. B.4. COMBO outperforms all competing methods.
Although the optimizing variables are binary, there exist higher or-
der interactions among the variables due to the sequential nature of
the problem, showcasing the importance of the modelling flexibility
of COMBO.

ising sparsification A probability mass function(p.m.f) p(x) can
be defined by an Ising model Ip. In Ising sparsification, we approx-
imate the p.m.f p(z) of Ip with a p.m.f q(z) of Iq. The objective is
the KL-divergence between p and q with a λ-parameterized regular-
izer: L(x) = DKL(p||q) + λ‖x‖1. We consider 24 binary variable Ising
models on 4× 4 spin grid (≈ 1.68× 107 configurations) with a budget
of 170 evaluations, including 20 random initial points. We report re-
sults in Tab. 4.1 and figures in Appx. B.4.1. We observe that COMBO
is competitive, obtaining slightly worse results, probably because in
Ising sparsification there exist no complex interactions between vari-
ables.

4.4.2 BO with ordinal and multi-categorical variables
ordinal variables The Branin benchmark is an optimization prob-
lem of a non-linear function over a 2D search space (Jones et al., 1998).
We discretize the search space, namely, we consider a grid of points
that leads to an optimization problem with ordinal variables. We
set the budget to 100 evaluations and report results in Appx. B.4.2.
COMBO converges to a better solution faster and with better stabil-
ity.

multi-categorical variables The Pest control is a modified ver-
sion of the contamination control with more complex, higher-order
variable interactions, as detailed in Appx. B.4.2. We consider 21 pest
control stations, each having 5 choices (≈ 4.77× 1014 combinatorial
choices). We set the budget to 320 including 20 random initial points.
Results are in in the Appx. B.4.2 COMBO outperforms all methods
and converges faster.

Table 4.2: Results on the non-binary benchmarks (25 runs)

Method Branin (Ordinal) Pest Control (Multi-categorical)

SMAC 0.6962±0.0705 14.2614±0.0753
TPE 0.7578±0.0844 14.9776±0.0446
SA 0.4659±0.0211 12.7154±0.0918

COMBO 0.4113±0.0012 12.0012±0.0033
* We exclude BOCS, as the open source implementation provided by the authors
does not support ordinal/multi-categorical variables.

4.4 experiments 47

4.4.3 Weighted maximum satisfiability
The satisfiability (SAT) problem is an important combinatorial op-

timization problem, where one decides how to set variables of a
Boolean formula to make the formula true. Many other optimiza-
tion problems can be reformulated as SAT/MaxSAT problems. Al-
though highly successful, specialized MaxSAT solvers (Bacchus et al.,
2018) exist, we use MaxSAT as a testbed for BO evaluation. We run
tests on three benchmarks from the Maximum Satisfiability Compe-
tition 2018.12 The wMaxSAT weights are unit normalized. All eval-
uations are negated to obtain a minimization problem. We set the
budget to 270 evaluations including 20 random initial points. We
report results in Tab. 4.3 (Mean ± Std.Err. over 25 runs) and fig-
ures in Appx. B.4.3, and runtimes on wMaxSAT43 in Fig. 4.2 on
wMaxSAT28 (Appx. Fig. B.12)13

Table 4.3: Negated wMaxSAT Minimum (25 runs)

Method wMaxSAT28 wMaxSAT43 wMaxSAT60

SMAC -20.05±0.67 -57.42±1.76 -148.60±1.01
TPE -25.20±0.88 -52.39±1.99 -137.21±2.83
SA -31.81±1.19 -75.76±2.30 -187.55±1.50
BOCS-SDP -29.49±0.53 -51.13±1.69 -153.67±2.01
BOCS-SA3 -34.79±0.78 -61.02±2.28a N.Ab

COMBO -37.80±0.27 -85.02±2.14 -195.65±0.00

a 270 evaluations were not finished after 168 hours.
b Not tried due to the computation time longer than
wMaxSAT43.

COMBO performs best in all cases. BOCS benefits from third-order
interactions on wMaxSAT28 and wMaxSAT43. However, this comes
at the cost of large number of parameters (Baptista and Poloczek,
2018), incurring expensive computations. When considering higher-
order terms BOCS suffers severely from inefficient training. This
is due to a bad ratio between the number of parameters and num-
ber of training samples (e.g. for the 43 binary variables case BOCS-
SA3/SA4/SA5 with, respectively, 3rd/4th/5th order interactions, has
13288/136698/1099296 parameters to train). In contrast, COMBO
models arbitrarily high order interactions thanks to GP’s nonpara-
metric nature in a statistically efficient way.

Focusing on the largest problem, wMaxSAT60 with ≈ 1.15× 1018

configurations, COMBO maintains superior performance. We attribute
this to the sparsity-inducing properties of the Horseshoe prior, after

12 https://maxsat-evaluations.github.io/2018/benchmarks.html
13 The all runtimes were measured on Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

with python codes.

48 combinatorial bayesian optimization

Figure 4.2: Runtime vs Minimum on wMaxSAT43

examining non sparsity-inducing priors (Fig. B.11). The Horseshoe
prior helps COMBO attain further statistical efficiency. We can inter-
pret this reductionist behavior as the combinatorial version of meth-
ods exploiting low-effective dimensionality (J. Bergstra and Bengio,
2012) on continuous search spaces (Ziyu Wang, Hutter, et al., 2016).

The runtime – including evaluation time – was measured on a dual
8-core 2.4 GHz (Intel Haswell E5-2630-v3) CPU with 64 GB mem-
ory using Python implementations. SA, SMAC and TPE are faster
but inaccurate compared to BOCS. COMBO is faster than BOCS-SA3,
which needed 168 hours to collect around 200 evaluations. COMBO
– modelling arbitrarily high-order interactions – is also faster than
BOCS-SDP constrained up-to second-order interactions only.

We conclude that in the realistic maximum satisfiablity problem
COMBO yields accurate solutions in reasonable runtimes, easily scal-
ing up to high dimensional combinatorial search problems.

4.4.4 Neural architecture search

Figure 4.3: Neural Architecture Search (4 runs)

4.4 experiments 49

Last, we compare BO methods on a neural architecture search (NAS)
problem, a typical combinatorial optimization problem (Wistuba, Rawat,
et al., 2019). We compare COMBO with BOCS, as well as Regularized
Evolution (RE) (Real et al., 2019), one of the most successful evolution-
ary search algorithm for NAS (Wistuba, Rawat, et al., 2019). We in-
clude Random Search (RS) which can be competitive in well-designed
search spaces (Wistuba, Rawat, et al., 2019). We do not compare with
the BO-based NASBOT (Kandasamy, Neiswanger, et al., 2018). NAS-
BOT focuses exclusively on NAS problems and optimizes over a dif-
ferent search space than ours using an optimal transport-based metric
between architectures, which is out of the scope for this work.

Table 4.4: Neural Architecture search space

Connectivity
(O - connected, X - disconnected)

IN H1 H2 H3 H4 H5 OUT

IN - O X X X O X
H1 - - X O X X O
H2 - - - X O X X
H3 - - - - X O X
H4 - - - - - O O
H5 - - - - - - X

OUT - - - - - - -
Computation type

MaxPool Conv

Small Id ≡ MaxPool(1×1) Conv(3×3)

Large MaxPool(3×3) Conv(5×5)

For the considered NAS problem we aim at finding the optimal cell
comprising of one input node (IN), one output node (OUT) and five
possible hidden nodes (H1–H5). We allow connections from IN to all
other nodes, from H1 to all other nodes and so one. We exclude con-
nections that could cause loops. An example of connections within a
cell can be found in Tab. 4.4 on the left, where the input state IN con-
nects to H1, H1 connects to H3 and OUT, and so on. The input state
and output state have identity computation types, whereas the com-
putation types for the hidden states are determined by combination
of 2 binary choices from the table on the right of Tab. 4.4. In total, the
search space consists of 31 binary variables, 21 for the connectivities
and 2 for 5 computation types.

The objective is to minimize the classification error on validation
set of CIFAR10 (Krizhevsky and Hinton, 2009) with a penalty on the
amount of FLOPs of a neural network constructed with a given cell.
We search for an architecture that balances accuracy and computa-
tional efficiency. In each evaluation, we construct a cell, and stack

50 combinatorial bayesian optimization

three cells to build a final neural network. More details are given in
the Appx. B.3.

In Fig. 4.3 we can notice that COMBO outperforms other methods
significantly. BOCS-SDP and RS exhibit similar performance, con-
firming that for NAS modeling high-order interactions between vari-
ables is crucial. Furthermore, COMBO outperforms the specialized
RE, one of the most successful evolutionary search (ES) algorithms
shown to perform better on NAS than reinforcement learning (RL)
algorithms (Real et al., 2019; Wistuba, Rawat, et al., 2019). When in-
creasing the number of evaluations to 500, RE still cannot reach the
performance of COMBO with 260 evaluations, see Appx. Fig. B.15.
A possible explanation for such behavior is the high sensitivity to
choices of hyperparameters of RE, and ES requires far more evalua-
tions in general. Details about RE hyperparameters can be found in
the Appx. B.4.4.

Due to the difficulty of using BO on combinatoral structures, BOs
have not been widely used for NAS with few exceptions (Kandasamy,
Neiswanger, et al., 2018). COMBO’s performance suggests that a well-
designed general combinatorial BO can be competitive or even better
in NAS than ES and RL, especially when computational resources are
constrained. Since COMBO is applicable to any set of combinatorial
variables, its use in NAS is not restricted to the typical NASNet search
space. Interestingly, COMBO can approximately optimize continuous
variables by discretization, as shown in the ordinal variable experi-
ment, thus, jointly optimizing the architecture and hyperparameter
learning.

4.5 conclusion
In this work, we propose COMBO, a Bayesian Optimization method

for combinatorial search spaces. To the best of our knowledge, COMB-
O is the first Bayesian Optimization algorithm using Gaussian Pro-
cesses as a surrogate model suitable for problems with complex high
order interactions between variables. To efficiently tackle the expo-
nentially increasing complexity of combinatorial search spaces, we
rest upon the following ideas: (i) we represent the search space as the
combinatorial graph, which combines sub-graphs given to all combi-
natorial variables using the graph Cartesian product. Moreover, the
combinatorial graph reflects a natural metric on categorical choices
(Hamming distance) when all combinatorial variables are categorical.
(ii) we adopt the GFT to define the “smoothness” of functions on
combinatorial structures. (iii) we propose a flexible ARD diffusion
kernel for GPs on the combinatorial graph with a Horseshoe prior
on scale parameters, which makes COMBO scale up to high dimen-
sional problems by performing variable selection. All above features

4.5 conclusion 51

together make that COMBO outperforms competitors consistently on
a wide range of problems. COMBO is a statistically and computa-
tionally scalable Bayesian Optimization tool for combinatorial spaces,
which is a field that has not been extensively explored.

5
M I X E D VA R I A B L E
B AY E S I A N O P T I M I Z AT I O N
W I T H F R E Q U E N C Y
M O D U L AT E D K E R N E L S

5.1 introduction
Bayesian optimization has found many applications ranging from

daily routine level tasks of finding a tasty cookie recipe (Solnik et al.,
2017) to sophisticated hyperparameter optimization tasks of machine
learning algorithms (e.g. Alpha-Go (Y. Chen, A. Huang, et al., 2018)).
Much of this success is attributed to the flexibility and the quality of
uncertainty quantification of Gaussian Process (GP)-based surrogate
models (ChangYong Oh et al., 2018; Snoek, Larochelle, et al., 2012; K.
Swersky, Snoek, et al., 2013).

Despite the superiority of GP surrogate models, as compared to
non-GP ones, their use on spaces with discrete structures (e.g., chem-
ical spaces (Reymond and Awale, 2012), graphs and even mixtures
of different types of spaces) is still application-specific (Kandasamy,
Neiswanger, et al., 2018; Korovina et al., 2020). The main reason is the
difficulty of defining kernels flexible enough to model dependencies
across different types of variables. On mixed variable spaces which
consist of different types of variables including continuous, ordinal
and nominal variables, current BO approaches resort to non-GP sur-
rogate models, such as simple linear models or linear models with
manually chosen basis functions (Daxberger et al., 2021). However,
such linear approaches are limited because they may lack the neces-
sary model capacity.

There is much progress on BO using GP surrogate models (GP BO)
for continuous, as well as for discrete variables. However, for mixed
variables it is not straightforward how to define kernels ,which can
model dependencies across different types of variables. To bridge the
gap, we propose frequency modulation which uses distances on con-
tinuous variables to modulate the frequencies of the graph spectrum
(Ortega et al., 2018) where the graph represents the discrete part of
the search space (Changyong Oh, Tomczak, et al., 2019).

A potential problem in the frequency modulation is that it does
not always define a kernel with the similarity measure behavior (Vert
et al., 2004). That is, the frequency modulation does not necessarily
define a kernel that returns higher values for pairs of more similar
points. Formally, for a stationary kernel k(x,y) = s(x− y), s should
be decreasing (Remes et al., 2017). In order to guarantee the similar-
ity measure behavior of kernels constructed by frequency modulation,

53

54 mixed variable bayesian optimization

we stipulate a condition, the frequency modulation principle. Theoreti-
cal analysis results in proofs of the positive definiteness as well as
the effect of the frequency modulation principle. We coin frequency
modulated (FM) kernels as the kernels constructed by frequency mod-
ulation and respecting the frequency modulation principle.

Different to methods that construct kernels on mixed variables by
kernel addition and kernel multiplication, for example, FM kernels
do not impose an independence assumption among different types
of variables. In FM kernels, quantities in the two domains, that is
the distances in a spatial domain and the frequencies in a Fourier do-
main, interact. Therefore, the restrictive independence assumption is
circumvented, and thus flexible modeling of mixed variable functions
is enabled.

In this chapter, (i) we propose frequency modulation, a new way
to construct kernels on mixed variables, (ii) we provide the condition
to guarantee the similarity measure behavior of FM kernels together
with a theoretical analysis, and (iii) we extend frequency modula-
tion so that it can model complex dependencies between arbitrary
types of variables. In experiments, we validate the benefit of the in-
creased modeling capacity of FM kernels and the importance of the
frequency modulation principle for improved sample efficiency on
different mixed variable BO tasks. We also test BO with GP using
FM kernels (BO-FM) on a challenging joint optimization of the neu-
ral architecture and the hyperparameters with two strong baselines,
Regularized Evolution (RE) (Real et al., 2019) and BOHB (Falkner
et al., 2018). BO-FM outperforms both baselines which have proven
their competence in neural architecture search (X. Dong, L. Liu, et al.,
2021). Remarkably, BO-FM outperforms RE with three times evalua-
tions.

5.2 preliminaries
5.2.1 Bayesian Optimization with Gaussian Processes

Bayesian optimization (BO) aims at finding the global optimum of
a black-box function g over a search space X. At each round BO per-
forms an evaluation yi on a new point xi ∈ X, collecting the set of
evaluations Dt = {(xi,yi)}i=1,··· ,t at the t-th round. Then, a surro-
gate model approximates the function g given Dt using the predic-
tive mean µ(x∗ | Dt) and the predictive variance σ2(x∗ | Dt). Now, an
acquisition function r(x∗) = r(µ(x∗ | Dt),σ2(x∗ | Dt)) quantifies how
informative input x ∈ X is for the purpose of finding the global opti-
mum. g is then evaluated at xt+1 = argmaxx∈X r(x), yt+1 = g(xt+1).
With the updated set of evaluations, Dt+1 = Dt ∪{(xt+1,yt+1)}, the
process is repeated.

5.2 preliminaries 55

A crucial component in BO is thus the surrogate model. Specifically,
the quality of the predictive distribution of the surrogate model is
critical for balancing the exploration-exploitation trade-off (Shahriari
et al., 2015). Compared with other surrogate models (such as Random
Forest (Hutter et al., 2011) and a tree-structured density estimator (J. S.
Bergstra et al., 2011)), Gaussian Processes (GPs) tend to yield better
results (ChangYong Oh et al., 2018; Snoek, Larochelle, et al., 2012).

For a given kernel k and data D = (X, y) where X = [x1, · · · , xn]T

and y = [y1, · · · ,yn]T , a GP has a predictive mean µ(x∗ |X, y) =
k∗X(kXX + σ2I)−1 y and predictive variance σ2(x∗ |X, y) = k∗∗ − k∗X ·
(kXX + σ2I)−1kX∗ where k∗∗ = k(x∗, x∗), [k∗X]1,i = k(x∗, xi), kX∗ =
(k∗X)

T and [kXX]i,j = k(xi, xj).

5.2.2 Kernels on discrete variables
We first review some kernel terminology (Scholkopf and Smola,

2001) that is needed in the rest of the chapter.

Definition 5.1 (Gram Matrix). Given a function k : X×X → R and
data x1, · · · , xn ∈ X, the n×n matrix K with elements [K]ij = k(xi, xj)
is called the Gram matrix of k with respect to x1, · · · , xn.

Definition 5.2 (Positive Definite Matrix). A real n×n matrix K satisfy-
ing

∑
i,j ai[K]ijaj " 0 for all ai ∈ R is called positive definite (PD)14.

Definition 5.3 (Positive Definite Kernel). A function k : X×X → R

which gives rise to a positive definite Gram matrix for all n ∈ N and
all x1, · · · , xn ∈ X is called a positive definite (PD) kernel, or simply
a kernel.

A search space which consists of discrete variables, including both
nominal and ordinal variables, can be represented as a graph (R. I.
Kondor and Lafferty, 2002; Changyong Oh, Tomczak, et al., 2019).
In this graph each vertex represents one state of exponentially many
joint states of the discrete variables. The edges represent relations be-
tween these states (e.g. if they are similar) (Changyong Oh, Tomczak,
et al., 2019). With a graph representing a search space of discrete vari-
ables, kernels on a graph can be used for BO. In (Smola and R. Kon-
dor, 2003), for a positive decreasing function f and a graph G = (V,E)
whose graph Laplacian L(G)15 has the eigendecomposition UΛUT , it
is shown that a kernel can be defined as

kdisc(v, v ′|β) = [Uf(Λ|β)UT]v,v ′ (5.1)

14 Sometimes, different terms are used, semi-positive definite for
∑

i,j ai[K]ijaj " 0

and positive definite for
∑

i,j ai[K]ijaj > 0. Here, we stick to the definition
in (Scholkopf and Smola, 2001).

15 In this chapter, we use a (unnormalized) graph Laplacian L(G) = D−A while, in
(Smola and R. Kondor, 2003), symmetric normalized graph Laplacian, Lsym(G) =
D−1/2(D−A)D−1/2. (A : adj. mat. / D : deg. mat.) Kernels are defined for both.

56 mixed variable bayesian optimization

where β " 0 is a kernel parameter and f is a positive decreasing
function. It is the reciprocal of a regularization operator (Smola and
R. Kondor, 2003) which penalizes high frequency components in the
spectrum.

5.3 methods
With the goal of obtaining flexible kernels on mixed variables which

can model complex dependencies across different types of variables,
we propose the frequency modulated (FM) kernel. Our objective
is to enhance the modelling capacity of GP surrogate models and,
thereby improve the sample efficiency of mixed-variable BO. FM ker-
nels use the continuous variables to modulate the frequencies of the
kernel of discrete variables defined on the graph. As a consequence,
FM kernels can model complex dependencies between continuous
and discrete variables. Specifically, let us start with continuous vari-
ables of dimension DC, and discrete variables represented by the
graph G = (V,E) whose graph Laplacian L(G) has eigendecompos-
tion UΛUT . To define a frequency modulated kernel we consider the
function k : (RDC ×V)× (RDC ×V) ⇒ R of the following form

k((c, v), (c ′, v ′)|β,θ) =
|V |∑

i=1

[U]v,if(λi, ‖ c− c ′ ‖θ |β)[U]v ′,i (5.2)

where ‖ c− c ′ ‖2θ =
∑DC

d=1(cd − c ′d)
2/θ2d and (θ, β) are tunable pa-

rameters. f is the frequency modulating function defined below in
Def. 5.4.

The function f in Eq. (5.2) takes frequency λi and distance ‖ c− c ′ ‖2θ
as arguments, and its output is combined with the basis [U]v,i. That
is, the function f processes the information in each eigencomponent
separately while Eq. (5.2) then sums up the information processed by
f. Note that unlike kernel addition and kernel product,16, the distance
‖ c− c ′ ‖2θ influences each eigencomponent separately as illustrated in
Fig. 5.1. Unfortunately, Eq. (5.2) with an arbitrary function f does not
always define a positive definite kernel. Moreover, Eq. (5.2) with an
arbitrary function f may return higher kernel values for less similar
points, which is not expected from a proper similarity measure (Vert
et al., 2004). To this end, we first specify three properties of functions
f such that Eq. (5.2) guaranteed to be a positive definite kernel and
a proper similarity measure at the same time. Then, we motivate the
necessity of each of the properties in the following subsections.

16 e.g kadd((c, v), (c ′, v ′)) = e−‖ c− c′ ‖2
θ + kdisc(v, v ′) and kprod((c, v), (c ′, v ′)) =

e−‖ c− c′ ‖2
θ · kdisc(v, v ′)

5.3 methods 57

Figure 5.1: Influence on eigencomponents

Definition 5.4 (Frequency modulating function). A frequency mod-
ulating function is a function f : R+×R → R satisfying the three
properties below.

FM-P1 For a fixed t ∈ R, f(s, t) is a positive and decreasing func-
tion with respect to s on [0,∞).

FM-P2 For a fixed s ∈ R+, f(s, ‖ c− c ′ ‖θ) is a positive definite
kernel on (c, c ′) ∈ RDC ×RDC .

FM-P3 For t1 < t2, ht1,t2(s) = f(s, t1)− f(s, t2) is positive, strictly
decreasing and convex w.r.t s ∈ R+.

Definition 5.5 (FM kernel). A FM kernel is a function on (RDC ×V)×
(RDC ×V) of the form in Eq. (5.2), where f is a frequency modulating
function on R+×R.

5.3.1 Frequency Regularization of FM kernels

In (Smola and R. Kondor, 2003), it is shown that Eq. (5.1) defines
a kernel that regularizes the eigenfunctions with high frequencies
when f is positive and decreasing. It is also shown that the reciprocal
of f in Eq. (5.1) is a corresponding regularization operator. For exam-
ple, the diffusion kernel defined with f(λ) = exp(−βλ) corresponds
to the regularization operator r(λ) = exp(βλ). The regularized Lapla-
cian kernel defined with f(λ) = 1/(1+ βλ) corresponds to the regu-
larization operator r(λ) = 1+ βλ. Both regularization operators put
more penalty on higher frequencies λ.

Therefore, the property FM-P1 forces FM kernels to have the same
regularization effect of promoting a smoother function by penalizing
the eigenfunctions with high frequencies.

58 mixed variable bayesian optimization

5.3.2 Positive Definiteness of FM kernels
Determining whether Eq.5.2 defines a positive definite kernel is

not trivial. The reason is that the gram matrix [k((ci, vi), (cj, vj))]i,j
is not determined only by the entries vi and vj, but these entries
are additionally affected by different distance terms ‖ ci− cj ‖θ. To
show that FM kernels are positive definite, it is sufficient to show
that f(λi, ‖ c− c ′ ‖θ | β) is positive definite on (c, c ′) ∈ RDC ×RDC .

Theorem 5.1. If f(λ, ‖ c− c ′ ‖θ | β) defines a positive definite kernel with
respect to c and c ′, then the FM kernel with such f is positive definite jointly
on c and v. That is, the positive definiteness of f(λ, ‖ c− c ′ ‖θ | β) on RDC

implies the positive definiteness of the FM kernel on RDC ×V.

Proof. See Appx. Thm. C.1.

Note that Thm. 5.1 shows that the property FM-P2 guarantees that
FMs kernels are positive definite jointly on c and v.

In the current form of Thm. 5.1, the frequency modulating func-
tions depend on the distance ‖ c− c ′ ‖θ. However, the proof does
not change for the more general form of f(λ, c, c ′ |α,β), where f does
not depend on ‖ c− c ′ ‖θ. Hence, Thm. 5.1 can be extended to the
more general case that f(λ, c, c ′ |α,β) is positive definite on (c, c ′) ∈
RDC ×RDC .

5.3.3 Frequency Modulation Principle
A kernel, as a similarity measure, is expected to return higher val-

ues for pairs of more similar points and vice versa (Vert et al., 2004).
We call such behavior the similarity measure behavior.

In Eq. (5.2), the distance ‖ c− c ′ ‖θ represents a quantity in the “spa-
tial” domain interacting with quantities λis in the “frequency” do-
main. Due to the interplay between the two different domains, the
kernels of the form Eq. (5.2) do not exhibit the similarity measure be-
havior for an arbitrary function f. Next, we derive a sufficient condition
on f for the similarity measure behavior to hold for FM kernels.

Formally, the similarity measure behavior is stated as

‖ c− c ′ ‖θ ! ‖c̃ − c̃ ′‖θ ⇒ k((c, v), (c ′, v ′)) " k((c̃, v), (c̃ ′, v ′)) (5.3)

or equivalently,

‖ c− c ′ ‖θ ! ‖c̃ − c̃ ′‖θ ⇒
|V |∑

i=1

[U]v,iht1,t2(λi|β)[U]v ′,i " 0 (5.4)

where ht1,t2(λ|β) = f(λ, t1|β) − f(λ, t2|β), t1 = ‖ c− c ′ ‖θ and t2 =
‖c̃ − c̃ ′‖θ.

5.3 methods 59

Theorem 5.2. For a connected and weighted undirected graph G = (V,E)
with non-negative weights on edges, define a similarity (or kernel) a(v, v ′) =
[Uh(Λ)UT]v,v ′ , where U and Λ are eigenvectors and eigenvalues of the
graph Laplacian L(G) = UΛUT . If h is any non-negative and strictly
decreasing convex function on [0,∞), then a(v, v ′) " 0 for all v, v ′ ∈ V.

Therefore, these conditions on h(Λ) result in a similarity measure
a with only positive entries, which in turn proves property Eq. (5.4).
Here, we provide a proof of the theorem for a simpler case with an
unweighted complete graph, where Eq. (5.4) holds without the con-
vexity condition on h.

Proof. For a unweighted complete graph with n vertices, we have
eigenvalues λ1 = 0, λ2 = · · · = λn = n and eigenvectors such that
[U]·1 = 1/

√
n and

∑n
i=1[U]v,i[U]v ′,i = δvv ′ . For v)= v ′, the con-

clusion in Eq. (5.4),
∑n

i=1 h(λi)[U]v,i[U]v ′,i becomes h(0)/n+ h(n) ·∑n
i=2[U]v,i[U]v ′,i = (h(0)− h(n))/n in which non-negativity follows

with decreasing h. For the complete proof, see Appx. Thm. C.2.

Thm. 5.2 thus shows that the property FM-P3 is sufficient for Eq. (5.4)
to hold. We call the property FM-P3 the frequency modulation princi-
ple. Thm. 5.2 also implies the non-negativity of many kernels derived
from graph Laplacian.

Corollary 5.3. The random walk kernel derived from the symmetric nor-
malized Laplacian (Smola and R. Kondor, 2003), the diffusion kernels (R. I.
Kondor and Lafferty, 2002; Changyong Oh, Tomczak, et al., 2019) and the
regularized Laplacian kernel (Smola and R. Kondor, 2003) derived from sym-
metric normalized or unnormalized Laplacian, are all non-negatived valued.

Proof. See Appx. Coro. C.3.

5.3.4 FM kernels in practice
scalability Since the (graph Fourier) frequencies and basis func-
tions are computed by the eigendecomposition of cubic computa-
tional complexity, a plain application of frequency modulation makes
the computation of FM kernels prohibitive for a large number of dis-
crete variables. Given P discrete variables where each variable can be
individually represented by a graph Gp, the discrete part of the search
space can be represented as a product space, V = V1× · · ·×VP.

In this case, we define FM kernels on RDC ×V = RDC ×(V1× · · ·×
VP) as

k((c, v), (c ′, v ′)|α,β,θ) =
P∏

p=1

kp((c, vp), (c ′, v ′p)|βp,θ)

=
P∏

p=1

|Vp |∑

i=1

[Up]vp,if(λ
p
i ,αp‖ c− c ′ ‖θ |βp)[U

p]v ′
p,i (5.5)

60 mixed variable bayesian optimization

where v = (v1, · · · , vP), v ′ = (v ′1, · · · , v ′P), α = (α1, · · · ,αP) β =
(β1, · · · ,βP) and the graph Laplacian is given as L(Gp) with the eigen-
decomposition Updiag[λp1 , · · · , λp‖Vp ‖]U

T
p.

Eq.5.5 should not be confused with the kernel product of kernels
on each Vp. Note that the distance ‖ c− c ′ ‖θ is shared, which intro-
duces the coupling among discrete variables and thus allows more
modeling freedom than a product kernel. In addition to the coupling,
the kernel parameter αps lets us individually determine the strength
of the frequency modulation.

examples Defining a FM kernel amounts to constructing a fre-
quency modulating function. We introduce examples of flexible fam-
ilies of frequency modulating functions.

Proposition 5.4. For S ∈ (0,∞), a finite measure µ on [0,S], µ-measurable
τ : [0,S] ⇒ [0, 2] and µ-measurable ρ : [0,S] ⇒ N, the function of the form
below is a frequency modulating function.

f(λ,α‖ c− c ′ ‖θ |β) =
∫S

0

1

(1+βλ+α‖ c− c ′ ‖τ(s)θ)ρ(s)
µ(ds) (5.6)

Proof. See Appx. Prop. C.8.

Assuming S = 1 and τ(s) = 2, Prop. 5.4 gives (1+βλ+α‖ c− c ′ ‖2θ)−1

with ρ(s) = 1 and µ(ds) = ds, and
∑N

n=1 an(1+βλ+α‖ c− c ′ ‖2θ)−n

with ρ(s) = 5Ns6 and µ({n/N}) = an " 0 and µ([{n/N}cn=1,··· ,N) = 0.

5.3.5 Extension of the Frequency Modulation
Frequency modulation is not restricted to distances on Euclidean

spaces but it is applicable to any arbitrary space with a kernel de-
fined on it. As a concrete example of frequency modulation by ker-
nels, we show a non-stationary extension where f does not depend on
‖ c− c ′ ‖θ but on the neural network kernel kNN (Rasmussen, 2003).
Consider Eq. (5.2) with f = fNN as follows.

fNN(λ,kNN(c, c ′ |Σ)|β) =
1

2+βλ− kNN(c, c ′ |Σ)
(5.7)

where kNN(c, c ′ |Σ) = 2
π arcsin

(
2 cT Σ c ′

(1+cT Σ c)(1+c ′T Σ c ′)

)
is the neural net-

work kernel (Rasmussen, 2003).
Since the range of kNN is [−1, 1], fNN is positive and thus satis-

fies FM-P1. Through Eq. (5.7), Eq. (5.2) is positive definite (Sec. C.1,
Prop.C.9) and thus property FM-P2 is satisfied. If the premise t1 < t2
of the property FM-P3 is replaced by t1 > t2, then FM-P3 is also satis-
fied. In contrast to the frequency modulation principle with distances
in Eq. (5.3), the frequency modulation principle with a kernel is for-
malized as

kNN(c, c ′ |Σ) " kNN(c̃, c̃ ′|Σ) ⇒ k((c, v), (c ′, v ′)) " k((c̃, v), (c̃ ′, v ′))

5.4 related works 61

Note that kNN(c, c ′ |Σ) is a similarity measure and thus the inequality
is not reversed unlike Eq. (5.3).

All above arguments on the extension of the frequency modulation
using a nonstationary kernel hold also when the kNN is replaced by
an arbitrary positive definite kernel. The only required condition is
that a kernel has to be upper bounded, i.e., kNN(c, c ′) ! C, needed
for FM-P1 and FM-P2.

5.4 related works
On continuous variables, many sophisticated kernels have been

proposed (ChangYong Oh et al., 2018; Remes et al., 2017; Samo and
S. Roberts, 2015; Andrew Wilson and Nickisch, 2015). In contrast,
kernels on discrete variables have been studied less (Haussler, 1999;
R. I. Kondor and Lafferty, 2002; Smola and R. Kondor, 2003). To our
best knowledge, most of existing kernels on mixed variables are con-
structed by a kernel product (S. Li et al., 2016; K. Swersky, Snoek,
et al., 2013) with some exceptions (Fiducioso et al., 2019; Krause and
Ong, 2011; K. Swersky, Snoek, et al., 2013), which rely on kernel ad-
dition.

In mixed variable BO, non-GP surrogate models are more preva-
lent, including SMAC (Hutter et al., 2011) using random forest and
TPE (J. S. Bergstra et al., 2011) using a tree structured density esti-
mator. Recently, by extending the approach of using Bayesian lin-
ear regression for discrete variables (Baptista and Poloczek, 2018),
(Daxberger et al., 2021) proposes Bayesian linear regression with man-
ually chosen basis functions on mixed variables, providing a regret
analysis using Thompson sampling as an acquisition function. An-
other family of approaches utilizes a bandit framework to handle the
acquisition function optimization on mixed variables with theoretical
analysis (Gopakumar et al., 2018; D. Nguyen et al., 2019; Ru, Alvi,
et al., 2020). (D. Nguyen et al., 2019) use GP in combination with
multi-armed bandit to model category-specific continuous variables
and provide regret analysis using GP-UCB. Among these approaches,
(Ru, Alvi, et al., 2020) also utilize information across different cate-
gorical values, which –in combination with the bandit framework–
makes itself the most competitive method in the family.

Our focus is to extend the modelling prowess and flexibility of pure
GPs for surrogate models on problems with mixed variables. We pro-
pose frequency modulated kernels, which are kernels that are specifi-
cally designed to model the complex interactions between continuous
and discrete variables.

In architecture search, approaches using weight sharing such as
DARTS (H. Liu et al., 2018) and ENAS (Pham et al., 2018) are gaining
popularity. In spite of their efficiency, methods training neural net-

62 mixed variable bayesian optimization

works from scratch for given architectures outperform approaches
based on weight sharing (X. Dong, L. Liu, et al., 2021). Moreover, the
joint optimization of learning hyperparameters and architectures is
under-explored with a few exceptions such as BOHB (Falkner et al.,
2018) and autoHAS (X. Dong, Tan, et al., 2020). Our approach pro-
poses a competitive option to this challenging optimization of mixed
variable functions with expensive evaluation cost.

5.5 experiments
To demonstrate the improved sample efficiency of GP BO using FM

kernels (BO-FM) we study various mixed variable black-box function
optimization tasks, including 3 synthetic problems from (Ru, Alvi, et
al., 2020), 2 hyperparameter optimization problems (SVM (Smola and
R. Kondor, 2003) and XGBoost (T. Chen and Guestrin, 2016)) and the
joint optimization of neural architecture and SGD hyperparameters.

As per our method, we consider ModLap which is of the form
Eq. 5.5 with the following frequency modulating function.

fLap(λ, ‖ c− c ′ ‖θ |α,β) =
1

1+βλ+α‖ c− c ′ ‖2θ
(5.8)

Moreover, to empirically demonstrate the importance of the similarity
measure behavior, we consider another kernel following the form of
Eq. 5.5 but disrespecting the frequency modulation principle with the
function

fDif(λ, ‖ c− c ′ ‖θ |α,β) = exp (−(1+α‖ c− c ′ ‖2θ)βλ) (5.9)

We call the kernel constructed with this function ModDif.
In each round, after updating with an evaluation, we fit a GP sur-

rogate model using marginal likelihood maximization with 10 ran-
dom initialization until convergence (Williams and Rasmussen, 2006).
We use the expected improvement (EI) acquisition function (Donald,
1998) and optimize it by repeated alternation of L-BFGS-B (Zhu et al.,
1997) and hill climbing (Skiena, 1998) until convergence. More details
on the experiments are provided in Appx. C.2.

baselines For synthetic problems and hyperparameter optimiza-
tion problems below, baselines we consider17 are SMAC18 (Hutter et
al., 2011), TPE19 (J. S. Bergstra et al., 2011), and CoCaBO20 (Ru, Alvi, et
al., 2020) which consistently outperforms One-hot BO (GPyOpt, 2016)

17 The methods (Daxberger et al., 2021; D. Nguyen et al., 2019) whose code has not
been released are excluded.

18 https://github.com/automl/SMAC3
19 http://hyperopt.github.io/hyperopt/
20 https://github.com/rubinxin/CoCaBO_code

5.5 experiments 63

and EXP3BO (Gopakumar et al., 2018). For CoCaBO, we consider 3
variants using different mixture weights.21

5.5.1 Synthetic problems

Func2C Func3C Ackley5C

Figure 5.2: Synthetic functions on mixed-variable spaces (5 runs)

Table 5.1: Synthetic functions on mixed-variable spaces (5 runs)
Func2C Func3C Ackley5C

SMAC +0.006± 0.039 +0.119± 0.072 +2.381± 0.165
TPE −0.192± 0.005 −0.407± 0.120 +1.860± 0.125

ModDif −0.066± 0.046 −0.098± 0.074 +0.001± 0.000
ModLap −0.206± 0.000 −0.722± 0.000 +0.019± 0.006

CoCaBO-0.0 −0.159± 0.013 −0.673± 0.027 +1.499± 0.201
CoCaBO-0.5 −0.202± 0.002 −0.720± 0.002 +1.372± 0.211
CoCaBO-1.0 −0.186± 0.009 −0.714± 0.005 +1.811± 0.217

We test on 3 synthetic problems proposed in (Ru, Alvi, et al., 2020)22.
Each of the synthetic problems has the search space as in Tab. 5.2. De-
tails of synthetic problems can be found in (Ru, Alvi, et al., 2020).

Table 5.2: Synthetic Problem Search Spaces
Conti. Space Num. of Cats.

Func2C [−1, 1]2 3, 5
Func3C [−1, 1]2 3, 5,4

Ackley5C [−1, 1] 17, 17, 17, 17, 17

On all 3 synthetic benchmarks, ModLap shows competitive per-
formance (Fig. 5.2). On Func2C and Func3C, ModLap performs the
best, while on Ackley5C ModLap is at the second place, marginally
further from the first. Notably, even on Func2C and Func3C, where

21 Learning the mixture weight is not supported in the implementation, we did not
include it. Moreover, as shown in (Ru, Alvi, et al., 2020), at least one of 3 variants
usually performs better than learning the mixture weight.

22 In the implementation provided by the authors, only Func2C and Func3C are sup-
ported. We implemented Ackley5C.

64 mixed variable bayesian optimization

ModDif underperforms significantly, ModLap exhibits its competi-
tiveness, which empirically supports that the similarity measure be-
havior plays an important role in the surrogate modeling in Bayesian
optimization.

5.5.2 Hyperparameter optimization problems

Figure 5.3: Hyperparameter optimization of SVM and XGBoost (5 runs)

Table 5.3: Hyperparameter optimization of SVM and XGBoost (5 runs)
SVM Method XGBoost

4.759± .141 SMAC .1215± .0045
4.399± .163 TPE .1084± .0007
4.188± .001 ModDif .1071± .0013
4.186± .002 ModLap .1038± .0003
4.412± .170 CoCaBO-0.0 .1184± .0062
4.196± .004 CoCaBO-0.5 .1079± .0010
4.196± .004 CoCaBO-1.0 .1086± .0008

Now we consider a practical application of Bayesian optimization
over mixed variables. We take two machine learning algorithms,
SVM (Smola and R. Kondor, 2003) and XGBoost (T. Chen and Guestrin,
2016) and optimize their hyperparameters.

svm We optimize hyperparameters of ν-SVR in scikit-learn (Pe-
dregosa et al., 2011). We consider 3 categorical hyperparameters and
3 continuous hyperparameters (Tab. 5.4) and for continuous hyperpa-
rameters we search over log10 transformed space of the range.
For each of 5 split of Boston housing dataset with train:test(7:3) ratio,
ν-SVR is fitted on the train set and RMSE on the test set is computed.
The average of 5 test RMSE is the objective.

23 https://scikit-learn.org/stable/modules/generated/sklearn.svm.ν-SVR
.html

5.5 experiments 65

Table 5.4: ν-SVR hyperparameters
ν-SVR param.23 Range

kernel {linear, poly, RBF, sigmoid}
gamma {scale, auto }

shrinking {on, off }
C [10−4, 10]
tol [10−6, 1]
nu [10−6, 1]

xgboost We consider 1 ordinal, 3 categorical and 4 continuous hy-
perparameters (Tab. 5.5).

Table 5.5: XGBoost hyperparameters
XGBoost param.24 Range

max_depth {1, · · · , 10}
booster {gbtree, dart}

grow_policy {depthwise, lossguide}
objective {multi:softmax, multi:softprob}

eta [10−6, 1]
gamma [10−4, 10]

subsample [10−3, 1]
lambda [0, 5]

For 3 continuous hyperparameters, eta, gamma and subsample, we
search over the log10 transformed space of the range. With a strati-
fied train:test(7:3) split, the model is trained with 50 rounds and the
best test error over 50 rounds is the objective of SVM hyperparameter
optimization.

In Fig. 5.3 and Tab. 5.3, ModLap performs the best. On XGBoost hy-
perparameter optimization, ModLap exhibits clear benefit compared
to the baselines. Here, ModDif wins the second place in both prob-
lems.

comparison to different kernel combinations In Appx. C.3,
we also report the comparison with different kernel combinations on
all 3 synthetic problems and 2 hyperparameter parameter optimiza-
tion problems. We make two observations. First, ModDif, which
does not respect the similarity measure behavior, sometimes severely
degrades BO performance. Second, ModLap obtains equally good
final results and consistently finds the better solutions faster than the
kernel product. This can be clearly shown by comparing the area
above the mean curve of BO runs using different kernels. The area
above the mean curve of BO using ModLap is larger than the are
above the mean curve of BO using the kernel product. Moreover, the
gap between the area from ModLap and the area from kernel product

24 https://xgboost.readthedocs.io/en/latest/parameter.html

66 mixed variable bayesian optimization

increases in problems with larger search spaces. Even on the smallest
search space, Func2C, ModLap lags behind the kernel product up to
around 90th evaluation and outperforms after it. The benefit of Mod-
Lap modeling complex dependency among mixed variables is more
prominent in higher dimension problems.

5.5.3 Joint optimization of neural architecture and SGD hyperpa-
rameters

Figure 5.4: Joint optimization of the architecture and SGD hyperparame-
ters (4 runs)

Table 5.6: Joint optimization of the architecture and SGD hyperpa-
rameters

Method Num.Evaluations Mean ± Std.Err. (4 runs)
BOHB 200 7.158× 10−2±1.0303× 10−3

BOHB 230 7.151× 10−2±9.8367× 10−4

BOHB 350 7.061× 10−2±5.9322× 10−4

RE 200 7.067× 10−2±1.1417× 10−3

RE 230 7.061× 10−2±1.1329× 10−3

RE 400 6.929× 10−2±6.4804× 10−4

RE 600 6.879× 10−2±1.0039× 10−3

ModLap 200 6.850× 10−2±3.7914× 10−4

* For the figure with all numbers above, see Appx. C.3.

Next, we experiment with BO on mixed variables by optimizing
continuous and discrete hyperparameters of neural networks. The
space of discrete hyperparameters A is modified from the NASNet
search space (Zoph and Q. Le, 2017), which consists of 8,153,726,976
choices. The space of continuous hyperparameters H comprises 6
continuous hyperparameters of the SGD with a learning rate sched-
uler: learning rate, momentum, weight decay, learning rate reduc-
tion factor, 1st reduction point ratio and 2nd reduction point ratio.

5.5 experiments 67

A good neural architecture should both achieve low errors and be
computationally modest. Thus, we optimize the objective f(a,h) =
errvalid(a,h) + 0.02× FLOP(a)/maxa ′∈A FLOP(a ′). To increase the
separability among smaller values, we use log f(a,h) transformed val-
ues whenever model fitting is performed on evaluation data. The
reported results are still the original non-transformed f(a,h).

We compare with two strong baselines. One is BOHB (Falkner et
al., 2018) which is an evaluation-cost-aware algorithm augmenting
unstructured bandit approach (L. Li et al., 2017) with model-based
guidance. Another is RE (Real et al., 2019) based on a genetic algo-
rithm with a novel population selection strategy. In (X. Dong, L. Liu,
et al., 2021), on discrete-only spaces, these two outperform competi-
tors including weight sharing approaches such as DARTS (H. Liu et
al., 2018), SETN (X. Dong and Yi Yang, 2019), ENAS (Pham et al.,
2018) and etc. In the experiment, for BOHB, we use the public imple-
mentation25 and for RE, we use our own implementation.

For a given set of hyperparameters, with ModLap or RE, the neu-
ral network is trained on FashionMNIST for 25 epochs while BOHB
adaptively chooses the number of epochs. For further details on the
setup and the baselines we refer the reader to Appx. C.2 and C.3.

We present the results in Fig. 5.4. Since BOHB adaptively chooses
the budget (the number of epochs), BOHB is plotted according to the
budget consumption. For example, the y-axis value of BOHB on 100-
th evaluation is the result of BOHB having consumed 2,500 epochs (25
epochs × 100).

We observe that ModLap finds the best architecture in terms of
accuracy and computational cost. What is more, we observe that
ModLap reaches the better solutions faster in terms of numbers of
evaluations. Even though the time to evaluate a new hyperparameter
is dominant, the time to suggest a new hyperparameter in ModLap
is not negligible in this case. Therefore, we also provide the com-
parison with respect the wall-clock time. It is estimated that RE and
BOHB evaluate 230 hyperparameters while ModLap evaluate 200 hy-
perparameters (Appx. C.2). For the same estimated wall-clock time,
ModLap(200) outperforms competitors(RE(230), BOHB(230)).

In order to see how beneficial the sample efficiency of BO-FM is
in comparison to the baselines, we perform a stress test in which
more evaluations are allowed for RE and BOHB. We leave RE and
BOHB for 600 evaluations and 350 evaluations, respectively. Notably,
the RE with 600 evaluations almost reaches ModLap with 200 evalu-
ations (Fig. 5.4 and Appx. C.3). We conclude that ModLap exhibits
higher sample efficiency than the baselines.

25 https://github.com/automl/HpBandSter

68 mixed variable bayesian optimization

5.6 conclusion
We propose FM kernels to improve the sample efficiency of mixed

variable Bayesian optimization.
On the theoretical side, we provide and prove conditions for FM

kernels to be positive definite and to satisfy the similarity measure
behavior. Both conditions are not trivial due to the interactions be-
tween quantities on two disparate domains, the spatial domain and
the frequency domain.

On the empirical side, we validate the effect of the conditions for
FM kernels on multiple synthetic problems and realistic hyperparam-
eter optimization problems. Further, we successfully demonstrate the
benefits of FM kernels compared to non-GP based Bayesian Optimiza-
tion on a challenging joint optimization of neural architectures and
SGD hyperparameters. BO-FM outperforms its competitors, includ-
ing Regularized evolution, which requires three times as many evalu-
ations.

We conclude that an effective modeling of dependencies between
different types of variables improves the sample efficiency of BO. We
believe the generality of the approach can have a wider impact on
modeling dependencies between discrete variables and variables of
arbitrary other types, including continuous variables.

5.6 conclusion 69

6

B ATC H B AY E S I A N
O P T I M I Z AT I O N O N
P E R M U TAT I O N S U S I N G
T H E A C Q U I S I T I O N
W E I G H T E D K E R N E L S

6.1 introduction
From the celebrated traveling salesman problem(Gutin and Pun-

nen, 2006) to flowshop and jobshop scheduling problems(Garey et
al., 1976), permutations are ubiquitous representations in combina-
torial optimization. Such combinatorial problems on permutations
arise in highly impactful application areas. For example, in chip de-
sign, permutations specify relative placements of memories and log-
ical gates on a chip(Alpert et al., 2008). As another example, in 3D
printing, scheduling is an important factor to determine the produc-
tion time(Chergui et al., 2018; V. Griffiths et al., 2019; Xu Song et al.,
2020). In both cases, as well as in many others, evaluating the cost
associated to a given permutation is expensive.

In situations where the evaluation is expensive, Bayesian optimiza-
tion (BO) has shown good performance in many problems(Snoek,
Larochelle, et al., 2012; Snoek, Rippel, et al., 2015). Recently, BO
on combinatorial spaces has made significant progress for categorical
variables (Baptista and Poloczek, 2018; Dadkhahi et al., 2020; Desh-
wal, Belakaria, J. R. Doppa, and Fern, 2020; Changyong Oh, Tomczak,
et al., 2019; K. Swersky, Rubanova, et al., 2020). However, BO on per-
mutations is yet under-explored with a few exceptions (Bachoc et al.,
2020; Zaefferer et al., 2014; J. Zhang et al., 2019).

In this work we present a framework to deal with BO on permuta-
tions where the evaluation of the objective is expensive. We extend
batch Bayesian optimization, which allows one to speed up the opti-
mization by acquiring a batch of multiple points and evaluating the
batch in parallel(Azimi, Fern, et al., 2010; González et al., 2016), to the
case of permutations. Then, motivated by the observation that both
the diversity of the points in the batches and the informativeness of
the individual points in the batch improve the performance(Gong et
al., 2019), we propose a new batch acquisition method which is ap-
plicable to the search space of permutations and takes into account
both the diversity of the batch and the informativeness of each point.
This method is based on determinantal point processes (DPPs), which
have been widely used to model sets of diverse points(Kulesza and
Taskar, 2012), and can be conveniently incorporated into the Gaus-

71

72 batch bayesian optimization on permutations

sian Process framework since DPPs are specified by a kernel. To
overcome the lack of informativeness of DDPs(Kathuria et al., 2016)
(more specifically, the selection of points in batches relies solely on
the predictive variance of the surrogate model), we enhance DPPs
by using a kernel weighted by acquisition values. Therefore, we
propose a new batch acquisition method using the so-called DPP L-
ensemble(Borodin and Rains, 2005; Kulesza and Taskar, 2012) aug-
mented with the Acquisition Weight, dubbed LAW. The whole proce-
dure to find the optimal ordering (permutation) through LAW is thus
dubbed LAW2ORDER. We compare LAW2ORDER and other com-
petitors, firstly, on three combinatorial optimization benchmarks on
permutations such as quadratic assignment problem, the flowshop
scheduling problem, and the traveling salesman problem. We also
make comparisons on the structure learning problem. In the struc-
ture learing problem, LAW2ORDER performs the best and the perfor-
mance gap is more significant for larger permutation spaces. More-
over, LAW2ORDER still outperforms significantly genetic algorithms
which use twice as many evaluations.

6.2 preliminaries
In this section, we briefly discuss some prerequisites for our pro-

posed method and introduce notation. Below we will denote a func-
tion f with one input as f(·), and function K with two inputs as K(·, ·).
For B ∈ N, [B] = {1, · · · ,B} while for a set X, | X | is the number of
elements in X.

6.2.1 Batch Bayesian Optimization

Bayesian Optimization (BO) aims at finding the global optimum
of a black-box function f over a search space X, namely, xopt =
argminx∈X f(x). Two main components are the probabilistic model-
ing of the objective f(x) and the acquisition of new points to evaluate.
Probabilistic modeling is performed by the surrogate model. At the t-
th round, the surrogate model attempts to approximate f(x) based on
the evaluation data Dt−1, producing the predictive mean µt−1(x) =
µ(x | Dt−1) and the predictive variance σ2

t−1(x) = σ2(x | Dt−1). In
the acquisition of a new point, the acquisition function is specified
at(x) = aseq(x |µt−1(·),σ2

t−1(·)), which is based on the predictive
mean µt−1(·) and the predictive variance σ2

t−1(·) to score how infor-
mative points are for the optimization. Next, the point that maxi-
mizes the acquisition function is obtained, xt = argmaxx at(x), and
the objective evaluated, yt = f(xt). Then, the new evaluation point is
appended to the old dataset, Dt = Dt−1 ∪{(xt,yt)} and the process
repeats by fitting the surrogate model with Dt. The process con-

6.2 preliminaries 73

tinues until the evaluation budget is depleted. To contrast with the
proposed method, we call this basic BO as sequential BO. For a more
extensive overview of Bayesian optimization, please refer to (Frazier,
2018; Shahriari et al., 2015).

With more computational resources, such as more GPUs and CPUs,
we can speed up Bayesian optimization by allowing multiple evalu-
ations in parallel. For this, we acquire a batch of multiple points, a
method known as Batch Bayesian Optimization (BBO) (Azimi, Fern,
et al., 2010; González et al., 2016). In BBO, we need an acquisition
function abatch scoring the quality of batches of B points {xb}b∈[B]

instead of individual points. At time t, a batch of B points is acquired,
{xt,b}b∈[B] = argmax{xb}b∈[B]

at({xb}b∈[B]), where at({xb}b∈[B]) is given
as abatch({xb}b∈[B]|µt−1(·),σ2

t−1(·)). Then the points in the acquired
batch are evaluated in parallel and the evaluation data is updated by
Dt = Dt−1 ∪{(xt,b,yt,b)}b∈[B].

6.2.2 Determinantal Point Processes

Determinantal point processes (DPPs) are stochastic point processes
well-suited to model sets of diverse points (Kulesza and Taskar, 2012).
Let us assume that we want to sample a set of diverse points from
a finite set X. One way to define DPP is to use the so-called L-
ensemble (Kulesza and Taskar, 2012). For a given kernel L(·, ·) on
X, the L-ensemble is defined as the random point process with den-
sity PDPP

L (X) =
det([L(x,y)]x,y∈X)

det(I+L) where X ⊂ X and [L(x, y)]x,y∈X is a
submatrix of L restricted to X (Borodin and Rains, 2005).

For a batch of just two points, X = {x, y} it is easy to observe that
DPP encourages diversity — PDPP

L ({x, y}) ∝ L(x, x)L(y, y)− L(x, y)2.
Indeed, for more similar points the value of L(x, y) is higher, result-
ing in a lower density. In DPPs there is no cardinality constraint
on X. We, therefore, define k-DPP, which is a DPP with the re-
striction that sampled sets have precisely k points. Denoting the
set of subsets of X with k points by Xk, the k-DPP density is de-
fined for X ∈ Xk by Pk-DPP

L (X) =
det([L(x,y)]x,y∈X)∑

X ′∈Xk
det([L(x,y)]x,y∈X ′)

. Therefore,

X∗ = argmaxX∈Xk
Pk-DPP
L (X) is the most diverse set of k points with

respect to the similarity encoded by the kernel L(·, ·).

In our algorithm, we use that log of k-DPP density is submodu-
lar (Kulesza and Taskar, 2012; Srinivas et al., 2010) and can be greedily
maximized with approximation guarantees (Nemhauser et al., 1978;
Sakaue, 2020) (See Appx. D.3.1 for a brief discussion).

74 batch bayesian optimization on permutations

6.3 methods
Batch acquisition on a combinatorial space poses two difficulties.

First, the batch acquisition objectives of existing batch Bayesian op-
timization are designed based on the properties and intuition appli-
cable to continuous spaces (Gong et al., 2019; González et al., 2016).
This may not always be suitable for discrete spaces. For instance,
the method in (González et al., 2016) is defined by using Euclidean
distance. Also, the difficulties of combinatorial optimization are ex-
acerbated when optimizing a batch jointly. This is in stark contrast
to the continuous case where gradient based optimization is easily
extended to batch optimization of multiple points in parallel (Jialei
Wang et al., 2020).

To cope with these challenges, we introduce a new batch acquisi-
tion method for Bayesian optimization, the maximization of the deter-
minantal point process (DPP) density defined by an L-ensemble with
Acquisition Weights, dubbed LAW. We describe LAW in Subsec. 6.3.1
and its regret analysis is provided in Subsec. 6.3.2 and 6.3.3.

6.3.1 Batch Acquisition using LAW
We start to define the main components of LAW.

Definition 6.1 (Weight function). We call a function w : R → R a
weight function if it is positive (r ∈ R,w(r) > 0), increasing (r1 !
r2 =⇒ w(r1) ! w(r2)), and bounded below and above by a positive
number (w− = infr∈R w(r) > 0 and w+ = supr∈R w(r) < ∞).

Definition 6.2 (Posterior covariance function). Given a (prior) ker-
nel K(x1, x2), data D and noise variance σ2, the posterior (predic-
tive) covariance function Kpost(x1, x2 | D,σ2) is defined as K(x1, x2)−
K(x1,D) (K(D,D) + σ2I)−1K(D, x2).

Let us assume that we are running batch Bayesian optimization
with Gaussian process surrogate model using the kernel K(·, ·) and
the acquisition function a(·), and that we acquire a batch of B points
in each round. At the t-th round, we have the evaluation data Dt−1,
the posterior covariance function Kt(·, ·) = Kpost(·, ·|K,Dt−1,σ2

obs)
and the acquisition function at({xb}b∈[B]) = a({xb}b∈[B]|µt−1(·),σ2

t−1(·))
where µt−1(·) and σ2

t−1(·) are the predictive mean and the predictive
variance conditioned on Dt−1.

In the existing work (Kathuria et al., 2016) on batch Bayesian op-
timization using DPP, the posterior covariance function is used as
the kernel defining DPP. Even though the use of DPP in (Kathuria et
al., 2016) encourages diversity among points in batches, it essentially
chooses points of high predictive variance.

However, the predictive mean also provides valuable information
in Bayesian optimization. It is the acquisition function which harmo-

6.3 methods 75

Algorithm 4 Batch Acquisition by LAW

1: Input: weight function w(·), diversity gauge L(·, ·), acquisition
function a(·), batch size B

2: Output: batch of B points {xt,1, · · · , xt,B}

3: xt,1 = argmaxx∈X a(x) = argmaxx∈Xw(a(x))
4: for b = 2, · · · ,B do
5: xt,b = argmaxx log(L(x, x |{xt,i}i∈[b−1]))w(a(x))2

6: end for

nizes the predictive mean and the predictive variance to quantify how
useful each point is. Therefore, we propose a new batch acquisition
method which actively uses the acquisition function while retaining
the strength of DPP encouraging diversity in each batch.

We define the Acquisition Weighted kernel LAW as follows

LAW(x1, x2) = w(a(x1)) · L(x1, x2) ·w(a(x2)).

Here w is a positive weight function. We call the kernel L in LAW

the diversity gauge of LAW .
With the posterior covariance function as the diversity gauge L =

Kt and the acquisition function a = at, the acquisition weighted ker-
nel becomes

LAW
t (x1, x2) = w(at(x1)) ·Kt(x1, x2) ·w(at(x2)) (6.1)

Due to the dependency of L = Kt and at to the round index t, we
subscript LAW and L with t.

We optimize the density of DPP using the acquisition weighted
kernel to choose the points in the batch. Before introducing how this
optimization is actually performed, we provide an interpretation by
rewriting the numerator of the density of the k-DPP defined by LAW

t

as

det([LAW
t (xi, xj)]i,j∈[B]) = det([Kt(xi, xj)]i,j∈[B])

B∏

i=1

w(at(xi))2 (6.2)

This shows that the maximization of eq. (6.2) can be obtained by
increasing both det([Lt(xi, xj)]i,j∈[B]) and

∏B
i=1w(at(xi))2 in a bal-

anced way. Increasing the determinant term and increasing the prod-
uct term promote diversity and acquisition values, respectively.

Now, we provide details on how the optimization is implemented.
In combinatorial spaces where the optimization of a single point is
challenging, the joint optimization of multiple points is daunting.
Thanks to the submodularity of the log of the determinant (Kulesza
and Taskar, 2012), the joint optimization of multiple points can be
approximated by a sequence of single point optimizations with an
approximation guarantee (See Appx. D.3.1 for submodularity).

The first point is obtained as in sequential Bayesian optimization by
optimizing an acquisition function (line 3 in Alg. 4). The rest of the

76 batch bayesian optimization on permutations

B− 1 points are obtained by maximizing the k-DPP density defined
by the acquisition weighted kernel, which we approximately perform
with a greedy method (line 4 in Alg. 4). Having chosen b− 1 points
{xt,i}i∈[b−1], the greedy maximization selects xb as follows:

xb = argmax
x∈X

log det([LAW
t (·, ·)]{xi}i∈[b−1]∪{x})

= argmax
x∈X

log(Lt(x, x |{xt,i}i∈[b−1]) ·w(at(x))2)

where Lt(x, x |{xt,i}i∈[b−1]) is the posterior variance of the kernel Lt
conditioned on {xt,i}i∈[b−1].

6.3.2 Regret Analysis
In this subsection, we provide a theoretical analysis on the perfor-

mance of LAW with two acquisition functions, GP-UBC (Srinivas et
al., 2010) and EST (Zi Wang, B. Zhou, et al., 2016).

We begin with definitions needed in the analysis.

Definition 6.3. In the minimization of f using batch acquisition, where
x∗ = argminx f(x), rt,b = f(xt,b)− f(x∗) is called instantaneous regret
and r

(B)
t = minb∈[B] rt,b = minb∈[B](f(xt,b)− f(x∗)) is called batch in-

stantaneous regret. Simple regret is defined as the minimum of batch
instantaneous regrets R

(B)
T .

S
(B)
T = min

t=1,··· ,T
r
(B)
t = min

t=1,··· ,T
min
b∈[B]

rt,b

Batch cumulative regret R(B)
T is defined as the sum of batch instanta-

neous regrets

R
(B)
T =

T∑

t=1

r
(B)
t =

T∑

t=1

min
b∈[B]

rt,b.

Remark 6.1. Note that S
(B)
T ! 1

T R
(B)
T . Vanishing simple regret is

proved by showing 1
T R

(B)
T → 0.

Definition 6.4. For Gaussian processes with the kernel K and the
variance of observation noise σ2, the maximum information gain γT

is defined as

γT = γ(T ;X,K,σ2) = max
X⊂X,|X|=T

1

2
log det(I+ σ−2K(X,X)).

For UCB and EST, we have the following regret bound.

Theorem 6.1. Assume a kernel such that K(·, ·) ! 1, | X | < ∞ and f :
X → R is sampled from GP(0,K). In each round t ∈ [T] of batch Bayesian
optimization, LAW acquires a batch using the evaluation data Dt−1, the

6.3 methods 77

diversity measure Lt(·, ·) = K(·, ·| Dt−1), an acquisition function at(·) and
a weight function w(·) (Def. 6.1).

Let C1 = 36
log(1+σ−2)

where σ2 is the variance of the observation noise
and δ ∈ (0, 1).

At round t, define β
(B)UCB
t,1 = 2 log

(
|X |π2((t−1)B+1)2

6δ

)
and νt =

min
x

(
µt−1(x)−m̂t

σt−1,1(x)

)
where m̂t is the estimate of the optimum (Zi Wang, B.

Zhou, et al., 2016), ζt =
(
2 log

(π2
t

2δ

))1/2
, πt > 0 such that

∑∞
t=1 π

−1
t !

1.
Then batch cumulative regret satisfies the following bound

P

({
R
(B)
T

T
! η

(B)
T

T
+ η

(B)
T

w+

w−

√
C1

γTB

TB

})

" 1− δ (6.3)

where for EST, η(B)
t = νt∗ + ζt and for UBC, η(B)

t = 2(β(B)UCB
t,1)1/2, and

t∗ = argmax
s∈[t]

νs.

Proof. See. Appx. D.1.

Remark 6.2. This theorem shows that, for the same kernel, the regret
bound of LAW also enjoys the same asymptotic behavior as the regret
bound of existing works (Contal et al., 2013; Desautels et al., 2014;
Kathuria et al., 2016).

Remark 6.3. Note that Thm. 6.1 is about a bound on 1
T R

(B)
T while the

analysis in (Desautels et al., 2014; Kandasamy, Krishnamurthy, et al.,
2018) is to bound 1

TBRT ,B where RT ,B =
∑

t,b rt,b. Since 1
T R

(B)
T !

1
TBRT ,B, bounding 1

TBRT ,B implies bounding 1
T R

(B)
T . For the purpose

of showing vanishing simple regret, both approaches are viable. Tech-
nically, two approaches require different treatments. See Appx. D.1.3
for the discussion on the differences between two approaches.

Remark 6.4. The ratio w+
w−

in Thm. 6.1 determines how LAW balances
between the quality and the diversity. If the ratio is large, then the
acquisition value is more influential in Eq. 6.2. Otherwise, Eq. 6.2 is
dominated by the determinant of the diversity gauge, and the diver-
sity of the batch is more emphasized. The bound in Eq. 6.3 reveals
the necessity of the upper bound of w+

w−
. Without the upper bound,

i.e. virtually considering the acquisition value only, the batch acqui-
sition may result in non-vanishing regret. However, the bound is not
tight enough considering the extreme case w+

w−
= 1. Nonetheless, the

necessity of the upper bound of w+
w−

guides how the weight function
w(·) is set (See for details). Moreover, the benefit of considering the
acquisition weight is supported by the experimental results (Sec. 6.5)

Note that η
(B)
T = O(

√
log(TB)) (See Appx. D.1.4 for details). In

Thm. 6.1, we need η
(B)
T ·

√
γTB
TB → 0 to prove vanishing simple regret.

78 batch bayesian optimization on permutations

We provide a bound for the maximum information gain γT of a kernel
on a finite space, which we use later to show the vanishing simple
regret.

Theorem 6.2. K is a kernel on a finite set X (| X | < ∞), σ2 is the variance
of the observation noise and Λ = {λn}1,··· ,|X | (λn " λn+1 " 0) is the set
of eigenvalues of the gram matrix K(X,X). Then

γT ! 1

2
min{T · log det(1+ σ−2 max

x∈X
K(x, x)),

| X | · log(1+ σ−2λmaxT)} (6.4)

where λmax is the largest eigenvalue of K(X,X).

Proof. See. Appx. D.2.1

6.3.3 Position Kernel
Based on the comparative experiments in (Zaefferer et al., 2014)

showing that the Position kernel outperforms others consistently,26,
we use the position kernel in our BBO on permutations

K(π1,π2|τ) = exp
(
− τ ·

∑

i

|π−1
1 (i)− π−1

2 (i)|
)

.

The positive definiteness of the position kernel was empirically tested
via simulation (Zaefferer et al., 2014) and has not been shown rigor-
ously. Therefore, we show the positive definiteness of the position
kernel and bound its eigenvalues.

Theorem 6.3. The position kernel K(·, ·|τ) defined on SN is positive definite

and the eigenvalues of K(X,X) where X ⊂ X lie between
(
1−ρ
1+ρ

)N
and

(
1+ρ
1−ρ

)N
where ρ = exp(−τ).

Proof. See Appx. D.2.2

By utilizing the property of the position kernel, we provide a bound
on the maximal information gain which is tighter than the one ob-
tained in Thm. 6.2.

Theorem 6.4. K(·, ·|τ) is the position kernel defined on SN, σ2 is the
variance of the observation noise, ρ = exp(−τ) and, Dmax = (N2 −
(N mod 2))/2.

26 We also compared different kernels on regression tasks, including Kendall, Mal-
low (Jiao and Vert, 2015), Hamming, Manhattan, Position (Zaefferer et al., 2014) and
Neural Kernel Network (NKN) (S. Sun, G. Zhang, C. Wang, et al., 2018) using men-
tioned kernels as building blocks. The position kernel and NKN performs similarly
the best. NKN uses the position kernel as a building block kernel which is attributed
to the position kernel in the performance of NKN.

6.4 related works 79

Then
γT ! 1

2
min{A(T), | X | · log(1+ σ−2λmaxT)}

where λmax is the largest eigenvalue of K(X,X) and

A(T) = log(1+ σ−2(1+ (T − 1)ρDmax))

+ (T − 1) log(1+ σ−2(1− ρDmax))

which is smaller than T · log(1+ σ−2 maxx∈X K(x, x)).

Proof. See Appx. D.2.3

Remark 6.5. When ρ ∈ (0, 1) is close to one, i.e. log(1 + σ−2(1 −
ρDmax)) ≈ 0, we can observe that even in the finite-time regime, the
regret is almost sublinear since it is dominated by log(1 + σ−2(1 +
(T − 1)ρDmax)). In this case, the theorem provides a bound which is
significantly tighter than the bound in Thm. 6.2 even in the finite-time
regime.

Remark 6.6. If λmax is bounded, Thm. 6.2 can show the vanishing sim-
ple regret. For a kernel K on a finite space X, λmax ! trace(K(X,X)) <
∞. Therefore, γT = O(log(T)) for any kernel. However, considering
the magnitude of | X | and λmax for large spaces, Eq. 6.4 is quite loose.
λmax in Eq. 6.4 reflects kernel-dependent behavior of γT . Therefore,
in Thm. 6.4 we bound λmax for a specific kernel and analyze further
kernel-dependent non-asymptotic behavior.

The regret bounds of LAW are most informative in the asymptotic
regime of large T . However, in Bayesian optimization where, typically,
only a small number of evaluations can be afforded, the asymptotic
bound may not be informative in terms of practical performance. In
Sec. 6.5, we show that, in practice, LAW significantly outperforms
other methods.

6.4 related works
Most existing batch Bayesian optimization methods using Gaussian

process surrogate models focus on continuous search spaces. Many
of them are not applicable to combinatoral spaces because the algo-
rithms use specific properties of Euclidean spaces, e.g, Euclidean dis-
tance (Azimi, Fern, et al., 2010; González et al., 2016; Kathuria et
al., 2016; Lyu et al., 2018; Zi Wang, B. Zhou, et al., 2016; Wu and
Frazier, 2016), grid partitioning (Zi Wang, Gehring, et al., 2018; Zi
Wang, C. Li, et al., 2017), projection using Euclidean geometry (Jialei
Wang et al., 2020). The methods (Gong et al., 2019; Kandasamy, Kr-
ishnamurthy, et al., 2018; Shah and Ghahramani, 2015) using Thomp-
son sampling (TS) (Thompson, 1933; J. Wilson et al., 2020), random
feature (Rahimi, Recht, et al., 2007) or entropy search (Hennig and

80 batch bayesian optimization on permutations

Schuler, 2012; J. M. Hernández-Lobato, M. W. Hoffman, et al., 2014)
require either closed-form expression of eigenfunctions or Choleksy
decomposition of the gram matrix on all points in the search space.
In general, a closed-form expression of eigenfunctions (RBF) is not
available. For large combinatorial spaces, Choleksy decomposition is
infeasible. LAW is a batch acquisition method applicable to general
spaces including permutation spaces.

Recently, BO on combinatorial spaces has made significant progress
for categorical variables (Baptista and Poloczek, 2018; Dadkhahi et
al., 2020; Deshwal, Belakaria, J. R. Doppa, and Fern, 2020; Changy-
ong Oh, Tomczak, et al., 2019; K. Swersky, Rubanova, et al., 2020).
However, relatively few works in Bayesian optimization have focused
on permutations (Bachoc et al., 2020; Zaefferer et al., 2014; J. Zhang
et al., 2019). While existing works focus on the effect of the kernel
on performance, our focus is to scale up Bayesian optimization on
permutations via batch acquisition, which has not been studied in
previous works.

The application of determinantal point processes (DPPs) to Bayesian
optimization is not new. The use of DPP and the regret analysis on
continuous search spaces (Kathuria et al., 2016) is closely related to
our work. We focus on optimization problems on permutations rather
than continuous spaces and use acquisition weighted kernels in our
DPP. We provide a regret bound, which includes the unweighted case
as a special case. Moreover, we show the behavior of the information
gain of the position kernel, which, in turn, helps to understand the
behavior of BO on permutations.

The idea of using weighted kernels was investigated in DPP (Kulesza
and Taskar, 2010, 2012), also recently in the context of active learn-
ing (Bıyık et al., 2019) and more recently in architecture search (V.
Nguyen, T. Le, et al., 2021). In addition to the use of the acquisition
weights, we provide a regret analysis and the bound on the informa-
tion gain of the position kernel for BO on permutations.

In existing works on regret analysis of batch Bayesian optimization,
the cumulative regret is analyzed as an end goal (Desautels et al.,
2014) and as a medium to show vanishing simple regret (Kandasamy,
Krishnamurthy, et al., 2018). On the other hand, we analyze the batch
cumulative regret not the cumulative regret (see Def. 6.3 and remarks
thereafter). The batch cumulative regret is analyzed in (Contal et al.,
2013) but without the acquisition weight. More detailed discussion on
the difference among all these analyses is provided in Appx. D.1.3.

6.5 experiments 81

6.5 experiments
We empirically demonstrate the benefit of LAW on many optimiza-

tion problems on permutations.27

In all Gaussian process (GP) based BO including baselines, we use
the position kernel (see. Subsec. 6.3.3). At each round, evaluation
outputs are normalized. GP surrogate models are trained with output
normalized evaluation data by optimizing the marginal likelihood
until convergence with 10 different random initializations. We use the
Adam optimizer (Kingma and Ba, 2015) with default PyTorch (Paszke
et al., 2017) settings except for the learning rate of 0.1.

When the optimization is performed on a single permutation vari-
able, for example in greedy optimization, hill climbing is used until
convergence and the neighbors are defined as the set of permutations
obtainable by swapping two locations.

6.5.1 Weight function
The motivation of the acquisition weight is to promote the quality

of the queries in the batch by using acquisition weights. In order to
reflect this motivation, the weight function should be monotonically
increasing. The better the quality (acquisition value) is, the larger the
batch acquisition objective is.

In Eq. 6.2, the batch acquisition objective is factorized into the DPP
with the diversity gauge and the product of weights, thus the weight
function should be positive to prevent the product of an even num-
ber of large negative values becomes a large positive value. Also, in
Eq. 6.2, zero weight value nullifies the diversity component, thus the
weights function is required to be nonzero.

In Thm. 6.1, for vanishing regret, the ratio w+
w−

should be upper-
bounded. Not only it facilitates the proof, but the upper bound is also
intuitively appealing because we do not want to overly emphasize
the quality of the queries. We want to balance quality and diversity.
Weight functions with an unbounded ratio may erase the diversity
consideration.

Combining the rationale behind LAW and its regret analysis, we set
the weight function to be, monotonically increasing, positive valued,
bounded below, bounded above.

6.5.2 Combinatorial Optimization Benchmarks
We consider LAW with two acquisition functions28, EST (Zi Wang,

B. Zhou, et al., 2016) and EI (Jones et al., 1998), LAW-EST and LAW-EI.

27 The code is available at https://github.com/ChangYong-Oh/LAW2ORDER
28 The βt in UCB balancing between exploitation and exploration increases as the size

of the search space increases in the finite search space case (Srinivas et al., 2010). In

82 batch bayesian optimization on permutations

Even though the regret bound of LAW-EI is not provided in Thm. 6.1,
we include LAW-EI because EI is the most popular acquisition func-
tion and this reveals the effect of the acquisition weights with differ-
ent acquisition functions. We use the sigmoid w(a) = 0.01+ 0.99(1+
exp(−0.2 · a))−1 for LAW-EST and w(a) = 0.01+ a for LAW-EI.29

Figure 6.1: Quadratic Assignment Problems (15 runs)

Table 6.1: Quadratic Assignment Problems (15 runs)
Benchmarks QAP-chr12a QAP-nug22 QAP-esc32a
Batch 5 5 10
BUCB 18105± 955 (8) - -
DPP-MAX-EST 14732± 634 (7) 3900± 23 (5) 276.5± 3.9 (6)
DPP-SMP-EST 19970± 719 (9) 4446± 22 (8) 319.6± 3.8 (8)
MACE-UCB 13440± 348 (5) 4031± 26 (6) 250.3± 3.5 (5)
MACE-EST 14126± 596 (6) 4086± 20 (7) 285.6± 3.1 (7)
q-EI 12769± 457 (4) 3653± 10 (1) 172.7± 3.2 (2)
q-EST 11790± 498 (1) 3690± 15 (2) 171.2± 1.8 (1)
LAW-EI 11914± 345 (2) 3724± 13 (3) 192.5± 5.3 (4)
LAW-EST 12067± 238 (3) 3731± 9 (4) 191.7± 2.9 (3)

The baselines are BUCB (Desautels et al., 2014), DPP-MAX-EST,
DPP-SAMPLE-EST (Kathuria et al., 2016)30 MACE-UCB, MACE-EST
(Lyu et al., 2018)31 and q-EI, q-EST (Ginsbourger et al., 2008). Even
though the original names of the baselines are used to emphasize
their batch acquisition strategy, all baselines use the position kernel.
Hence, the batch acquisition strategy is the only differentiating factor
among baselines and LAW(ours). Note that DPP-MAX-EST (Kathuria

the experiments, due to the size of the search space, GP-UCB virtually becomes the
predictive variance. Thus we exclude LAW-UCB.

29 LAW-EI is included to check the influence of different acquisition functions despite
the lack of regret analysis. Therefore, the weight function is chosen to prevent zero
values from numerical truncation.

30 PE (Contal et al., 2013) is equivalent to DPP-MAX-UCB (Kathuria et al., 2016). Since
on continuous problems DPP-MAX-EST outperforms DPP-MAX-UCB (Kathuria et
al., 2016), we exclude PE.

31 The MACE requires multi-objective optimization on permutations. We use NSGA-
II (Deb et al., 2002) in Pymoo (Blank and Deb, 2020). MACE-UCB uses the original
set of acquisition functions: PI, EI and UCB (Lyu et al., 2018), while MACE-EST
replaces UCB with EST.

6.5 experiments 83

et al., 2016) corresponds to LAW-EST with w(·) ≡ const., i.e. no
acquisition weight.

Note that, due to the reasons discussed in Sec. 6.4, existing works
based on Thompson sampling or the properties of Euclidean space
are excluded from the baselines.

Figure 6.2: Permutations Benchmarks (15 runs)

Table 6.2: Flowshop Scheduling Problems (15 runs)
Benchmarks FSP-car5 FSP-hel2 FSP-reC19
Batch 5 5 10
BUCB 7887± 32 (8) - -
DPP-MAX-EST 7796± 11 (7) 142.5± 0.48 (5) 2262± 7.7 (6)
DPP-SMP-EST 7973± 26 (9) 151.7± 0.58 (8) 2410± 6.1 (8)
MACE-UCB 7776± 10 (1) 143.1± 0.42 (7) 2252± 5.8 (5)
MACE-EST 7791± 9 (5) 142.5± 0.45 (5) 2282± 5.9 (7)
q-EI 7783± 11 (4) 141.2± 0.66 (3) 2231± 8.4 (3)
q-EST 7782± 9 (3) 141.0± 0.49 (2) 2242± 12.1 (4)
LAW-EI 7794± 8 (6) 141.2± 0.45 (3) 2211± 4.5 (2)
LAW-EST 7780± 7 (2) 140.7± 0.31 (1) 2202± 4.2 (1)

We consider three types of combinatorial optimization on permuta-
tions, Quadratic Assignment Problems (QAP), Flowshop Scheduling
Problems (FSP) and Traveling Salesman Problems (TSP) (See Appx.
D.3.3 for data source).

For each benchmark, all methods share 5 randomly generated ini-
tial evaluation data sets of 20 points and for each initial evaluation
data set, each method is run three times — 15 runs in total.

DPP-MAX-EST uses the position kernel as LAW-EST, this is equiv-
alent to LAW-EST without the acquisition weight, i.e. w(a) = 1. By
comparing LAW-EST with DPP-MAX-EST, we can directly evaluate
the benefits of using the acquisition weight.

As shown in Tab. 6.1,6.2,6.3 and Fig. 6.1,6.2,6.3, LAW-EI, LAW-EST,
q-EI and q-EST are in top four except for FSP-car5 and TSP-att48.
LAW-EST performs the best on FSP and TSP while q-EI or q-EST per-
form the best on QAP. Along with the experiment on the structure
learning (Subsec. 6.5.3), we conjecture that QAP has a certain struc-
ture more friendly to q-EI and q-EST. Also LAW-EI exhibits compa-
rable performance with q-EI and q-EST while outperforming other

84 batch bayesian optimization on permutations

Figure 6.3: Traveling Salesman Problems (15 runs)

Table 6.3: Traveling Salesman Problems (15 runs)
Benchmarks TSP-burma14 TSP-bayg29 TSP-att48
Batch 5 5 10
BUCB 4184± 132 (8) - -
DPP-MAX-EST 3786± 74 (7) 2727± 50 (6) 39539± 487 (7)
DPP-SMP-EST 4603± 52 (8) 3653± 29 (8) 40893± 265 (8)
MACE-UCB 3583± 21 (6) 2698± 50 (5) 25773± 371 (4)
MACE-EST 3576± 25 (5) 2940± 49 (7) 32711± 212 (6)
q-EI 3427± 40 (3) 2065± 36 (3) 20472± 502 (2)
q-EST 3527± 75 (4) 2060± 48 (2) 21199± 620 (3)
LAW-EI 3466± 26 (2) 2487± 47 (4) 26864± 589 (5)
LAW-EST 3369± 7 (1) 2038± 36 (1) 19846± 485 (1)

baselines, which supports the benefit of the acquisition weight. In
terms of the average rank over all benchmarks, LAW-EST performs
the best with the average rank of 1.89 against q-EST (2.44) and q-
EI (2.78). Overall, among the baselines, LAW-EST exhibits stable and
competitive performance across different benchmarks.

Comparison to the local penalization (LP)
Two additional variants of LAW, LAW-PRIOR-EST and LAW-PRIOR-

EI, are also compared (Appx. D.4), which use the prior covariance
function as the diversity gauge, L = K, of LAW

t . These variants do not
use evaluation data in the diversity gauge.

Interestingly, LAW-PRIOR-EST and LAW-PRIOR-EI resemble the
local penalization (LP) (González et al., 2016) (Appx. D.3.2), and thus
this allows an indirect comparison to LP which is not applicable to
combinatorial spaces.32

These variants using the prior covariance function performs worse
than LAW using the posterior covariance function, which is natural
since using more data for the diversity gauge enhances the perfor-
mance. More importantly, LAW-PRIOR-EST and LAW-PRIOR-EI out-
perform DPP-MAX-EST which uses the posterior covariance function

32 LAW variants use the kernel of the GP surrogate model as the diversity gauge which
is more guided by data while LP uses the local penalizer which is heuristically de-
signed. We expect that this distinction will still make a difference on the perfor-
mance.

6.5 experiments 85

without the acquisition weight, which supports that the acquisition
weight is key in the performance improvement.

Based on the empirical analysis above, we choose LAW-EST as our
final recommendation, which we call LAW2ORDER.

6.5.3 Structure Learning

Figure 6.4: Neg. log NML minimization for the structure learning (5 runs)

Table 6.4: Neg. log NML minimization for the structure learning (5 runs)
BN(#Node) Sachs(11) Child(20) Insurance(27) Alarm(37)
Sec. to eval. 60 ∼ 80 120 ∼ 140 150 ∼ 170 200 ∼ 220

Method #Eval C = 76100 C = 124000 C = 135000 C = 117000

GA 620 53.46± 4.99 1387.12± 79.26 3330.60± 406.92 4825.19± 570.55
GA 1240 31.90± 5.86 1368.07± 92.26 2814.04± 418.49 4114.97± 449.93
q-EI 620 55.98± 10.11 864.85± 0.16 433.23± 357.18 2969.00± 518.67

q-EST 620 70.67± 16.31 928.83± 32.97 1215.75± 556.36 2739.77± 554.12
LAW-EST 620 29.58± 6.36 866.64± 0.39 33.95± 174.04 1409.27± 227.57

We apply LAW2ORDER to the score-based structure learning prob-
lem (Drton and Maathuis, 2017). Existing score-based methods as-
sume a computationally amenable structure of the score to be opti-
mized (decomposability) (Koller and Friedman, 2009; Scutari et al.,
2019). Distinctively our approach does not necessitate the decompos-
ability of the score to be optimized.

We consider the NML score as below

SNML(G,D) = − logpBN(D |G, θ̂ML(G,D)) + REGNML(G, | D |)

where pBN(·| G, θ) is the density of Bayesian Network (BN) with DAG
G and the parameter θ, and REGNML is the normalized marginal

86 batch bayesian optimization on permutations

likelihood (NML) which is a complexity measure from the minimum
description length principle (P. D. Grünwald and Grunwald, 2007).
NML is not decomposable, and thus the methods assuming a decom-
posable score are not applicable. Since it is infeasible to compute
NML exactly and we resort on MC estimate, the NML score evalua-
tion is noisy. In addition to not being decomposable, noisy evaluation
also makes existing methods inapplicable to the NML score objective.
For more details of NML and its MC estimate, see Appx. D.3.4.

Similarly to (Raskutti and Uhler, 2018; Solus et al., 2021) we search
over permutations specifying topological order of DAGs and the ex-
istence of edges is determined by the conditional independence test.
In addition to q-EI and q-EST performing well on the benchmarks,
we compare LAW2ORDER with the genetic algorithm (GA), which
is one of the most popular choices for optimization problems on per-
mutations including TSP (Potvin, 1996).

We generated 5 sets of 20 random initial points. LAW2ORDER,
q-EI and q-EST is run on each of these 5 sets using a batch size 20.
Assuming the same resource constraint (at most 20 evaluations in
parallel), GA generates 20 off-springs in each generation. GA is also
run 5 times with a population size of 100 points using Pymoo (Blank
and Deb, 2020). The first 20 points of each initial population in the 5
runs are equal to the 20 initial points used in LAW2ORDER, q-EI and
q-EST. Even though the real deployment of Bayesian optimization
assumes that the cost of evaluation is expensive enough to render the
time to acquire new batches negligible, as a stress test, we allowed
twice the evaluation budget for GA.

On data generated from 4 real-world BNs (Scutari, 2010; Scutari et
al., 2019), the results are reported in Fig. 6.4 and Tab. 6.4. LAW2ORD-
ER outperforms q-EI and q-EST with a significant margin except for
Child where all three find the putative optimum quickly. Still, in
Child, LAW2ORDER finds a point of negligible differences with the
putative optimum the most quickly. Also, except for Sachs, we ob-
serve that the performance gap increases as the permutation size (the
size of the search space) increases. On this realistic problem, our ar-
gument that LAW2ORDER is stable and efficient batch acquisition
method on permutations is reinforced.

In comparison with GA, we consider GA(620) with the same evalua-
tion budget and GA(1240) with twice large evaluation budget. LAW2-
ORDER dominates GA(620) in all problems with a significant margin.
Even compared with GA(1240), LAW2ORDER significantly outper-
forms except for Sachs which has one of the smallest search spaces
(See Tab. 6.4 and Appx. D.4). Contrary to our expectation that BO has
the sample efficiency higher than GA, GA(620) outperforms q-EI and
q-EST on Sachs. LAW2ORDER shows robust performance even in the
problem where the performance of q-EI and q-EST is degraded.

6.6 conclusion 87

Together with the experiments on the benchmarks, LAW2ORDER
is shown to be a robust batch acquisition method on permutations.
Moreover, promoting the diversity in batches while taking into ac-
count the acquisition weight appears more beneficial with larger batch
size (20) as shown in the structure learning experiment.

6.6 conclusion
In this chapter we have focused on combinatorial optimization prob-

lems over permutations where each evaluation is assumed to be ex-
pensive. This class of problems has many interesting applications,
ranging from chip design (where we wish to place cells while min-
imizing area and wire-length), warehouse optimization (where we
need to order the retrieval of items from a warehouse using a robot),
neural architecture search and so on. In spite of its practical signifi-
cance, BO on permutations is under-explored in contrast to the recent
progress on combinatorial BO with categorical variables.

In response to this, we have proposed a batch Bayesian optimiza-
tion algorithm on permutations, LAW2ORDER, which uses an exten-
sion of the determinantal point processes with the acquisition weight-
ed kernel. This allows the search process over the surrogate function
to make optimal use of all parallel available computational resources
and be guided by both the expected objective value and its posterior
uncertainty.

On the theory side we offer a regret analysis, which shows that
the regret bound of LAW enjoys the same asymptotic behavior as
existing methods. On the empirical side, we show that LAW vari-
ants consistently exhibit competitive performance on a wide range of
combinatorial optimization tasks, including a challenging structure
learning problem.

From these we conclude that the acquisition weights are indeed
a key factor in the success of the proposed method, and that the
performance gains increase for large batch sizes.

LAW is applicable to general search spaces for which a kernel can
be defined. We leave the exploration of our method to applications
outside searching over permutations for future work.

LAW achieves improved sample efficiency in the sense that the
quality of batches from LAW is maintained for large batch sizes.
However, due to the sequential nature of the greedy maximization
of LAW objective, its computational complexity is linear with respect
to the batch size. Especially for large permutation spaces, this may
be a nonnegligible cost. We hope that the sample efficiency of LAW
is complemented by the computational efficiency allowing massive
parallelization.

88 batch bayesian optimization on permutations

Even though the regret bound in Thm. 6.1 describes the effect of
the acquisition weight, as mentioned in Rmk. 6.4, it only sheds light
on the demerit of excessive emphasis on the acquisition weights but it
does not detect the demerit of considering the diversity only. We hope
our work inspires the regret bound for acquisition methods taking
into account properties other than diversity.

6.6 conclusion 89

7 B AY E S I A N O P T I M I Z AT I O N
F O R M A C R O P L A C E M E N T

Macro placement is the problem of placing memory blocks on a
chip canvas. It can be formulated as a combinatorial optimization
problem over sequence pairs, a representation which describes the
relative positions of macros. Solving this problem is particularly
challenging since the objective function is expensive to evaluate. In
this chapter, we develop a novel approach to macro placement using
Bayesian optimization (BO) over sequence pairs. BO is a machine
learning technique that uses a probabilistic surrogate model and an
acquisition function that balances exploration and exploitation to ef-
ficiently optimize a black-box objective function. BO is more sample-
efficient than reinforcement learning and therefore can be used with
more realistic objectives. Additionally, the ability to learn from data
and adapt the algorithm to the objective function makes BO an ap-
pealing alternative to other black-box optimization methods such as
simulated annealing, which relies on problem-dependent heuristics
and parameter-tuning. We benchmark our algorithm on the fixed-
outline macro placement problem with the half-perimeter wire length
objective and demonstrate competitive performance.

7.1 introduction
In chip placement two different types of objects are placed on a

chip canvas: macros, which are large memory blocks, and standard
cells, which are small gates performing logical operations. Compared
to macros, standard cells are typically thousands of times smaller but
tens or hundreds of thousands of times more numerous. While stan-
dard cell placement can be efficiently solved using continuous opti-
mization, e.g. (C.-K. Cheng et al., 2019), macro placement is typically
framed as a combinatorial optimization problem due to their larger
physical size. This involves searching over the discrete set of rela-
tive positions between pairs of macros, e.g. whether macro i is to the
left or right of macro j, which act as constraints against overlapping
macros. The most popular combinatorial representation of relative
positions is called the sequence pair which is composed of a pair of
permutations, one per spatial dimension (Murata et al., 1996).

The goal of macro placement is to place macros in such a way that
the power, performance and area metrics are jointly optimized. The
combinatorial nature and varying sizes of macros and standard cells,
together with the cost of evaluating the objective function (several

91

92 bayesian optimization for macro placement

Figure 7.1: Bayesian optimization for a macro placement workflow for N =
3 macros and batch size B = 2. First we fit a surrogate model
(Gaussian process) to the data, updating the mean µ and stan-
dard deviation σ of the cost function estimate for each sequence
pair, here represented as a pair of N dimensional arrays where
permutations correspond to different colors patterns. Then we
optimize an acquisition function a conditioned on the data ob-
served so far to find new sequence pairs x1, . . . , xB. Next we
evaluate x1, . . . , xB by placing macros to minimize HPWL while
respecting the sequence pair constraints, and compute the cor-
responding objective values y1, . . . ,yB. Here Pi is the perimeter
of the i-th bounding box of the net between macros and I/O
pads. Finally we add these new points to the dataset and repeat
the procedure until the computational budget is exhausted.

days for complex designs), make macro placement a notoriously chal-
lenging step in physical design. Macro placement is also related to
floorplanning, where standard cells are clustered in soft rectangles
that are jointly placed with hard rectangles that represent macros (A.
Kahng et al., 2011). In practice, designers manually place macros
based on their intuition which is likely sub-optimal.

Machine learning algorithms offer an advantage over traditional
optimization algorithms for macro placement since they can learn
from past designs and improve over time in an automated fashion,
adapting the algorithms to specific use cases. Applying machine
learning to physical design has therefore recently emerged as a main
research effort in electronic design automation (A. B. Kahng, 2018).
In particular, reinforcement learning (RL) provides a natural frame-
work for automating design decisions, where an agent plays the role
of a designer in carefully selecting parameter configurations to eval-
uate next while searching for optimal solutions. However, in practice
applying RL is very costly because of the large number of samples
required for learning a good policy, due in part to the very large de-
sign space and costly evaluation as remarked above. For this reason,
to the best of our knowledge, applications of RL in the literature are
either limited to a handful of parameters (Agnesina et al., 2020) or
require the use of cheap proxies instead of the real objective (Mirho-
seini et al., 2021), which changes the focus towards designing good
proxies.

Bayesian optimization (BO) is a technique that is well-known for
its sample-efficiency, whereby it carefully explores the optimization

7.2 background 93

landscape through selecting a candidate based on previous evalua-
tions (Shahriari et al., 2015). Compared with other black-box function
optimization methods such as RL, genetic algorithms, or simulated
annealing (SA), the sample efficiency of BO allows flexibility for the
macro placement. Especially when it is desirable to perform optimiza-
tion close to the real objective, not a proxy, inevitable evaluation cost
leaves only BO as a viable option. For the application to macro place-
ment, more relevant is BO on combinatorial structures (Baptista and
Poloczek, 2018; Deshwal, Belakaria, and J. R. Doppa, 2021; Deshwal,
Belakaria, J. R. Doppa, and D. H. Kim, 2022; Deshwal and J. Doppa,
2021; Changyong Oh, Tomczak, et al., 2019). For the details on BO on
combinatorial structures, please refer to the references.

Contributions In this chapter we introduce BO on sequence pairs
for macro placement as a replacement for other black-box optimiza-
tion methods such as SA which are routinely applied in the litera-
ture (S. N. Adya and Igor L Markov, 2002; Xu et al., 2017). We use
batch BO for parallel evaluation of a batch of data points to accelerate
the optimization. Fig. 7.1 summarizes our workflow.

Our main contributions are:

• We extend batch BO on permutations in Ch. 6 to batch BO on se-
quence pairs and devise an efficient algorithm for parallel batch
acquisition function optimisation.

• We benchmark our algorithm on the MCNC dataset and obtain
superior performance in terms of wire length metric as com-
pared to SA.

7.2 background
7.2.1 Sequence pair

Sequence pairs (SPs) were introduced in (Murata et al., 1996) as
a combinatorial representation for macro packing problems. We re-
call that a macro is a rectangle with distinguished points called pins
which may connect wires. For macros {m1, · · · ,mN}, an SP is a pair of
permutations of length N, one per spatial dimension, which specifies
the relative location of each pair of macros. The relationship between
the four possible relative locations of macros mi and mj and SPs are
explained in Tab. 7.1.

Traditionally, the SP representation has been used in macro place-
ment for optimizing area and half perimeter wire length (HPWL) (Mu-
rata et al., 1996). HPWL is the half perimeter of the bounding box
around a net (e.g. the red boxes in Fig. 7.1). To convert the SP to
a packed placement, an algorithm called the Longest Common Sub-
sequence (LCS) is used. For a given SP, i.e. given relative locations

94 bayesian optimization for macro placement

Table 7.1: Relative location specified by sequence pair (π,π ′)

π π ′ Relative location of i and j

(· · · , i, · · · , j, · · ·) (· · · , i, · · · , j, · · ·) i is on the left of j
(· · · , j, · · · , i, · · ·) (· · · , j, · · · , i, · · ·) i is on the right of j
(· · · , i, · · · , j, · · ·) (· · · , j, · · · , i, · · ·) i is below j
(· · · , j, · · · , i, · · ·) (· · · , i, · · · , j, · · ·) i is above j

among macros, it ensures minimal area placement, where no further
vertical or horizontal adjustment of any macro is possible (Murata et
al., 1996).

Simulated annealing (SA) is commonly used to search over the
space of SPs by carefully-designed stochastic moves (S. Adya and I.
Markov, 2001). The optimization objective is typically a linear combi-
nation of area and HPWL. The conversion from an SP to a placement
is the main computational bottleneck. Since SA requires several thou-
sands of evaluations to find a good solution, a cheap proxy for the
objective that relies on LCS is used in practice (S. Adya and I. Markov,
2001). Another direction of work focused on the efficient LCS imple-
mentations to handle this computational bottleneck (Tang, Tian, et al.,
2001; Tang and D. Wong, 2001). In contrast, our work aims to opti-
mize a complex and expensive objective through a BO routine, while
using LCS to assert whether an SP can be converted to a placement
which fits within the fixed placement region.

7.2.2 Bayesian optimization
BO has been widely successful in optimizing expensive-to-evaluate

objectives such as hyperparameter optimization (Snoek, Rippel, et al.,
2015), neural architecture search (V. Nguyen, T. Le, et al., 2021) and
optimization of the tokamak control for nuclear fusion (Char et al.,
2019). The superior sample efficiency of BO is attributed to two com-
ponents, namely the surrogate model and the acquisition function.
The surrogate model is a probabilistic model that approximates the
objective while measuring the uncertainty of its approximation. This
uncertainty plays a crucial role in the exploration-exploitation trade-
off. For this reason, Gaussian processes (GPs) are widely used due
to their superior uncertainty quantification (Snoek, Larochelle, et al.,
2012; Williams and Rasmussen, 2006). Given a point x in the search
space, at the t-th iteration of BO, the predictive mean µt(x) and the
predictive covariance K(t)(x, x ′) of the GP surrogate model are de-
fined as

µt(x) = mx +Kx,X(t)(KX(t),X(t) + σ2I)−1(y(t)−mX(t))

K(t)(x, x ′)=Kx,x ′ −Kx,X(t)(KX(t),X(t)+σ2I)−1KX(t),x ′ (7.1)

where m· is the mean function, K·,· is the kernel (i.e. prior covariance
function), σ2 is the variance of the observational noise and X(t) is

7.3 methodology 95

the set of points evaluated so far. The predictive variance is σ2
t(x) =

K(t)(x, x).
Using the GP predictive distribution conditioned on the evalua-

tion dataset (X(t), y(t)), the acquisition function a(·, ·) quantifies the
chance that the evaluation of a point improves the GP optimization.
An acquisition function is based on the intuition that the predictive
mean and the predictive variance can be used to make an informed
guess about the usefulness of a point in the input space (Shahriari
et al., 2015):

a(t)(x) = a(µt(x),σ2
t(x)) . (7.2)

In general, the acquisition function value is higher at points where
the predictive mean and the predictive variance are relatively high.
The argument of the maximum of the acquisition function x

(t)
opt is

evaluated under the true objective y(t) = f(x(t)opt). This new data-
point is then added to the evaluation dataset and the BO process is
repeated.

X(t+1) = [X(t); x(t)opt], y(t+1) = [y(t);y(t)]

BO can be accelerated when computational resources permit paral-
lel evaluation of the objective. In this case, the acquisition function is
defined over multiple points so that its optimization yields multiple
points whose evaluation can be parallelized.

{x
(t)
opt,b}

B
b=1 = argmax

x1,··· ,xB

a
(t)
batch(x1, · · · , xB)

This is called batch BO. Several works have proposed methods which
use different batch acquisition functions(Gong et al., 2019; González
et al., 2016; Lyu et al., 2018; Wu and Frazier, 2016). For a detailed
overview of BO, the reader is referred to (Brochu et al., 2010; Frazier,
2018; Shahriari et al., 2015).

7.3 methodology
In contrast to the traditional macro placement approaches, we con-

sider an expensive-to-evaluate objective with which we perform macro
placement. We also consider the fixed-outline constraint addressed in
many existing works (S. Adya and I. Markov, 2001).

In order to efficiently tackle macro placement, we employ batch
BO on the space of sequence pairs (SPs) – a pair of two permuta-
tions – a compact representation for the relative positions of macros.
Sequence pairs describe non-overlapping placements of macros. In-
tuitively, if we imagine the macros to be placed on a line, the space
of non-overlapping placements can be indexed by permutations of
the macros, and a macro optimization problem with non-overlapping

96 bayesian optimization for macro placement

constraints can be solved by searching over the space of permuta-
tions. In the two-dimensional setting of this chapter we need a pair
of permutation to describe non-overlapping macro placements. See
Appx. Subsec. 7.2.1 and (Murata et al., 1996) for detailed explana-
tion. To this end, we introduce 1) a kernel on the space of SPs, 2)
an efficient heuristic to optimize the batch acquisition function 3) an
efficient vectorized Python implementation of the least common sub-
sequence (LCS) algorithm of O(N logN) run-time complexity where
N is the number of macros.

For our Gaussian process surrogate model in BO, the proposed ker-
nel is based on the position kernel on permutation due to its superior
performance in (batch) BO on permutation spaces (Zaefferer et al.,
2014). Denoted π1,π2,π ′

1,π ′
2 four permutations of N elements, our

kernel is:

Ksp((π1,π ′
1), (π2,π ′

2)|W, W ′) = Kperm(π1,π2|W) ·Kperm(π ′
1,π ′

2|W
′)

where W = [w1, · · · ,wN], W ′ = [w ′
1, · · · ,w ′

N], and

Kperm(π1,π2|w1, · · · ,wN) = exp
(N∑

n=1

wn · |π−1
1 (n)− π−1

2 (n)|
)

Kperm(π1,π2|1, · · · , 1) is the position kernel (Zaefferer et al., 2014). In
addition to the mentioned works, in our position kernel we introduce
parameters W, W ′ that account for widths and heights of different
macros. We optimize those parameters by maximizing the marginal
likelihood of the training data by gradient descent.

In the batch acquisition function of BO, we adopt the method in
Ch. 6 which uses determinantal point processes (DPPs) with a weight-
ed kernel to obtain a batch of diverse points each of which is likely
to speed up BO progress. DPPs quantify the diversity of points using
determinant of the gram matrix. Since the determinant of a matrix is
the volume of a hyper-parallelepiped whose vertices are columns of
the matrix, the more diverse the points are, the larger the determinant
is (Kulesza and Taskar, 2010, 2012). The batch acquisition function is
defined as

a
(t)
batch(x1, · · · , xB)

= det
[
ρ
(
a(t)(xb)

)
K(t)(xb, xc) ρ

(
a(t)(xc)

)]
b,c=1,··· ,B

where K(t) the covariance function conditioned on the evaluation
dataset X(t) as in Eq. (7.1), a(t) is the acquisition function for a sin-
gle point as in Eq. (7.2) (e.g. EI, UCB, EST(Zi Wang, B. Zhou, et al.,
2016)), and ρ(·) is a positive and strictly increasing function. This
batch acquisition function balances the quality of each point (i.e. the
likelihood of improving the objective) through the acquisition weight
ρ
(
a(t)(·)

)
, and the diversity among points (i.e. avoiding information

redundancy in parallel evaluations) through K(t). This function has

7.3 methodology 97

been demonstrated to perform well for BO on permutation spaces
in Ch. 6.

While a
(t)
batch effectively fulfills the quality and diversity require-

ments, its optimization is computationally demanding. In Ch. 6, a
greedy approach was employed with certain optimality guarantees.
However, that method optimizes a

(t)
batch sequentially over the batch

index and limits the scalability of batch BO. Therefore, we propose a
new heuristic for parallel optimization of the batch acquisition func-
tion (Alg. 5).

Algorithm 5 Parallel heuristic
Require: a : an acquisition function for a single point

abatch : a batch acquisition function
ulocal(g(·), x) : a local update function

such that g(ulocal(g(·), x)) " g(x)(maximization)
Xfeasible : a feasible set

1: xopt,1 = argmaxx∈Xfeasible
a(x)

2: Randomly choose x0,b for b = 2, · · · ,B from Xfeasible

3: repeat
4: Xfeasible,s = ∅
5: for b ∈ {2, · · · ,B} do {Parallel}
6: Update xs,b

as,b(x) = abatch(xopt,1, xs,2, · · · , xs,b−1, x, xs,b+1, · · ·)
xs+1,b, Xfeasible,s,b = ulocal(as,b(·), xs,b)

7: Collect feasible sets
Xfeasible,s = Xfeasible,s ∪Xfeasible,s,b

8: end for
9: Expand the feasible set

Xfeasible = Xfeasible ∪Xfeasible,s
10: Update step count s = s+ 1

11: until Convergence or other stopping criteria
12: return (xopt,1, x·,2, · · · , x·,B), Xfeasible

The main idea is to perform small local updates in parallel for each
element of the batch. Specifically, we first compute xopt,1, the opti-
mum of the single point acquisition function (See line no. 1 of Alg. 5).
Then we optimize the function as,b defined by fixing all but the b-th
element of the batch, for b = 2, . . . ,B (See line no. 6 of Alg. 5). This
step can be parallelized over the batch. Here s denotes the iteration
time over which this procedure is repeated. When a single point is
updated (line no. 1 of Alg. 5), we apply a small local update instead
of running until convergence to minimize the deviation of our indi-
vidual updates from the simultaneous update method. Intuitively, if
any single point is significantly altered while the rest is fixed, the end
result of the individual updates will drastically differ from that of the
simultaneous update.

98 bayesian optimization for macro placement

The parallel heuristic (Alg. 5) takes as input a local update func-
tion. The local update function (Alg. 6) checks the constraint of fixed
outline of the placement region. We call feasible SPs those SPs that
fit into the placement region.

Algorithm 6 Local update with feasibility check

Require: g(x) : an objective function
xold : an initial point
cfeasible(x) : a function checking the feasibility
N(x) : a function listing neighbors of x

1: Find neighbors of xold, N(xold)
2: Compute feasibility

Nfeasible(xold) = {x ∈ N(xold) | cfeasible(x) is true}
3: Move toward the best feasible neighbor

xnew = optx∈Nfeasible(xold)g(x)
4: Expand the feasible set

Xfeasible = Xfeasible ∪Nfeasible(xold)
5: return xnew,Xfeasible

By using Alg. 6 as the local update function for the parallel heuris-
tic (Alg. 5), the latter collects feasible points by accumulating the
feasible sets generated by the former. When the local update func-
tion (Alg. 6) is invoked in the parallel heuristic (Alg. 5), cfeasible(·)
is the function which asserts the fixed-outline constraint using the
LCS algorithm, and N(x) is the set of neighbors of the sequence pair
x obtained by swapping adjacent elements in each permutation.

Given the kernel Ksp, the batch acquisition function, and the paral-
lel heuristic for its optimization, we present the complete Bayesian op-
timization for macro placement workflow in Alg. 7. See also Fig. 7.1
for a graphical illustration.

7.4 related work
Sequential macro placers (S. N. Adya and Igor L Markov, 2002;

Igor L. Markov et al., 2015; Xu et al., 2017) produce overlap-free place-
ments for macros in four steps:

1. cluster standard cells into soft rectangles,

2. run a floorplanner on the original (hard) macros and new soft
rectangles,

3. remove the soft rectangles,

4. place standard cells with fixed macros.

The floorplanner of choice is typically based on SA over sequence
pairs with the most popular implementation being Parquet (S. Adya

7.4 related work 99

Algorithm 7 Batch Bayesian optimization macro placement
Require: f : the optimization objective

X(0)
feasible : an initial feasible set

X(0), y(0) : an initial evaluation dataset
1: repeat
2: Fit the surrogate model on the data (X(t), y(t))

µt(x), σ2
t(x) [Used in the acquisition function]

3: Optimize the acquisition function
by calling Alg. 5 with
- Local update fn.: Alg. 6
- Feasible set: X(t)

feasible

(x(t)1 , · · · , x(t)B), Xnew
feasible ← Alg. 5

4: Evaluate the objective at (x(t)1 , · · · , x(t)B) in parallel
y
(t)
1 = f(x(t)1), · · · ,y(t)

B = f(x(t)B)
5: Expand the evaluation dataset

X(t+1) = [X(t); x(t)1 ; · · · ; x(t)B]

y(t+1) = [y(t);y(t)
1 ; · · · ;y(t)

B]
6: Expand the feasible set

X(t+1)
feasible = X(t)

feasible ∪Xnew
feasible

7: Update BO round count t = t+ 1

8: until Computational budget is exhausted
9: return X(·), y(·)

and I. Markov, 2001) which incorporates several heuristics to select
new configurations. Modern sequential workflows such as the Tri-
ton macro placer included in the OpenRoad project (The-OpenROAD-
Project 2021) use RePlace (C.-K. Cheng et al., 2019) for standard cell
placement. RePlace is a state-of-the-art academic analytical placer
that uses an electrostatic analogy whereby cells and macros are mod-
elled as charged objects with charges proportional to their areas, and
their electrostatic equilibrium leads to a uniformly spread placement.
Performing joint macro and standard cell placement using RePlace
produces overlaps that must be later removed by a legalization step,
as done in (J. Lu et al., 2015) that also uses SA.

In all the aforementioned workflows we can replace SA with our
BO algorithm. SA requires many iterations to converge and does
not scale when using realistic cost functions, which limits the choice
of cost functions that designers can feasibly use for SA and thus may
lead to important aspects of the problem being ignored. Furthermore,
SA requires the designer to carefully adjust parameters such as the
temperature schedule and the acceptance probability to obtain good
results – though (Vashisht et al., 2020) proposes an algorithm that
learns to propose good initial values. In contrast, in BO the kernel hy-
perparameters can be tuned automatically by fitting the training data
with gradient-based optimization. Nevertheless, acquisition function

100 bayesian optimization for macro placement

maximization in our combinatorial setting requires some tuning, see
Sec. 7.3.

Various techniques other than SA have been proposed for floor-
planning. In (Funke et al., 2016) an exact enumeration algorithm
is applied to larger problems using a divide-and-conquer strategy.
However, this method can only be applied to the half-perimeter wire
length objective and not more realistic cost functions. Similarly, (W.
Liu and Nannarelli, 2008; Samaranayake et al., 2009) also use wire
length proxy functions.

A closely-related work to ours uses RL for macro placement (Mirho-
seini et al., 2021). RL requires many training iterations to converge to
a good policy, while BO is more data-efficient and is therefore more
appealing when evaluating an expensive reward function. In contrast
to RL, BO does not learn to act in multiple situations, meaning that
each new design requires optimization from scratch. BO can be seen
as a simplified instance of RL where feedback – evaluations for BO
and rewards for RL – is given after taking a single action (instead of
a sequence of actions) with a single state – no state transition – as in
bandits (Chowdhury and Gopalan, 2017; Srinivas et al., 2010; Sutton
and Barto, 2018). Other practical differences of our work and (Mirho-
seini et al., 2021) are: 1) their RL agent places macros sequentially
while we jointly place all macros as done in SA; 2) they discretize
the macro positions on a fictitious grid while we work in the exact
continuum optimization formulation with no overlap constraints. In
Sec.7.5 we compared our results against our SA implementation and
previously reported methods on the same benchmark dataset. We
leave benchmarking against (Mirhoseini et al., 2021) as future work.

Recently, BO was tested on similar but much smaller cases in (Desh-
wal, Belakaria, J. R. Doppa, and D. H. Kim, 2022). Their focus is on
proposing a new kernel on permutations and it is orthogonal to our
focus on the batch acquisition to tackle super-exponential growth. In
contrast to (Deshwal, Belakaria, J. R. Doppa, and D. H. Kim, 2022),
our experiments were conducted on much larger spaces i.e., 3∼4 times
more macros – in terms of the size of search space, this makes a
huge difference due to the super-exponential growth of permutation
spaces – and demonstrated the effectiveness of the batch acquisition.
We leave the search for the optimal combination of the kernel and the
batch acquisition method for macro placement as a future work.

Finally, we note that in (Xu et al., 2017) a bandit-based approach
similar to BO has been applied to optimizing parameters of FPGA
compilation. This work does not tackle the challenges of large combi-
natorial spaces in macro placement.

7.5 experiments 101

Figure 7.2: BO vs SA on MCNC (hp, ami33, ami49)

7.5 experiments
As a demonstration of the potential of BO, we test it on the MCNC

benchmark (Kozminski, 1991)33 and present the results in Tab. 7.2.
The optimization objective is to minimize HPWL which connects
macros pins to I/O pads under the fixed-outline constraint. Note
that I/O pads are fixed on the boundary of the placement region.
Under the relative location constraints specified by a sequence pair,
we perform the linear constrained programming to minimize HPWL.
Note that this objective is simpler and cheaper-to-evaluate than the
ones where BO can possibly show its full strengths. Nonetheless, this
experiment does indicate the potential of BO in macro placement.

Table 7.2: HPWL results on the MCNC benchmark.

- ()∗ apte (9) xerox (10) hp (11) ami33 (33) ami49 (49)

eWL& 513,061 370,993 153,328 58,627 640,509
ELS# 614,602 404,278 253,366 96,205 1,070,010
FD%,a 545,136 755,410 155,463 63,125 871,128

SAb,d
515,570 431,108 179,826 97,691 1,517,051
± 525 ±15,312 ±6,550 ±1,592 ± 5,095

1e3, Exp 1e3, Lin 1e4, Exp 1e4, Exp 1e4, Lin

BOc,d 514,138 388,936 161,620 78,359 1,174,972
± 264 ± 3,700 ±2,113 ±1,271 ±21,396

* The number of macros in parentheses.
& eWL(Funke et al., 2016)
ELS (W. Liu and Nannarelli, 2008)
% FD (Samaranayake et al., 2009)
a Packings for hp, ami33, and ami49 have overlaps.
b Result from the best temperature scheduling
c BO uses the batch size B = 10.
d Mean and standard error of 5 runs are reported.

33 http://vlsicad.eecs.umich.edu/BK/MCNCbench/

102 bayesian optimization for macro placement

In Tab. 7.2, we compare the black-box function optimizers (BO, SA)
with other methods in the literature on all 5 MCNC problems. In
Fig 7.2, we compare BO and SA with different temperature schedul-
ing for the 3 largest problems – temperatures (1K, 5K, 10K) and sched-
ules (linear, exponential, stepdown). For all problems, BO has supe-
rior performance for the same number of evaluations, with the gap
growing larger for larger number of macros. In comparison with the
other methods of Tab. 7.2, we can see that BO performs competitively
with only 520 evaluations of the objective on apte which is the smallest
problem. We acknowledge that on the designs with a larger number
of macros, ami33 and ami49, there is a non-negligible gap between BO
and eWL (Funke et al., 2016). However, we expect that this gap does
not translate to the real world applications that we envision since
eWL cannot optimize macro placements with standard cells, while
BO and SA can. This is because eWL relies on efficient HPWL eval-
uation and uses a far higher number of evaluations. Moreover, for
apte, xerox, hp, eWL performed an exhaustive search. On the other
hand, due to super-exponential size of the space of sequence pairs
on ami33 and ami49, evaluations are not performed exhaustively but
nevertheless are many orders of magnitude larger than the number
of BO evaluations. In comparison with ELS (W. Liu and Nannarelli,
2008), BO outperforms in all but ami49. However, ELS is a SA tuned
for a specific proxy cost function and we expect it not to be transfer-
able to optimize more general and expensive cost functions. Further,
in spite of extremely small number of evaluations compared with the
size of the search space in ami49, BO demonstrates its potential for
more general and more realistic objectives on such large number of
macros. FD (Samaranayake et al., 2009) outperforms BO on hp, ami33,
ami49 but the macro locations that FD outputs have overlaps, while
our method does not.

7.6 conclusions
In this chapter, we demonstrated the effectiveness of Bayesian opti-

mization for macro placement, and have shown that it performs com-
petitively with exhaustive search techniques on small benchmarks
and performs reasonably well within compute constraints for large
benchmarks. In comparison to simulated annealing, we have shown
our BO framework to outperform across benchmarks with fewer eval-
uations. As mentioned above, realistic macro placement quality eval-
uation requires an expensive global placement loop. Our optimiza-
tion objective in the experiments was to minimize HPWL of macro
to I/O pads connections which helped us evaluate macro placement
quality without standard cell placement in the loop. In the future,
we plan 1) to extend this framework with an objective that consid-

7.6 conclusions 103

ers standard cell placement for HPWL computation and congestion
estimation 2) to utilize the current work’s output as initial solution
to macro placement with subsequent standard cell placement 3) to
extend our constraints with memory stacking requirements, dataflow
constraints, channel and snapping constraints, which are typical in
industry standard IPs. On the machine learning front, a future chal-
lenge is to develop a BO framework that transfers across designs.

8 C O N C L U S I O N

The main contribution of this thesis is the extension of the applica-
bility and efficiency of BO beyond low-dimensional Euclidean spaces.
Motivated by the empirical successes of BO with the GP surrogate
model on low-dimensional Euclidean spaces, we propose GP surro-
gate models on various search spaces in Chapters 3, 4 and 5. In
Chapter 6, focusing on the reduction of BO runtime, we study batch
acquisition efficiency utilizing information from a GP. In Chapter 7,
we investigate further speed-up of the proposed batch acquisition in
application to chip design.

8.1 conclusions
Based on our proposed methods and their empirical assessments,

we provide our answers to the research questions.
Research Question 1 What causes the excessive exploration in high-

dimensional Euclidean spaces? And how can we mitigate the excessive ex-
ploration for effective high-dimensional BO? (Chapter 3)

We propose the cylindrical kernel using the cylindrical transfor-
mation. The cylindrical transformation shrinks the volume near the
boundary whereas it expands the volume near the center. This makes
BOCK probe the region near the center with higher resolution. Sec-
ond, if two points are near the boundary, then the cylindrical kernel
considers them more similar than when two points are near the cen-
ter. Thus, for points near the boundary, the cylindrical kernel assigns
lower uncertainty than existing kernels (RBF, Matérn) by using the
information from distant points more actively.

BOCK shows impressive performance in high dimensional prob-
lems up to 500 dimensions – optimization of neural network param-
eters. To our surprise, compared with SGD, BOCK achieve better
generalization even with larger gaps on higher dimensions.

Based on the rationale of the design and experimental results, we
conclude that the cylindrical transformation is effective in mitigating
the excessive exploration. When the search space can be chosen to
have an optimum near its center with high confidence, BOCK is an
effective high-dimensional BO.

The assumption that there is an optimum near the center can be too
restrictive. In (Eriksson, Pearce, et al., 2019), the region that the surro-
gate model should focus on is adaptively chosen on the fly. Another
strong assumption – the radial symmetry in the cylindrical transfor-

105

106 conclusion

mation – can be weakened by employing the elliptical transformation,
which can have the ARD effect.

Research Question 2 How can we define smooth surrogate models and
acquisition functions on combinatorial spaces? And can we develop a flexible
GP surrogate model for BO in large combinatorial spaces? (Chapter 4)

We propose the combinatorial graph to represent a combinatorial
search space and the ARD-diffusion kernel to model functions on the
combinatorial graph. In combination with a sparsity-inducing prior,
COMBO has a variable selection capability while having flexible mod-
eling capacity and computational efficiency.

We demonstrate that COMBO significantly and consistently outper-
forms BO with a linear model and other competitors on wide range
of combinatorial problems.

We conclude that as long as a reasonable definition of smooth-
ness is provided, combinatorial BO can also benefit from the well-
calibrated uncertainty of a GP. The combinatorial graph is one way to
define smoothness resulting in effective combinatorial BO.

In (Khan et al., 2022; Zela et al., 2022), COMBO tends to degrade
when there are many choices for each combinatorial variable. We con-
jecture that this is due to too the strong assumption posed by com-
plete graphs. There exists rigidity originating from given and fixed
graph structures. Especially when there are many choices for each
variable, learning the underlying graph structure appears necessary.

Research Question 3 How can we model dependence between different
types of variables in kernels? And do we need conditions for kernels other
than the positive definiteness? (Chapter 5)

We propose to modulate the frequency of the ARD diffusion kernel
on combinatorial variables in Chapter 4 with the distance of contin-
uous variables. During its development, we observe that frequency
modulation requires an additional condition – similarity measure be-
havior – for the stability of methods using kernels with frequency
modulation.

In a wide range of BO and GP regression tasks, we conclude that
the similarity measure behavior is an important condition to consider
when developing new kernels. Moreover, we hardly observe that de-
pendence modeling with (revised) frequency modulation degrades
performance. From this, we expect that the similarity measure be-
havior guaranteed frequency modulation is not distracted by non-
existing dependencies.

Another difficulty in mixed-variable BO is the optimization of the
acquisition function. Although we also adopt widely used variable-
typewise ascent (Daxberger et al., 2021; Wan et al., 2021), this leaves
many nontrivial design choices, e.g. how many updates for the con-
tinuous variables are needed for one update for the discrete vari-
ables. We may utilize recent advances in mixed integer program-
ming (Gurobi Optimization, Inc., 2012). Also, a data-driven approach

8.1 conclusions 107

demonstrates its competitiveness in the optimization of acquisition
functions on combinatorial spaces (K. Swersky, Rubanova, et al., 2020).
Combination of both seems a promising way forward.

Research Question 4 Can we develop a batch acquisition method appli-
cable to permutation spaces? And how can we maintain the quality of the
batch acquisition method as the batch size increases? (Chapter 6)

We propose a DPP-based batch acquisition, LAW, applicable to per-
mutation spaces. While using weights as a channel to promote prop-
erties of batches other than diversity, we also analyze the effect of
weights to the regret bound.

We demonstrate that batch acquisition considering both diversity
and quality improves the efficiency of BO, more notably when a large
batch size is used.

We conclude that DPPs provide a viable formulation for batch ac-
quisition on permutation spaces and the incorporation of the quality
of queries can maintain the performance of the batch acquisition for
large batch sizes.

Even though the greedy method works well in practice, the approx-
imation guarantee does not hold without the positivity and mono-
tonicity of a submodular function. There could be room for improve-
ment by adopting an approximation method for general submodu-
lar functions. A more practical concern is the sequential nature of
the greedy approximation. LAW objective optimization can be time-
consuming for a large batch size, which limits the batch size used. We
see two directions promising to overcome this issue, 1) efficient GP
Thompson sampling on large combinatorial spaces 2) parallel approx-
imation of submodular maximization with an approximation guaran-
tee.

Research Question 5 Can BO be an effective method for combinatorial
optimization problems in chip design? And can it be efficient enough to scale
to problems of a practical scale? (Chapter 7)

We demonstrate the competitiveness of BO on the macro placement
– a combinatorial optimization problem in chip design. To cope with
problems at a practical scale, we propose modifications to LAW in
Chapter 6 to speed up the optimization of the batch acquisition ob-
jective. The parallel heuristic and the efficient implementation of con-
straint checking enables 10× ∼ 100× speed up.

We demonstrate that LAW with parallel heuristics is shown to sig-
nificantly outperforms another black-box function optimizer – simu-
lated annealing – and to perform competitively to methods tuned for
specific objectives. From this partial but promising result, we fore-
cast that BO can be a valuable tool to speed up the chip design cycle,
hopefully in the near future.

Compared to a RL method (Mirhoseini et al., 2021), BO has an ad-
vantage for expensive and realistic objectives. However, BO applied
to chip design (Deshwal, Belakaria, J. R. Doppa, and D. H. Kim, 2022;

108 conclusion

Grosnit, Malherbe, et al., 2022) optimizes from scratch whereas the RL
method demonstrates that it can use knowledge obtained from rele-
vant tasks. BO utilizing knowledge from relevant tasks – warm-start
BO (Perrone, Shen, et al., 2019), tranfer BO (Tighineanu et al., 2022) –
is a must to handle today’s chips of ever increasing complexity. The
experiments are mostly a proof of concept. More expensive but realis-
tic objectives taking into account realistic macro placement following
place-and-route should be tested to attract chip design engineers in
the field.

8.2 future works
In this section, we discuss important research directions not cov-

ered in this thesis. We envision that an ideal BO will be able to utilize
heterogeneous evaluation data collected from various problems and
to optimize new tasks efficiently in a few-shot sense. Therefore, we
specifically discuss scalable BO and transfer BO, which is not covered.

scalable gaussian processes The development of the surrogate
model scalable to a large number of evaluations is approached from
two angles. One angle is to improve the quality of the uncertainty
estimates from scalable probabilistic models such as deep ensembles,
Bayesian neural networks (BNN) (Springenberg et al., 2016), etc. An-
other angle is to scale up GPs to large data. Recently, there have been
notable progress in scalable GPs (Gardner et al., 2018; K. Wang et al.,
2019) and scalable GPs show better efficiency – in sample and compu-
tation – than BNN on BO tasks (Eriksson, Pearce, et al., 2019). More-
over, the variational method for sparse GPs from (Hensman, Fusi, et
al., 2013; Hensman, Matthews, et al., 2015) enables inference using
mini-batches in scalable GPs (A. G. Wilson et al., 2016). In spite of
such progress, inference and prediction of GPs require the access to
full data. And, the uncertainty of the variational method from (Hens-
man, Fusi, et al., 2013) is shown to exhibit unwanted behavior –
namely it is dominated by the observational noise (Jankowiak et al.,
2020). We believe that scalable GPs – trainable with mini-batches,
producing well-calibrated uncertainty and not accessing full data in
inference and prediction – has a potential to broaden the application
of BO.

thompson sampling of gaussian processes on combinatorial
spaces As long as batch acquisition is not severely degraded com-
pared with (sequential) acquisition, it allows significant speed-up of
BO in terms of wall-clock runtime (Azimi, Fern, et al., 2010; Az-
imi, Jalali, et al., 2012). For scalable BO, efficient batch acquisition
is indispensable. While determinantal point process (DPP) based

8.2 future works 109

approaches are popular (Kathuria et al., 2016; Nava et al., 2022),
Thompson sampling (TS) (Russo et al., 2018) is an attractive alter-
native (J. M. Hernández-Lobato, Requeima, et al., 2017; Kandasamy,
Krishnamurthy, et al., 2018). In addition to its firm theoretical ground
(Russo et al., 2018), TS is intrinsically amenable to various paral-
lel settings (J. M. Hernández-Lobato, Requeima, et al., 2017; Kan-
dasamy, Krishnamurthy, et al., 2018). If efficient TS of GP posterior
on large combinatorial spaces becomes available, massively paralleliz-
able batch acquisition will immediately follow. Even though there
is recent progress on efficient TS on Euclidean spaces (J. Wilson et
al., 2020), such efficiency is not easily transported to non-Euclidean
spaces since such methods rely on the existence of closed-form eigen-
functions of specific kernels (e.g. RBF) (Shah and Ghahramani, 2015;
J. Wilson et al., 2020). We believe that TS is the most natural direction
toward massively parallelizable batch acquisition in large combinato-
rial spaces.

transferring knowledge from other tasks Utilizing informa-
tion from relevant tasks is a natural way to improve sample efficiency.
BO using knowledge from other tasks has been studied under differ-
ent names, multi-task BO (K. Swersky, Snoek, et al., 2013), contextual
BO (Krause and Ong, 2011), warm-starting BO (Poloczek et al., 2016),
etc. In general transfer learning, a parameter is a widely used ves-
sel for carrying extracted information from other tasks. For BO with
the GP surrogate model, deep kernel models can be a good compro-
mise between a model with well-calibrated uncertainty and a model
with many parameters. In (Wenlin Chen et al., 2022), it is shown that
deep model parameters meta-learned across tasks provide an envi-
ronment where GP kernel hyperparameters can be efficiently tuned
for BO. Some methods use other components as a channel to convey
knowledge from other tasks. In (Volpp et al., 2019), the acquisition
functions are approximated by a parametric model to share knowl-
edge across tasks. In (Perrone, Shen, et al., 2019), a novel approach
is taken by using the search space to capture the knowledge across
tasks. Despite such advances, we expect that an ideal BO may be able
to transfer knowledge across tasks on different search spaces. More-
over, we hope that improved sample efficiency of transfer BO eventu-
ally enables the optimization of a new task with very few evaluations,
owing to knowledge learned from other relevant tasks.

B I B L I O G R A P H Y

Adya, S.N. and I.L. Markov
2001 “Fixed-outline floorplanning through better local search”, in

Proceedings 2001 IEEE International Conference on Computer De-
sign: VLSI in Computers and Processors. ICCD 2001, pp. 328-
334, doi: 10.1109/ICCD.2001.955047. (Cit. on pp. 94, 95,
98.)

Adya, Saurabh N and Igor L Markov
2002 “Consistent placement of macro-blocks using floorplanning

and standard-cell placement”, in Proceedings of the 2002 In-
ternational Symposium on Physical design, pp. 12-17. (Cit. on
pp. 93, 98.)

Agnesina, Anthony, Kyungwook Chang, and Sung Kyu Lim
2020 “VLSI Placement Parameter Optimization using Deep Rein-

forcement Learning”, in 2020 IEEE/ACM International Con-
ference On Computer Aided Design (ICCAD), pp. 1-9. (Cit. on
p. 92.)

Alpert, C.J., D.P. Mehta, and S.S. Sapatnekar
2008 Handbook of Algorithms for Physical Design Automation, CRC

Press. (Cit. on p. 71.)

Anari, Nima, Shayan Oveis Gharan, and Alireza Rezaei
2016 “Monte Carlo Markov chain algorithms for sampling strongly

Rayleigh distributions and determinantal point processes”,
in Conference on Learning Theory, PMLR, pp. 103-115.

Andrieu, Christophe and Gareth O Roberts
2009 “The pseudo-marginal approach for efficient Monte Carlo

computations”, The Annals of Statistics, 37, 2, pp. 697-725.

Assael, John-Alexander M, Ziyu Wang, Bobak Shahriari, and Nando
de Freitas

2014 “Heteroscedastic treed bayesian optimisation”, arXiv preprint
arXiv:1410.7172. (Cit. on p. 151.)

Audibert, Jean-Yves, Sébastien Bubeck, and Gábor Lugosi
2011 “Minimax policies for combinatorial prediction games”, in

Proceedings of the 24th Annual Conference on Learning Theory,
pp. 107-132.

111

112 bibliography

Azimi, Javad, Alan Fern, and Xiaoli Z Fern
2010 “Batch bayesian optimization via simulation matching”, in

Advances in Neural Information Processing Systems, Citeseer,
pp. 109-117. (Cit. on pp. 71, 73, 79, 108.)

Azimi, Javad, Ali Jalali, and Xiaoli Z Fern
2012 “Hybrid batch Bayesian optimization”, in Proceedings of the

29th International Conference on Machine Learning, pp. 315-322.
(Cit. on p. 108.)

Bacchus, Fahiem, Matti Jarvisalo, and Ruben Martins
2018 (eds.), MaxSAT Evaluation 2018. Solver and Benchmark Descrip-

tions, vol. B-2018-2, University of Helsinki. (Cit. on p. 47.)

Bach, Francis R and Michael I Jordan
2002 “Kernel independent component analysis”, Journal of Ma-

chine Learning Research, 3, Jul, pp. 1-48.

Bachoc, François, Baptiste Broto, Fabrice Gamboa, and Jean-Michel
Loubes

2020 “Gaussian field on the symmetric group: Prediction and lear-
ning”, Electronic Journal of Statistics, 14, 1, pp. 503-546. (Cit.
on pp. 71, 80.)

Bal, Henri, Dick Epema, Cees de Laat, Rob van Nieuwpoort, John
Romein, Frank Seinstra, Cees Snoek, and Harry Wijshoff

2016 “A medium-scale distributed system for computer science
research: Infrastructure for the long term”, Computer, 49, 5,
pp. 54-63.

Balandat, Maximilian, Brian Karrer, Daniel Jiang, Samuel Daulton,
Ben Letham, Andrew G Wilson, and Eytan Bakshy

2020 “BoTorch: a framework for efficient Monte-Carlo Bayesian
optimization”, Advances in neural information processing sys-
tems, 33, pp. 21524-21538.

Baptista, Ricardo and Matthias Poloczek
2018 “Bayesian Optimization of Combinatorial Structures”, in In-

ternational conference on machine learning, pp. 462-471. (Cit. on
pp. 7, 14, 44, 45, 47, 61, 71, 80, 93, 163, 165.)

Belanger, David, Suhani Vora, Zelda Mariet, Ramya Deshpande, David
Dohan, Christof Angermueller, Kevin Murphy, Olivier Chap-
elle, and Lucy Colwell

2019 Biological Sequences Design using Batched Bayesian Optimiza-
tion. (Cit. on p. 14.)

Berg, Christian, Jens Peter Reus Christensen, and Paul Ressel
1984 Harmonic analysis on semigroups: theory of positive definite and

related functions, Springer, vol. 100. (Cit. on pp. 178, 179.)

bibliography 113

Bergstra, James and Yoshua Bengio
2012 “Random search for hyper-parameter optimization”, Journal

of Machine Learning Research, 13, Feb, pp. 281-305. (Cit. on
pp. 24, 48.)

Bergstra, James, Daniel Yamins, and David Cox
2013 “Making a science of model search: Hyperparameter opti-

mization in hundreds of dimensions for vision architectures”,
in International conference on machine learning, PMLR, pp. 115-
123. (Cit. on pp. 14-16, 44, 45.)

Bergstra, James S, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl
2011 “Algorithms for hyper-parameter optimization”, in Advances

in neural information processing systems, pp. 2546-2554. (Cit. on
pp. 14-16, 23, 24, 29, 55, 61, 62.)

Bian, Andrew An, Joachim M Buhmann, Andreas Krause, and Sebas-
tian Tschiatschek

2017 “Guarantees for greedy maximization of non-submodular
functions with applications”, in International conference on ma-
chine learning, PMLR, pp. 498-507. (Cit. on p. 206.)

Bingham, Eli, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer,
Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Sz-
erlip, Paul Horsfall, and Noah D Goodman

2018 “Pyro: Deep universal probabilistic programming.(2018)”,
arXiv preprint arXiv:1810.09538.

Bıyık, Erdem, Kenneth Wang, Nima Anari, and Dorsa Sadigh
2019 “Batch active learning using determinantal point processes”,

arXiv preprint arXiv:1906.07975. (Cit. on p. 80.)

Blank, Julian and Kalyanmoy Deb
2020 “pymoo: Multi-objective optimization in python”, IEEE Ac-

cess, 8, pp. 89497-89509. (Cit. on pp. 82, 86.)

Boelrijk, Jim, Bob Pirok, Bernd Ensing, and Patrick Forré
2021 “Bayesian optimization of comprehensive two-dimensional

liquid chromatography separations”, Journal of Chromatogra-
phy A, 1659, p. 462628. (Cit. on p. 3.)

Bogunovic, Ilija and Andreas Krause
2021 “Misspecified Gaussian process bandit optimization”, Ad-

vances in Neural Information Processing Systems, 34, pp. 3004-
3015. (Cit. on p. 16.)

Bogunovic, Ilija, Jonathan Scarlett, and Volkan Cevher
2016 “Time-varying Gaussian process bandit optimization”, in In-

ternational Conference on Artificial Intelligence and Statistics,
314-323. (Cit. on p. 16.)

114 bibliography

Borodin, Alexei and Eric M Rains
2005 “Eynard–Mehta theorem, Schur process, and their Pfaffian

analogs”, Journal of statistical physics, 121, 3, pp. 291-317. (Cit.
on pp. 72, 73.)

Boros, Endre and Peter L Hammer
2002 “Pseudo-boolean optimization”, Discrete applied mathematics,

123, 1-3, pp. 155-225.

Bottou, Léon
2010 “Large-scale machine learning with stochastic gradient de-

scent”, in Proceedings of COMPSTAT’2010, Springer, pp. 177-
186.

Box, George EP and Kenneth B Wilson
1992 “On the experimental attainment of optimum conditions”,

in Breakthroughs in statistics, Springer, pp. 270-310. (Cit. on
p. 18.)

Bratley, Paul and Bennett L Fox
1988 “Algorithm 659: Implementing Sobol’s quasirandom sequen-

ce generator”, ACM Transactions on Mathematical Software
(TOMS), 14, 1, pp. 88-100. (Cit. on p. 28.)

Brochu, Eric, Vlad M Cora, and Nando de Freitas
2010 A tutorial on Bayesian optimization of expensive cost functions,

with application to active user modeling and hierarchical reinforce-
ment learning. (Cit. on pp. 4, 15, 37, 95.)

Buchbinder, Niv, Moran Feldman, Joseph Naor, and Roy Schwartz
2014 “Submodular maximization with cardinality constraints”, in

Proceedings of the twenty-fifth annual ACM-SIAM symposium
on Discrete algorithms, SIAM, pp. 1433-1452. (Cit. on p. 8.)

Carlier, Jacques
1978 “Ordonnancements a contraintes disjonctives”, RAIRO-Oper-

ations Research, 12, 4, pp. 333-350. (Cit. on p. 207.)

Carpenter, Bob, Andrew Gelman, Matthew D Hoffman, Daniel Lee,
Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang
Guo, Peter Li, and Allen Riddell

2017 “Stan: A probabilistic programming language”, Journal of sta-
tistical software, 76, 1.

Carvalho, Carlos M, Nicholas G Polson, and James G Scott
2009 “Handling sparsity via the horseshoe”, in International Con-

ference on Artificial Intelligence and Statistics, pp. 73-80. (Cit.
on pp. 38, 41, 43.)

bibliography 115

2010 “The horseshoe estimator for sparse signals”, Biometrika, 97,
2, pp. 465-480. (Cit. on pp. 38, 160.)

Char, Ian, Youngseog Chung, Willie Neiswanger, Kirthevasan Kan-
dasamy, Andrew Oakleigh Nelson, Mark Boyer, Egemen Kole-
men, and Jeff Schneider

2019 “Offline contextual bayesian optimization”, in Advances in
neural information processing systems, pp. 4629-4640. (Cit. on
pp. 19, 94.)

Chen, Bo, Rui Castro, and Andreas Krause
2012 “Joint optimization and variable selection of high-dimensio-

nal Gaussian processes”, arXiv preprint arXiv:1206.6396. (Cit.
on p. 33.)

Chen, Eunice Yuh-Jie, Arthur Choi, and Adnan Darwiche
2015 “Learning Bayesian networks with non-decomposable scores”,

in International Workshop on Graph Structures for Knowledge
Representation and Reasoning, Springer, pp. 50-71.

Chen, Hongming, Ola Engkvist, Yinhai Wang, Marcus Olivecrona,
and Thomas Blaschke

2018 “The rise of deep learning in drug discovery”, Drug discovery
today, 23, 6, pp. 1241-1250. (Cit. on p. 18.)

Chen, Lixing, Jie Xu, and Zhuo Lu
2018 “Contextual combinatorial multi-armed bandits with volatile

arms and submodular reward”, in Advances in neural informa-
tion processing systems, pp. 3247-3256.

Chen, Tianqi and Carlos Guestrin
2016 “Xgboost: A scalable tree boosting system”, in Proceedings of

the 22nd acm sigkdd international conference on knowledge dis-
covery and data mining, pp. 785-794. (Cit. on pp. 62, 64.)

Chen, Wei, Yajun Wang, and Yang Yuan
2013 “Combinatorial multi-armed bandit: General framework and

applications”, in International conference on machine learning,
pp. 151-159.

Chen, Wenlin, Austin Tripp, and José Miguel Hernández-Lobato
2022 “Meta-learning Feature Representations for Adaptive Gaus-

sian Processes via Implicit Differentiation”, arXiv preprint
arXiv:2205.02708. (Cit. on p. 109.)

Chen, Yuh-Jie
2016 Learning Bayesian Network Structures with Non-Decomposable

Scores, PhD thesis, UCLA.

116 bibliography

Chen, Yutian, Aja Huang, Ziyu Wang, Ioannis Antonoglou, Julian
Schrittwieser, David Silver, and Nando de Freitas

2018 “Bayesian optimization in alphago”,
arXiv preprint arXiv:1812.06855. (Cit. on pp. 3, 4, 16, 53.)

Chen, Yutian, Xingyou Song, Chansoo Lee, Zi Wang, Qiuyi Zhang,
David Dohan, Kazuya Kawakami, Greg Kochanski, Arnaud
Doucet, Marc’aurelio Ranzato, et al.

2022 “Towards Learning Universal Hyperparameter Optimizers
with Transformers”, arXiv preprint arXiv:2205.13320.

Cheng, Chung-Kuan, Andrew B. Kahng, Ilgweon Kang, and Lutong
Wang

2019 “RePlAce: Advancing Solution Quality and Routability Vali-
dation in Global Placement”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 38, 9, pp. 1717-
1730, doi: 10.1109/TCAD.2018.2859220. (Cit. on pp. 91, 99.)

Cheng, Ruoyu and Junchi Yan
2021 “On Joint Learning for Solving Placement and Routing in

Chip Design”, Advances in Neural Information Processing Sys-
tems, 34, pp. 16508-16519. (Cit. on pp. 17, 18.)

Chergui, Akram, Khaled Hadj-Hamou, and Frédéric Vignat
2018 “Production scheduling and nesting in additive manufac-

turing”, Computers & Industrial Engineering, 126, pp. 292-301.
(Cit. on p. 71.)

Chickering, David Maxwell
2002 “Optimal structure identification with greedy search”, Jour-

nal of machine learning research, 3, Nov, pp. 507-554.

Cho, Youngmin and Lawrence K Saul
2009 “Kernel methods for deep learning”, in Advances in neural

information processing systems, pp. 342-350.

Chowdhury, Sayak Ray and Aditya Gopalan
2017 “On kernelized multi-armed bandits”, in International Confer-

ence on Machine Learning, PMLR, pp. 844-853. (Cit. on pp. 16,
17, 100.)

Christofides, Nicos and Enrique Benavent
1989 “An exact algorithm for the quadratic assignment problem

on a tree”, Operations Research, 37, 5, pp. 760-768. (Cit. on
p. 207.)

Chung, Fan RK
1997 Spectral graph theory, American Mathematical Soc., vol. 92.

(Cit. on p. 39.)

bibliography 117

Contal, Emile, David Buffoni, Alexandre Robicquet, and Nicolas Vay-
atis

2013 “Parallel Gaussian process optimization with upper confi-
dence bound and pure exploration”, in Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases,
Springer, pp. 225-240. (Cit. on pp. 17, 77, 80, 82, 189, 192-
198.)

Dadkhahi, Hamid, Karthikeyan Shanmugam, Jesus Rios, Payel Das,
Samuel C Hoffman, Troy David Loeffler, and Subramanian
Sankaranarayanan

2020 “Combinatorial Black-Box Optimization with Expert Advice”,
in Proceedings of the 26th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pp. 1918-1927.
(Cit. on pp. 71, 80.)

Davis, Lawrence
1991 Handbook of genetic algorithms. (Cit. on p. 37.)

Daxberger, Erik, Anastasia Makarova, Matteo Turchetta, and Andreas
Krause

2021 “Mixed-variable Bayesian optimization”, in Proceedings of the
Twenty-Ninth International Conference on International Joint Con-
ferences on Artificial Intelligence, pp. 2633-2639. (Cit. on pp. 14,
53, 61, 62, 106, 181.)

De Freitas, Nando, Alex J Smola, and Masrour Zoghi
2012 “Exponential regret bounds for Gaussian process bandits

with deterministic observations”, in Proceedings of the 29th
International Coference on International Conference on Machine
Learning, pp. 955-962. (Cit. on p. 17.)

Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and TAMT Meyari-
van

2002 “A fast and elitist multiobjective genetic algorithm: NSGA-
II”, IEEE transactions on evolutionary computation, 6, 2, pp. 182-
197. (Cit. on p. 82.)

Desautels, Thomas, Andreas Krause, and Joel W Burdick
2014 “Parallelizing exploration-exploitation tradeoffs in gaussian

process bandit optimization”, Journal of Machine Learning Re-
search, 15, pp. 3873-3923. (Cit. on pp. 17, 77, 80, 82, 189, 191,
196-198.)

Deshmukh, Aniket Anand, Urun Dogan, and Clay Scott
2017 “Multi-task learning for contextual bandits”, in Advances in

neural information processing systems, pp. 4848-4856.

118 bibliography

Deshwal, Aryan, Syrine Belakaria, and Janardhan Rao Doppa
2021 “Mercer features for efficient combinatorial Bayesian opti-

mization”, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 7210-7218. (Cit. on p. 93.)

Deshwal, Aryan, Syrine Belakaria, Janardhan Rao Doppa, and Alan
Fern

2020 “Optimizing discrete spaces via expensive evaluations: A
learning to search framework”, in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, pp. 3773-3780. (Cit.
on pp. 71, 80.)

Deshwal, Aryan, Syrine Belakaria, Janardhan Rao Doppa, and Dae
Hyun Kim

2022 “Bayesian optimization over permutation spaces”, in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 36,
pp. 6515-6523. (Cit. on pp. 17, 18, 93, 100, 107.)

Deshwal, Aryan and Jana Doppa
2021 “Combining latent space and structured kernels for bayesian

optimization over combinatorial spaces”, Advances in Neu-
ral Information Processing Systems, 34, pp. 8185-8200. (Cit. on
p. 93.)

Donald, R Jones
1998 “Efficient global optimization of expensive black-box func-

tion”, J. Global Optim., 13, pp. 455-492. (Cit. on pp. 62, 181.)

Dong, Kun, David Eriksson, Hannes Nickisch, David Bindel, and An-
drew G Wilson

2017 “Scalable log determinants for Gaussian process kernel learn-
ing”, Advances in Neural Information Processing Systems, 30.

Dong, Xuanyi, Lu Liu, Katarzyna Musial, and Bogdan Gabrys
2021 “NATS-Bench: Benchmarking nas algorithms for architecture

topology and size”, IEEE Transactions on Pattern Analysis and
Machine Intelligence. (Cit. on pp. 16, 18, 54, 62, 67.)

Dong, Xuanyi, Mingxing Tan, Adams Wei Yu, Daiyi Peng, Bogdan
Gabrys, and Quoc V Le

2020 “AutoHAS: Efficient hyperparameter and architecture search”,
arXiv preprint arXiv:2006.03656. (Cit. on p. 62.)

Dong, Xuanyi and Yi Yang
2019 “One-shot neural architecture search via self-evaluated tem-

plate network”, in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 3681-3690. (Cit. on p. 67.)

bibliography 119

Drton, Mathias and Marloes H Maathuis
2017 “Structure learning in graphical modeling”, Annual Review

of Statistics and Its Application, 4, pp. 365-393. (Cit. on p. 85.)

Duvenaud, David K, Hannes Nickisch, and Carl E Rasmussen
2011 “Additive gaussian processes”, in Advances in neural informa-

tion processing systems, pp. 226-234.

Eggensp-erger, Katharina, Matthias Feurer, Frank Hutter, James Berg-
stra, Jasper Snoek, Holger Hoos, and Kevin Leyton-Brown

2013 “Towards an empirical foundation for assessing bayesian op-
timization of hyperparameters”, in NIPS workshop on Bayesian
Optimization in Theory and Practice, vol. 10. (Cit. on p. 29.)

Elsken, Thomas, Jan Hendrik Metzen, and Frank Hutter
2019 “Neural architecture search: A survey”, The Journal of Ma-

chine Learning Research, 20, 1, pp. 1997-2017. (Cit. on pp. 16,
17, 38.)

Eriksson, David and Martin Jankowiak
2021 “High-dimensional Bayesian optimization with sparse axis-

aligned subspaces”, in Uncertainty in Artificial Intelligence
, PMLR, pp. 493-503.

Eriksson, David, Michael Pearce, Jacob Gardner, Ryan D Turner, and
Matthias Poloczek

2019 “Scalable Global Optimization via Local Bayesian Optimiza-
tion”, in Advances in Neural Information Processing Systems,
vol. 32. (Cit. on pp. 14, 17, 105, 108.)

Eschermann, Bernhard and Hans-Joachim Wunderlich
1990 “Optimized synthesis of self-testable finite state machines”.

(Cit. on p. 207.)

Falkner, Stefan, Aaron Klein, and Frank Hutter
2018 “BOHB: Robust and efficient hyperparameter optimization

at scale”, in International Conference on Machine Learning,
PMLR, pp. 1437-1446. (Cit. on pp. 16, 54, 62, 67.)

Feige, Uriel, Vahab S Mirrokni, and Jan Vondrák
2011 “Maximizing non-monotone submodular functions”, SIAM

Journal on Computing, 40, 4, pp. 1133-1153. (Cit. on p. 206.)

Fiducioso, Marcello, Sebastian Curi, Benedikt Schumacher, Markus
Gwerder, and Andreas Krause

2019 “Safe contextual Bayesian optimization for sustainable room
temperature PID control tuning”, in IJCAI, AAAI Press
, pp. 5850-5856. (Cit. on p. 61.)

120 bibliography

Folland, Gerald B
1999 Real analysis: modern techniques and their applications, Wiley.

(Cit. on p. 180.)

Fortuin, Vincent, Gideon Dresdner, Heiko Strathmann, and Gunnar
Rätsch

2021 “Sparse Gaussian processes on discrete domains”, IEEE Ac-
cess, 9, pp. 76750-76758.

Fox, Emily B and David B Dunson
2015 “Bayesian nonparametric covariance regression”, Journal of

Machine Learning Research, 16, 1, pp. 2501-2542.

Frazier, Peter I
2018 “A tutorial on Bayesian optimization”,

arXiv preprint arXiv:1807.02811. (Cit. on pp. 37, 73, 95.)

Frazier, Peter I and Jialei Wang
2016 “Bayesian optimization for materials design”, in Information

science for materials discovery and design, Springer, pp. 45-75.
(Cit. on p. 19.)

Freitas, Alex A
2009 “A review of evolutionary algorithms for data mining”, in

Data Mining and Knowledge Discovery Handbook, Springer
, pp. 371-400. (Cit. on p. 37.)

Fujishige, Satoru
2005 Submodular functions and optimization, Elsevier. (Cit. on p. 205.)

Fukumizu, Kenji
2010 “Kernel method: Data analysis with positive definite ker-

nels”, Graduate University of Advanced Studies. (Cit. on p. 180.)

Funke, J., S. Hougardy, and J. Schneider
2016 “An exact algorithm for wirelength optimal placements in

VLSI design”, Integration, 52, pp. 355-366. (Cit. on pp. 100-
102.)

Gardner, Jacob, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and
Andrew G Wilson

2018 “Gpytorch: Blackbox matrix-matrix gaussian process infer-
ence with gpu acceleration”, in Advances in neural information
processing systems, pp. 7576-7586. (Cit. on p. 108.)

Garey, Michael R, David S Johnson, and Ravi Sethi
1976 “The complexity of flowshop and jobshop scheduling”, Math-

ematics of operations research, 1, 2, pp. 117-129. (Cit. on p. 71.)

bibliography 121

Garnett, Roman, Michael A Osborne, and Stephen J Roberts
2010 “Bayesian optimization for sensor set selection”, in Proceed-

ings of the 9th ACM/IEEE international conference on informa-
tion processing in sensor networks, pp. 209-219. (Cit. on pp. 161,
181.)

Garrido-Merchán, Eduardo C and Daniel Hernández-Lobato
2020 “Dealing with categorical and integer-valued variables in

bayesian optimization with gaussian processes”, Neurocom-
puting, 380, pp. 20-35. (Cit. on pp. 5, 37, 44.)

Ginsbourger, David, Rodolphe Le Riche, and Laurent Carraro
2008 A multi-points criterion for deterministic parallel global optimiza-

tion based on Gaussian processes. (Cit. on p. 82.)

Gómez-Bombarelli, Rafael, Jennifer N Wei, David Duvenaud, José
Miguel Hernández-Lobato, Benjamín Sánchez-Lengeling, D-
ennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hir-
zel, Ryan P Adams, and Alán Aspuru-Guzik

2018 “Automatic chemical design using a data-driven continu-
ous representation of molecules”, ACS central science, 4, 2,
pp. 268-276. (Cit. on pp. 17, 18.)

Gong, Chengyue, Jian Peng, and Qiang Liu
2019 “Quantile stein variational gradient descent for batch bayes-

ian optimization”, in International Conference on Machine Learn-
ing, PMLR, pp. 2347-2356. (Cit. on pp. 71, 74, 79, 95.)

González, Javier, Zhenwen Dai, Philipp Hennig, and Neil Lawrence
2016 “Batch Bayesian optimization via local penalization”, in In-

ternational Conference on Artificial Intelligence and Statistics
, PMLR, pp. 648-657. (Cit. on pp. 25, 71, 73, 74, 79, 84, 95,
206, 209.)

Gopakumar, Shivapratap, Sunil Gupta, Santu Rana, Vu Nguyen, and
Svetha Venkatesh

2018 “Algorithmic assurance: An active approach to algorithmic
testing using bayesian optimisation”, in Proceedings of the
32nd International Conference on Neural Information Processing
Systems, pp. 5470-5478. (Cit. on pp. 61, 63.)

GPyOpt, authors
2016 GPyOpt: A Bayesian Optimization framework in Python, http:

//github.com/SheffieldML/GPyOpt. (Cit. on p. 62.)

Greenhill, Stewart, Santu Rana, Sunil Gupta, Pratibha Vellanki, and
Svetha Venkatesh

2020 “Bayesian optimization for adaptive experimental design: a
review”, IEEE access, 8, pp. 13937-13948. (Cit. on p. 18.)

122 bibliography

Grenander, Ulf and Gabor Szegö
1958 Toeplitz forms and their applications, Univ of California Press.

(Cit. on p. 202.)

Griffiths, Ryan-Rhys and José Miguel Hernández-Lobato
2020 “Constrained Bayesian optimization for automatic chemical

design using variational autoencoders”, Chemical science, 11,
2, pp. 577-586. (Cit. on p. 19.)

Griffiths, Valeriya, James P Scanlan, Murat H Eres, Antonio Martinez-
Sykora, and Phani Chinchapatnam

2019 “Cost-driven build orientation and bin packing of parts in
Selective Laser Melting (SLM)”, European Journal of Opera-
tional Research, 273, 1, pp. 334-352. (Cit. on p. 71.)

Grosnit, Antoine, Cedric Malherbe, Rasul Tutunov, Xingchen Wan,
Jun Wang, and Haitham Bou Ammar

2022 “BOiLS: bayesian optimisation for logic synthesis”, in 2022
Design, Automation & Test in Europe Conference & Exhibition
(DATE), IEEE, pp. 1193-1196. (Cit. on p. 107.)

Grosnit, Antoine, Rasul Tutunov, Alexandre Max Maraval, Ryan-Rhys
Griffiths, Alexander I Cowen-Rivers, Lin Yang, Lin Zhu, Wen-
long Lyu, Zhitang Chen, Jun Wang, Jan Peters, and Haitham
Bou Ammar

2021 “High-dimensional Bayesian optimisation with variational
autoencoders and deep metric learning”,
arXiv preprint arXiv:2106.03609.

Grünewälder, Steffen, Jean–Yves Audibert, Manfred Opper, and John
Shawe–Taylor

2010 “Regret bounds for Gaussian process bandit problems”, in
Proceedings of the thirteenth international conference on artificial
intelligence and statistics, JMLR Workshop and Conference
Proceedings, pp. 273-280. (Cit. on p. 16.)

Grünwald, Peter and Teemu Roos
2019 “Minimum description length revisited”, International jour-

nal of mathematics for industry, 11, 01, p. 1930001. (Cit. on
p. 207.)

Grünwald, Peter D and Abhijit Grunwald
2007 The minimum description length principle, MIT press. (Cit. on

pp. 86, 207.)

bibliography 123

Gupta, Sunil, Santu Rana, Svetha Venkatesh, et al.
2022 “Regret Bounds for Expected Improvement Algorithms in

Gaussian Process Bandit Optimization”, in International Con-
ference on Artificial Intelligence and Statistics, PMLR, pp. 8715-
8737. (Cit. on p. 17.)

Gurobi Optimization, Inc.
2012 Gurobi optimizer reference manual, http://www.gurobi.com.

(Cit. on p. 106.)

Gutin, Gregory and Abraham P Punnen
2006 The traveling salesman problem and its variations, Springer Sci-

ence & Business Media, vol. 12. (Cit. on p. 71.)

Gutmann, Michael U and Jukka Corander
2016 “Bayesian optimization for likelihood-free inference of simu-

lator-based statistical models”, Journal of Machine Learning
Research.

Hammack, Richard, Wilfried Imrich, and Sandi Klavžar
2011 Handbook of product graphs, CRC press. (Cit. on pp. 7, 39, 42,

157.)

Hammer, Peter L and Sergiu Rudeanu
2012 Boolean methods in operations research and related areas, Springer

Science & Business Media, vol. 7.

Han, Insu, Prabhanjan Kambadur, Kyoungsoo Park, and Jinwoo Shin
2017 “Faster greedy MAP inference for determinantal point pro-

cesses”, in International Conference on Machine Learning, PMLR,
pp. 1384-1393.

Hansen, Nikolaus and Andreas Ostermeier
1996 “Adapting arbitrary normal mutation distributions in evo-

lution strategies: The covariance matrix adaptation”, in Pro-
ceedings of IEEE international conference on evolutionary compu-
tation, IEEE, pp. 312-317. (Cit. on p. 5.)

Hansen, Pierre and Brigitte Jaumard
1990 “Algorithms for the maximum satisfiability problem”, Com-

puting, 44, 4, pp. 279-303. (Cit. on p. 38.)

Hase, Florian, Loïc M Roch, Christoph Kreisbeck, and Alán Aspuru-
Guzik

2018 “Phoenics: a Bayesian optimizer for chemistry”, ACS central
science, 4, 9, pp. 1134-1145. (Cit. on p. 3.)

124 bibliography

Haussler, David
1999 Convolution kernels on discrete structures, tech. rep., Technical

report, Department of Computer Science, University of Cal-
ifornia . . . (Cit. on pp. 37, 39, 61.)

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun
2016a “Deep residual learning for image recognition”, in Proceed-

ings of the IEEE conference on computer vision and pattern recog-
nition, pp. 770-778. (Cit. on p. 33.)

2016b “Identity mappings in deep residual networks”, in European
conference on computer vision, Springer, pp. 630-645.

Heller, Jack
1960 “Some numerical experiments for an M× J flow shop and its

decision-theoretical aspects”, Operations Research, 8, 2, pp. 178-
184. (Cit. on p. 207.)

Hennig, Philipp and Christian J Schuler
2012 “Entropy search for information-efficient global optimiza-

tion”, Journal of Machine Learning Research, 13, Jun, pp. 1809-
1837. (Cit. on pp. 13, 23, 79.)

Hensman, James, Nicolò Fusi, and Neil D. Lawrence
2013 “Gaussian Processes for Big Data”, in Uncertainty in Artificial

Intelligence, AUAI Press, vol. 29. (Cit. on p. 108.)

Hensman, James, Alexander Matthews, and Zoubin Ghahramani
2015 “Scalable variational Gaussian process classification”, in In-

ternational Conference on Artificial Intelligence and Statistics
, PMLR, pp. 351-360. (Cit. on p. 108.)

Hernández-Lobato, José Miguel, Matthew W Hoffman, and Zoubin
Ghahramani

2014 “Predictive entropy search for efficient global optimization
of black-box functions”, in Advances in neural information pro-
cessing systems, pp. 918-926. (Cit. on pp. 13, 23, 44, 80.)

Hernández-Lobato, José Miguel, James Requeima, Edward O Pyzer-
Knapp, and Alán Aspuru-Guzik

2017 “Parallel and distributed Thompson sampling for large-scale
accelerated exploration of chemical space”, in International
conference on machine learning, PMLR, pp. 1470-1479. (Cit. on
p. 109.)

Hoffman, Matthew D and Andrew Gelman
2014 “The No-U-Turn sampler: adaptively setting path lengths in

Hamiltonian Monte Carlo.” Journal of Machine Learning Re-
search, 15, 1, pp. 1593-1623.

bibliography 125

Hu, Yingjie, JianQiang Hu, Yifan Xu, Fengchun Wang, and Rong Zeng
Cao

2010 “Contamination control in food supply chain”, in Simula-
tion Conference (WSC), Proceedings of the 2010 Winter, IEEE,
pp. 2678-2681. (Cit. on pp. 45, 164.)

Huang, Gao, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinb-
erger

2016 “Deep networks with stochastic depth”, in European confer-
ence on computer vision, Springer, pp. 646-661. (Cit. on pp. 22,
33-35.)

Hutter, Frank, Holger H Hoos, and Kevin Leyton-Brown
2011 “Sequential model-based optimization for general algorithm

configuration”, in International conference on learning and intel-
ligent optimization, Springer, pp. 507-523. (Cit. on pp. 14-16,
23, 24, 29, 31, 44, 45, 55, 61, 62.)

Ishwaran, Hemant and J Sunil Rao
2005 “Spike and slab variable selection: frequentist and Bayesian

strategies”, The Annals of Statistics, 33, 2, pp. 730-773.

Jacot, Arthur, Franck Gabriel, and Clément Hongler
2018 “Neural tangent kernel: Convergence and generalization in

neural networks”, in Advances in neural information processing
systems, pp. 8571-8580.

Jalas, Sören, Manuel Kirchen, Philipp Messner, Paul Winkler, Lars
Hübner, Julian Dirkwinkel, Matthias Schnepp, Remi Lehe,
and Andreas R Maier

2021 “Bayesian optimization of a laser-plasma accelerator”, Phys-
ical review letters, 126, 10, p. 104801. (Cit. on p. 19.)

Jankowiak, Martin, Geoff Pleiss, and Jacob Gardner
2020 “Parametric gaussian process regressors”, in International Con-

ference on Machine Learning, PMLR, pp. 4702-4712. (Cit. on
p. 108.)

Janz, David, David Burt, and Javier González
2020 “Bandit optimisation of functions in the Matérn kernel RKHS”,

in International Conference on Artificial Intelligence and Statis-
tics, PMLR, pp. 2486-2495. (Cit. on p. 16.)

Jayasumana, Sadeep, Richard Hartley, Mathieu Salzmann, Hongdong
Li, and Mehrtash Harandi

2014 “Optimizing over radial kernels on compact manifolds”, in
Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 3802-3809. (Cit. on pp. 26, 152.)

126 bibliography

Jiao, Yunlong and Jean-Philippe Vert
2015 “The Kendall and Mallows kernels for permutations”, in In-

ternational Conference on Machine Learning, PMLR, pp. 1935-
1944. (Cit. on p. 78.)

Jones, Donald R
2001 “A taxonomy of global optimization methods based on re-

sponse surfaces”, Journal of global optimization, 21, 4, pp. 345-
383.

Jones, Donald R, Matthias Schonlau, and William J Welch
1998 “Efficient global optimization of expensive black-box func-

tions”, Journal of Global optimization, 13, 4, pp. 455-492. (Cit.
on pp. 13, 37, 44, 46, 81.)

Kahng, A.B., J. Lienig, I.L. Markov, and J. Hu
2011 VLSI Physical Design: From Graph Partitioning to Timing Clo-

sure, Springer Netherlands. (Cit. on pp. 8, 92.)

Kahng, Andrew B
2018 “Machine learning applications in physical design: Recent

results and directions”, in Proceedings of the 2018 International
Symposium on Physical Design, pp. 68-73. (Cit. on p. 92.)

Kandasamy, Kirthevasan, Gautam Dasarathy, Junier Oliva, Jeff Schnei-
der, and Barnabas Poczos

2019 “Multi-fidelity gaussian process bandit optimisation”, Jour-
nal of Artificial Intelligence Research, 66, pp. 151-196.

Kandasamy, Kirthevasan, Gautam Dasarathy, Junier B Oliva, Jeff Sch-
neider, and Barnabás Póczos

2016 “Gaussian process bandit optimisation with multi-fidelity
evaluations”, in Advances in Neural Information Processing Sys-
tems, pp. 992-1000. (Cit. on pp. 37, 39.)

Kandasamy, Kirthevasan, Akshay Krishnamurthy, Jeff Schneider, and
Barnabás Póczos

2018 “Parallelised Bayesian optimisation via Thompson sampling”,
in International Conference on Artificial Intelligence and Statis-
tics, PMLR, pp. 133-142. (Cit. on pp. 17, 77, 79, 80, 109, 189-
191, 197, 198.)

Kandasamy, Kirthevasan, Willie Neiswanger, Jeff Schneider, Barnabas
Poczos, and Eric P Xing

2018 “Neural architecture search with bayesian optimisation and
optimal transport”, in Advances in Neural Information Process-
ing Systems, pp. 2016-2025. (Cit. on pp. 16, 18, 49, 50, 53.)

bibliography 127

Kandasamy, Kirthevasan, Jeff Schneider, and Barnabás Póczos
2015 “High dimensional Bayesian optimisation and bandits via

additive models”, in International conference on machine learn-
ing, pp. 295-304. (Cit. on pp. 24, 29-31.)

Kathuria, Tarun, Amit Deshpande, and Pushmeet Kohli
2016 “Batched gaussian process bandit optimization via determi-

nantal point processes”, Advances in Neural Information Pro-
cessing Systems, 29. (Cit. on pp. 72, 74, 77, 79, 80, 82, 109, 192-
194, 196.)

Kauffman, Stuart and Simon Levin
1987 “Towards a general theory of adaptive walks on rugged land-

scapes”, Journal of theoretical Biology, 128, 1, pp. 11-45.

Kauffman, Stuart A and Edward D Weinberger
1989 “The NK model of rugged fitness landscapes and its appli-

cation to maturation of the immune response”, Journal of the-
oretical biology, 141, 2, pp. 211-245.

Khan, Asif, Alexander I Cowen-Rivers, Derrick-Goh-Xin Deik, An-
toine Grosnit, Kamil Dreczkowski, Philippe A Robert, Victor
Greiff, Rasul Tutunov, Dany Bou-Ammar, Jun Wang, et al.

2022 “AntBO: Towards Real-World Automated Antibody Design
with Combinatorial Bayesian Optimisation”, arXiv preprint
arXiv:2201.12570. (Cit. on p. 106.)

Khanna, Sanjeev, Rajeev Motwani, Madhu Sudan, and Umesh Vazirani
1998 “On syntactic versus computational views of approximabil-

ity”, SIAM Journal on Computing, 28, 1, pp. 164-191.

Kim, Jungtaek and Seungjin Choi
2020 “On local optimizers of acquisition functions in bayesian op-

timization”, in Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, Springer, pp. 675-690.

Kingma, Diederik P and Jimmy Ba
2015 “Adam: A Method for Stochastic Optimization”, in Interna-

tional Conference on Learning Representations. (Cit. on pp. 28,
30, 33, 35, 81, 162.)

Koller, Daphne and Nir Friedman
2009 Probabilistic graphical models: principles and techniques

, MIT press. (Cit. on p. 85.)

Kondor, Risi Imre and John Lafferty
2002 “Diffusion kernels on graphs and other discrete structures”,

in International conference on machine learning. (Cit. on pp. 7,
37, 39, 41, 55, 59, 61, 178.)

128 bibliography

Kontkanen, Petri and Petri Myllymäki
2007 “A linear-time algorithm for computing the multinomial sto-

chastic complexity”, Information Processing Letters, 103, 6
, pp. 227-233. (Cit. on p. 208.)

Koopmans, Tjalling C and Martin Beckmann
1957 “Assignment problems and the location of economic activi-

ties”, Econometrica: journal of the Econometric Society, pp. 53-
76. (Cit. on p. 206.)

Korovina, Ksenia, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswa-
nger, Barnabas Poczos, Jeff Schneider, and Eric Xing

2020 “Chembo: Bayesian optimization of small organic molecules
with synthesizable recommendations”, in International Con-
ference on Artificial Intelligence and Statistics, PMLR, pp. 3393-
3403. (Cit. on pp. 17, 18, 53.)

Kozminski, K.
1991 “Benchmarks for layout synthesis - evolution and current sta-

tus”, in 28th ACM/IEEE Design Automation Conference, pp. 265-
270. (Cit. on p. 101.)

Krause, Andreas and Cheng S Ong
2011 “Contextual gaussian process bandit optimization”, in Ad-

vances in neural information processing systems, pp. 2447-2455.
(Cit. on pp. 16, 61, 109.)

Krause, Andreas, Ajit Singh, and Carlos Guestrin
2008 “Near-optimal sensor placements in Gaussian processes: The-

ory, efficient algorithms and empirical studies.” Journal of
Machine Learning Research, 9, 2. (Cit. on p. 192.)

Krizhevsky, Alex and Geoffrey Hinton
2009 Learning multiple layers of features from tiny images. (Cit. on

pp. 34, 49, 162.)

Kulesza, Alex and Ben Taskar
2010 “Structured determinantal point processes”, Advances in neu-

ral information processing systems, 23, pp. 1171-1179. (Cit. on
pp. 80, 96.)

2012 “Determinantal Point Processes for Machine Learning”, Ma-
chine Learning, 5, 2-3, pp. 123-286. (Cit. on pp. 8, 71-73, 75, 80,
96.)

Kushner, Harold J
1964 “A new method of locating the maximum point of an arbi-

trary multipeak curve in the presence of noise”, Journal of
Basic Engineering, 86, 1, pp. 97-106. (Cit. on pp. 13, 23.)

bibliography 129

Kveton, Branislav, Zheng Wen, Azin Ashkan, and Csaba Szepesvari
2015 “Tight regret bounds for stochastic combinatorial semi-band-

its”, in International Conference on Artificial Intelligence and
Statistics, pp. 535-543.

Laguna, Manuel and Rafael Marti
2005 “Experimental testing of advanced scatter search designs

for global optimization of multimodal functions”, Journal of
Global Optimization, 33, 2, pp. 235-255. (Cit. on pp. 29, 153.)

Lam, Rémi, Matthias Poloczek, Peter Frazier, and Karen E Willcox
2018 “Advances in bayesian optimization with applications in aer-

ospace engineering”, in 2018 AIAA Non-Deterministic Approa-
ches Conference, p. 1656.

Lan, Shiwei
2019 “Learning Temporal Evolution of Spatial Dependence with

Generalized Spatiotemporal Gaussian Process Models”, arXiv
preprint arXiv:1901.04030.

Lan, Shiwei, Andrew Holbrook, Gabriel A Elias, Norbert J Fortin, Her-
nando Ombao, and Babak Shahbaba

2020 “Flexible bayesian dynamic modeling of correlation and co-
variance matrices”, Bayesian analysis, 15, 4, p. 1199.

Lattimore, Tor and Csaba Szepesvári
2020 Bandit algorithms, Cambridge University Press. (Cit. on p. 190.)

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner
1998 “Gradient-based learning applied to document recognition”,

Proceedings of the IEEE, 86, 11, pp. 2278-2324.

Lee, Eric, David Eriksson, David Bindel, Bolong Cheng, and Mike
Mccourt

2020 “Efficient Rollout Strategies for Bayesian Optimization”, in
Conference on Uncertainty in Artificial Intelligence, PMLR
, pp. 260-269. (Cit. on p. 14.)

Li, Lisha, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar

2017 “Hyperband: A novel bandit-based approach to hyperpa-
rameter optimization”, The Journal of Machine Learning Re-
search, 18, 1, pp. 6765-6816. (Cit. on p. 67.)

Li, Rui, Michael TM Emmerich, Jeroen Eggermont, Ernst GP Bovenk-
amp, Thomas Bäck, Jouke Dijkstra, and Johan HC Reiber

2006 “Mixed-integer NK landscapes”, in Parallel Problem Solving
from Nature-PPSN IX, Springer, pp. 42-51.

130 bibliography

Li, Shuai, Baoxiang Wang, Shengyu Zhang, and Wei Chen
2016 “Contextual Combinatorial Cascading Bandits.”, in Interna-

tional conference on machine learning, vol. 16, pp. 1245-1253.
(Cit. on p. 61.)

Linting, Mariëlle and Anita van der Kooij
2012 “Nonlinear principal components analysis with CATPCA: a

tutorial”, Journal of personality assessment, 94, 1, pp. 12-25.

Liu, Hanxiao, Karen Simonyan, and Yiming Yang
2018 “DARTS: Differentiable Architecture Search”, in International

Conference on Learning Representations. (Cit. on pp. 16, 61, 67.)

Liu, Wei and Alberto Nannarelli
2008 “Net balanced floorplanning based on elastic energy model”,

in 2008 NORCHIP, IEEE, pp. 258-263. (Cit. on pp. 100-102.)

Lovász, László
1983 “Submodular functions and convexity”, in Mathematical pro-

gramming the state of the art, Springer, pp. 235-257. (Cit. on
p. 205.)

Lu, Jingwei, Hao Zhuang, Pengwen Chen, Hongliang Chang, Chin-
Chih Chang, Yiu-Chung Wong, Lu Sha, Dennis Huang, Yuf-
eng Luo, Chin-Chi Teng, and Chung-Kuan Cheng

2015 “ePlace-MS: Electrostatics-Based Placement for Mixed-Size
Circuits”, IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 34, 5, pp. 685-698, doi: 10.1109
/TCAD.2015.2391263. (Cit. on p. 99.)

Lu, Xiaoyu, Javier Gonzalez, Zhenwen Dai, and Neil D Lawrence
2018 “Structured variationally auto-encoded optimization”, in In-

ternational conference on machine learning, PMLR, pp. 3267-
3275. (Cit. on p. 19.)

Lyu, Wenlong, Fan Yang, Changhao Yan, Dian Zhou, and Xuan Zeng
2018 “Batch bayesian optimization via multi-objective acquisition

ensemble for automated analog circuit design”, in Interna-
tional conference on machine learning, PMLR, pp. 3306-3314.
(Cit. on pp. 3, 8, 18, 79, 82, 95.)

MacKay, David JC
1994 “Bayesian nonlinear modeling for the prediction competi-

tion”, ASHRAE transactions, 100, 2, pp. 1053-1062. (Cit. on
p. 42.)

Malkomes, Gustavo, Charles Schaff, and Roman Garnett
2016 “Bayesian optimization for automated model selection”, in

Advances in Neural Information Processing Systems, pp. 2900-
2908. (Cit. on p. 161.)

bibliography 131

Marcus, Marvin and Henryk Minc
1992 A survey of matrix theory and matrix inequalities, Courier Cor-

poration, vol. 14.

Markov, Igor L., Jin Hu, and Myung-Chul Kim
2015 “Progress and Challenges in VLSI Placement Research”, Pro-

ceedings of the IEEE, 103, 11, pp. 1985-2003, doi: 10.1109/JP
ROC.2015.2478963. (Cit. on p. 98.)

Mirhoseini, Azalia, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang,
Ebrahim Songhori, Shen Wang, Young-Joon Lee, Eric John-
son, Omkar Pathak, Azade Nazi, et al.

2021 “A graph placement methodology for fast chip design”, Na-
ture, 594, 7862, pp. 207-212. (Cit. on pp. 3, 17, 18, 92, 100,
107.)

Mitchell, Melanie
1998 An introduction to genetic algorithms, MIT press. (Cit. on pp. 5,

11.)

Močkus, Jonas
1975 “On Bayesian methods for seeking the extremum”, in Opti-

mization Techniques IFIP Technical Conference, Springer, pp. 400-
404. (Cit. on pp. 23, 37.)

Mononen, Tommi and Petri Myllymäki
2007 “Fast NML computation for naive Bayes models”, in Interna-

tional Conference on Discovery Science, Springer, pp. 151-160.
(Cit. on p. 208.)

Montgomery, Douglas C
2017 Design and analysis of experiments, John wiley & sons. (Cit. on

p. 18.)

Moriconi, Riccardo, Marc Peter Deisenroth, and KS Sesh Kumar
2020 “High-dimensional Bayesian optimization using low-dimen-

sional feature spaces”, Machine Learning, 109, 9, pp. 1925-
1943.

Murata, Hiroshi, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji
Kajitani

1996 “VLSI module placement based on rectangle-packing by the
sequence-pair”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 15, 12, pp. 1518-1524. (Cit.
on pp. 91, 93, 94, 96.)

Murray, Iain and Ryan P Adams
2010 “Slice sampling covariance hyperparameters of latent Gaus-

sian models”, in Advances in neural information processing sys-
tems, pp. 1732-1740. (Cit. on pp. 28, 43, 158.)

132 bibliography

Murray, Iain and Matthew Graham
2016 “Pseudo-marginal slice sampling”, in International Conference

on Artificial Intelligence and Statistics, pp. 911-919.

Nava, Elvis, Mojmir Mutny, and Andreas Krause
2022 “Diversified Sampling for Batched Bayesian Optimization

with Determinantal Point Processes”, in International Confer-
ence on Artificial Intelligence and Statistics, PMLR, pp. 7031-
7054. (Cit. on p. 109.)

Neal, Radford M
1995 Bayesian learning for neural networks, PhD thesis, University

of Toronto. (Cit. on p. 42.)
2003 “Slice sampling”, Annals of statistics, pp. 705-741. (Cit. on

pp. 28, 43, 158-160.)

Nemhauser, George L, Laurence A Wolsey, and Marshall L Fisher
1978 “An analysis of approximations for maximizing submodular

set functions—I”, Mathematical programming, 14, 1, pp. 265-
294. (Cit. on pp. 8, 73, 205.)

Nguyen, Dang, Sunil Gupta, Santu Rana, Alistair Shilton, and Svetha
Venkatesh

2019 “Bayesian Optimization for Categorical and Category-Specific
Continuous Inputs”, arXiv preprint arXiv:1911.12473. (Cit. on
pp. 61, 62.)

Nguyen, Vu, Sunil Gupta, Santu Rana, Cheng Li, and Svetha Venkatesh
2017 “Regret for expected improvement over the best-observed

value and stopping condition”, in Asian Conference on Ma-
chine Learning, PMLR, pp. 279-294. (Cit. on p. 17.)

Nguyen, Vu, Tam Le, Makoto Yamada, and Michael A Osborne
2021 “Optimal Transport Kernels for Sequential and Parallel Neu-

ral Architecture Search”, in International Conference on Ma-
chine Learning, PMLR. (Cit. on pp. 80, 94.)

Niu, Mu, Zhenwen Dai, Neil Lawrence, and Kolja Becker
2016 “Spatio-temporal Gaussian processes modeling of dynami-

cal systems in systems biology”,
arXiv preprint arXiv:1610.05163.

Nugent, Christopher E, Thomas E Vollmann, and John Ruml
1968 “An experimental comparison of techniques for the assign-

ment of facilities to locations”, Operations research, 16, 1, pp. 150-
173. (Cit. on p. 207.)

Nyikosa, Favour M, Michael A Osborne, and Stephen J Roberts
2018 “Bayesian Optimization for Dynamic Problems”,

arXiv preprint arXiv:1803.03432.

bibliography 133

2019 “Adaptive Configuration Oracle for Online Portfolio Selec-
tion Methods”, arXiv preprint arXiv:1908.08258.

O’Donnell, Ryan
2014 Analysis of boolean functions, Cambridge University Press.

Oh, Changyong, Roberto Bondesan, Dana Kianfar, Rehan Ahmed,
Rishubh Khurana, Payal Agarwal, Romain Lepert, Mysore
Sriram, and Max Welling

2022 “Bayesian Optimization for Macro Placement”, arXiv preprint
arXiv:2207.08398. (Cit. on p. 18.)

Oh, ChangYong, Efstratios Gavves, and Max Welling
2018 “BOCK: Bayesian optimization with cylindrical kernels”, in

International Conference on Machine Learning, PMLR, pp. 3868-
3877. (Cit. on pp. 37, 39, 44, 53, 55, 61, 181.)

Oh, Changyong, Efstratios Gavves, and Max Welling
2021 “Mixed variable Bayesian optimization with frequency mod-

ulated kernels”, in Proceedings of the Thirty-Seventh Confer-
ence on Uncertainty in Artificial Intelligence, ed. by Cassio de
Campos and Marloes H. Maathuis, Proceedings of Machine
Learning Research, PMLR, vol. 161, pp. 950-960. (Cit. on
p. 16.)

Oh, Changyong, Jakub M Tomczak, Efstratios Gavves, and Max Well-
ing

2019 “Combinatorial Bayesian optimization using the graph carte-
sian product”, in Proceedings of the 33rd International Confer-
ence on Neural Information Processing Systems, pp. 2914-2924.
(Cit. on pp. 16, 53, 55, 59, 71, 80, 93, 178, 184.)

Ortega, Antonio, Pascal Frossard, Jelena Kovačević, José MF Moura,
and Pierre Vandergheynst

2018 “Graph signal processing: Overview, challenges, and appli-
cations”, Proceedings of the IEEE, 106, 5, pp. 808-828. (Cit. on
pp. 7, 38, 39, 41, 53.)

Osborne, Michael A, Roman Garnett, and Stephen J Roberts
2009 “Gaussian processes for global optimization”, in 3rd Interna-

tional Conference on Learning and Intelligent Optimization, pp. 1-
15.

Pang, Guofei, Paris Perdikaris, Wei Cai, and George Em Karniadakis
2017 “Discovering variable fractional orders of advection–disper-

sion equations from field data using multi-fidelity Bayesian
optimization”, Journal of Computational Physics, 348, pp. 694-
714. (Cit. on p. 19.)

134 bibliography

Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Ed-
ward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer

2017 Automatic differentiation in pytorch. (Cit. on pp. 81, 162.)

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Mi-
chel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, Vincent Dubourg, et al.

2011 “Scikit-learn: Machine learning in Python”, the Journal of ma-
chine Learning research, 12, pp. 2825-2830. (Cit. on p. 64.)

Perdikaris, Paris and George Em Karniadakis
2016 “Model inversion via multi-fidelity Bayesian optimization: a

new paradigm for parameter estimation in haemodynamics,
and beyond”, Journal of The Royal Society Interface, 13, 118,
p. 20151107. (Cit. on p. 19.)

Perrone, Valerio, Rodolphe Jenatton, Matthias Seeger, and Cédric Ar-
chambeau

2018 “Scalable hyperparameter transfer learning”, in Proceedings
of the 32nd International Conference on Neural Information Pro-
cessing Systems, pp. 6846-6856. (Cit. on p. 14.)

Perrone, Valerio, Huibin Shen, Matthias W Seeger, Cedric Archam-
beau, and Rodolphe Jenatton

2019 “Learning search spaces for bayesian optimization: Another
view of hyperparameter transfer learning”, Advances in Neu-
ral Information Processing Systems, 32. (Cit. on pp. 108, 109.)

Pham, Hieu, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean
2018 “Efficient neural architecture search via parameters sharing”,

in International Conference on Machine Learning, PMLR
, pp. 4095-4104. (Cit. on pp. 16, 61, 67.)

Phan, Du, Neeraj Pradhan, and Martin Jankowiak
2019 “Composable Effects for Flexible and Accelerated Probabilis-

tic Programming in NumPyro”,
arXiv preprint arXiv:1912.11554.

Pleiss, Geoff, Jacob Gardner, Kilian Weinberger, and Andrew Gordon
Wilson

2018 “Constant-time predictive distributions for Gaussian proces-
ses”, in International Conference on Machine Learning, PMLR,
pp. 4114-4123. (Cit. on p. 5.)

Poloczek, Matthias, Jialei Wang, and Peter I Frazier
2016 “Warm starting Bayesian optimization”, in 2016 Winter Sim-

ulation Conference (WSC), IEEE, pp. 770-781. (Cit. on p. 109.)

bibliography 135

Popova, Mariya, Olexandr Isayev, and Alexander Tropsha
2018 “Deep reinforcement learning for de novo drug design”, Sci-

ence advances, 4, 7, eaap7885. (Cit. on pp. 17, 18.)

Potvin, Jean-Yves
1996 “Genetic algorithms for the traveling salesman problem”,

Annals of Operations Research, 63, pp. 337-370. (Cit. on p. 86.)

Pyzer-Knapp, Edward O
2018 “Bayesian optimization for accelerated drug discovery”, IBM

Journal of Research and Development, 62, 6, pp. 2-1. (Cit. on
pp. 17, 18.)

Qin, Lijing, Shouyuan Chen, and Xiaoyan Zhu
2014 “Contextual combinatorial bandit and its application on di-

versified online recommendation”, in Proceedings of the 2014
SIAM International Conference on Data Mining, SIAM, pp. 461-
469.

Rahimi, Ali, Benjamin Recht, et al.
2007 “Random Features for Large-Scale Kernel Machines.”, in NIPS,

Citeseer, vol. 3, p. 5. (Cit. on p. 79.)

Rana, Santu, Cheng Li, Sunil Gupta, Vu Nguyen, and Svetha Venkatesh
2017 “High dimensional Bayesian optimization with elastic gaus-

sian process”, in International Conference on Machine Learning,
pp. 2883-2891. (Cit. on pp. 25, 29, 30.)

Raskutti, Garvesh and Caroline Uhler
2018 “Learning directed acyclic graph models based on sparsest

permutations”, Stat, 7, 1, e183. (Cit. on p. 86.)

Rasmussen, Carl Edward
2003 “Gaussian processes in machine learning”, in Summer School

on Machine Learning, Springer, pp. 63-71. (Cit. on pp. 14, 15,
23, 37, 60.)

Real, Esteban, Alok Aggarwal, Yanping Huang, and Quoc V Le
2019 “Regularized evolution for image classifier architecture sear-

ch”, in Proceedings of the aaai conference on artificial intelligence,
vol. 33, pp. 4780-4789. (Cit. on pp. 49, 50, 54, 67, 163, 171,
184.)

Reeves, Colin R
1995 “A genetic algorithm for flowshop sequencing”, Computers

& operations research, 22, 1, pp. 5-13. (Cit. on p. 207.)

136 bibliography

Remes, Sami, Markus Heinonen, and Samuel Kaski
2017 “Non-stationary spectral kernels”, in Advances in neural in-

formation processing systems, pp. 4642-4651. (Cit. on pp. 53,
61.)

Resende, Mauricio GC, LS Pitsoulis, and PM Pardalos
1997 “Approximate solution of weighted MAX-SAT problems us-

ing GRASP”, Satisfiability problems, 35, pp. 393-405. (Cit. on
p. 38.)

Reymond, Jean-Louis and Mahendra Awale
2012 “Exploring chemical space for drug discovery using the chem-

ical universe database”, ACS chemical neuroscience, 3, 9, pp. 649-
657. (Cit. on p. 53.)

Riquelme, Carlos, George Tucker, and Jasper Snoek
2018 “Deep Bayesian Bandits Showdown: An Empirical Compar-

ison of Bayesian Deep Networks for Thompson Sampling”,
in International Conference on Learning Representations.

Roos, Teemu, Tomi Silander, Petri Kontkanen, and Petri Myllymaki
2008 “Bayesian network structure learning using factorized NML

universal models”, in 2008 Information Theory and Applica-
tions Workshop, IEEE, pp. 272-276. (Cit. on p. 208.)

Ru, Binxin, Ahsan Alvi, Vu Nguyen, Michael A Osborne, and Stephen
Roberts

2020 “Bayesian optimisation over multiple continuous and cate-
gorical inputs”, in International Conference on Machine Learn-
ing, PMLR, pp. 8276-8285. (Cit. on pp. 14, 16, 61-63.)

Ru, Binxin, Xingchen Wan, Xiaowen Dong, and Michael Osborne
2020 “Interpretable Neural Architecture Search via Bayesian Op-

timisation with Weisfeiler-Lehman Kernels”, in International
Conference on Learning Representations. (Cit. on pp. 16, 18.)

Russo, Daniel J, Benjamin Van Roy, Abbas Kazerouni, Ian Osband,
and Zheng Wen

2018 “A Tutorial on Thompson Sampling”, Foundations and Trends®
in Machine Learning, 11, 1, pp. 1-96. (Cit. on p. 109.)

Sakaue, Shinsaku
2020 “Guarantees of Stochastic Greedy Algorithms for Non-mono-

tone Submodular Maximization with Cardinality Constraint”,
in International Conference on Artificial Intelligence and Statis-
tics, PMLR, pp. 11-21. (Cit. on pp. 73, 206.)

bibliography 137

Samaranayake, Meththa, Helen Ji, and John Ainscough
2009 “Development of a force directed module placement tool”,

in 2009 Ph. D. Research in Microelectronics and Electronics, IEEE,
pp. 152-155. (Cit. on pp. 100-102.)

Samo, Yves-Laurent Kom and Stephen Roberts
2015 “Generalized spectral kernels”, arXiv preprint arXiv:1506.02236.

(Cit. on p. 61.)

Scanagatta, Mauro, Antonio Salmerón, and Fabio Stella
2019 “A survey on Bayesian network structure learning from data”,

Progress in Artificial Intelligence, 8, 4, pp. 425-439.

Schäfer, Christian
2013 “Particle algorithms for optimization on binary spaces”, ACM

Transactions on Modeling and Computer Simulation (TOMACS),
23, 1, p. 8.

Scholkopf, Bernhard and Alexander J Smola
2001 Learning with kernels: support vector machines, regularization,

optimization, and beyond, MIT press. (Cit. on p. 55.)

Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller
1998 “Nonlinear component analysis as a kernel eigenvalue prob-

lem”, Neural computation, 10, 5, pp. 1299-1319.

Scutari, Marco
2010 “Learning Bayesian networks with the bnlearn R package”,

Journal of Statistical Software. (Cit. on p. 86.)

Scutari, Marco, Catharina Elisabeth Graafland, and José Manuel Guti-
érrez

2019 “Who learns better Bayesian network structures: Accuracy
and speed of structure learning algorithms”, International
Journal of Approximate Reasoning, 115, pp. 235-253. (Cit. on
pp. 85, 86.)

Shah, Amar and Zoubin Ghahramani
2015 “Parallel predictive entropy search for batch global optimiza-

tion of expensive objective functions”, in Proceedings of the
28th International Conference on Neural Information Processing
Systems-Volume 2, pp. 3330-3338. (Cit. on pp. 79, 109.)

Shahookar, Khushro and Pinaki Mazumder
1991 “VLSI cell placement techniques”, ACM Computing Surveys

(CSUR), 23, 2, pp. 143-220. (Cit. on p. 8.)

138 bibliography

Shahriari, Bobak, Kevin Swersky, Ziyu Wang, Ryan P Adams, and
Nando De Freitas

2015 “Taking the human out of the loop: A review of Bayesian op-
timization”, Proceedings of the IEEE, 104, 1, pp. 148-175. (Cit.
on pp. 4, 5, 15, 18, 24, 37, 44, 55, 73, 93, 95.)

Sharma, Dravyansh, Ashish Kapoor, and Amit Deshpande
2015 “On greedy maximization of entropy”, in International Con-

ference on Machine Learning, PMLR, pp. 1330-1338. (Cit. on
p. 206.)

Silander, Tomi, Janne Leppä-Aho, Elias Jääsaari, and Teemu Roos
2018 “Quotient normalized maximum likelihood criterion for lea-

rning Bayesian network structures”, in International Confer-
ence on Artificial Intelligence and Statistics, PMLR, pp. 948-957.
(Cit. on p. 208.)

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonogl-
ou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, et al.

2017 “Mastering the game of go without human knowledge”, na-
ture, 550, 7676, pp. 354-359. (Cit. on pp. 4, 16.)

Skiena, Steven S
1998 The algorithm design manual: Text, Springer Science & Busi-

ness Media, vol. 1. (Cit. on pp. 62, 181.)

Smola, Alexander J and Risi Kondor
2003 “Kernels and regularization on graphs”, in Learning theory

and kernel machines, Springer, pp. 144-158. (Cit. on pp. 7, 37,
39, 41, 55-57, 59, 61, 62, 64, 178.)

Snoek, Jasper, Hugo Larochelle, and Ryan Prescott Adams
2012 “Practical Bayesian Optimization of Machine Learning Al-

gorithms”, Advances in Neural Information Processing Systems.
(Cit. on pp. 5, 14-16, 24, 25, 27-29, 37, 39, 44, 53, 55, 71, 94,
158, 161, 181.)

Snoek, Jasper, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur
Satish, Narayanan Sundaram, Mostofa Patwary, Mr Prabhat,
and Ryan Adams

2015 “Scalable bayesian optimization using deep neural networks”,
in International conference on machine learning, PMLR, pp. 2171-
2180. (Cit. on pp. 14, 16, 17, 23, 24, 44, 71, 94.)

Snoek, Jasper, Kevin Swersky, Rich Zemel, and Ryan Adams
2014 “Input warping for Bayesian optimization of non-stationary

functions”, in International conference on machine learning,
1674-1682. (Cit. on pp. 5, 14, 24, 25, 27-30, 158.)

bibliography 139

Solnik, Benjamin, Daniel Golovin, Greg Kochanski, John Elliot Karro,
Subhodeep Moitra, and D. Sculley

2017 “Bayesian Optimization for a Better Dessert”, in Proceedings
of the 2017 NIPS Workshop on Bayesian Optimization, The work-
shop is BayesOpt 2017 NIPS Workshop on Bayesian Opti-
mization December 9, 2017, Long Beach, USA, December 9,
2017, Long Beach, USA. (Cit. on pp. 3, 53.)

Solus, Liam, Yuhao Wang, and Caroline Uhler
2021 “Consistency guarantees for greedy permutation-based causal

inference algorithms”, Biometrika, 108, 4, pp. 795-814. (Cit. on
p. 86.)

Song, Xu, Stefanie Feih, Wei Zhai, Chen-Nan Sun, Feng Li, Raj Maiti,
Jun Wei, Yangzhan Yang, Victor Oancea, Leon Romano Brandt,
et al.

2020 “Advances in additive manufacturing process simulation:
Residual stresses and distortion predictions in complex metal-
lic components”, Materials & Design, 193, p. 108779. (Cit. on
p. 71.)

Spears, William M
1993 “Simulated annealing for hard satisfiability problems.”, in

Cliques, Coloring, and Satisfiability, Citeseer, pp. 533-558. (Cit.
on p. 45.)

Springenberg, Jost Tobias, Aaron Klein, Stefan Falkner, and Frank
Hutter

2016 “Bayesian optimization with robust Bayesian neural networ-
ks”, in Advances in Neural Information Processing Systems
, pp. 4134-4142. (Cit. on pp. 14, 23, 108.)

Srinivas, Niranjan, Andreas Krause, Sham Kakade, and Matthias See-
ger

2010 “Gaussian process optimization in the bandit setting: no re-
gret and experimental design”, in International Conference on
Machine Learning, pp. 1015-1022. (Cit. on pp. 16, 17, 23, 73,
76, 81, 100, 194, 195, 199, 200.)

STANDARDS, NATIONAL INSTITUTE OF and TECHNOLOGY/SE-
MATECH

2013 e-Handbook of statistical methods. (Cit. on p. 18.)

Stanton, Samuel, Wesley Maddox, Nate Gruver, Phillip Maffettone,
Emily Delaney, Peyton Greenside, and Andrew Gordon Wil-
son

2022 “Accelerating Bayesian Optimization for Biological Sequence
Design with Denoising Autoencoders”, in International Con-
ference on Machine Learning.

140 bibliography

Strang, Gilbert
2006 Linear algebra and its applications, Thomson, Brooks/Cole, Bel-

mont, CA.

Sun, Shengyang, Guodong Zhang, Jiaxin Shi, and Roger Grosse
2018 “FUNCTIONAL VARIATIONAL BAYESIAN NEURAL NET-

WORKS”, in International Conference on Learning Representa-
tions.

Sun, Shengyang, Guodong Zhang, Chaoqi Wang, Wenyuan Zeng, Jia-
man Li, and Roger Grosse

2018 “Differentiable compositional kernel learning for Gaussian
processes”, in International Conference on Machine Learning,
PMLR, pp. 4828-4837. (Cit. on p. 78.)

Sutton, Richard S and Andrew G Barto
2018 Reinforcement learning: An introduction, MIT press. (Cit. on

pp. 17, 100.)

Swersky, Kevin, Yulia Rubanova, David Dohan, and Kevin Murphy
2020 “Amortized bayesian optimization over discrete spaces”, in

Conference on Uncertainty in Artificial Intelligence, PMLR
, pp. 769-778. (Cit. on pp. 14, 71, 80, 107.)

Swersky, Kevin, Jasper Snoek, and Ryan P Adams
2013 “Multi-task bayesian optimization”, in Advances in neural in-

formation processing systems, pp. 2004-2012. (Cit. on pp. 24, 53,
61, 109.)

Swersky, Kevin Jordan
2017 Improving Bayesian Optimization for Machine Learning using Ex-

pert Priors, PhD thesis, University of Toronto. (Cit. on pp. 22,
24, 25.)

Syslo, Maciej, Narsingh Deo, and Janusz S Kowalik
2006 Discrete optimization algorithms: with Pascal programs, Dover

Publications.

Tang, Xiaoping, Ruiqi Tian, and DF Wong
2001 “Fast evaluation of sequence pair in block placement by lon-

gest common subsequence computation”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
20, 12, pp. 1406-1413. (Cit. on p. 94.)

Tang, Xiaoping and DF Wong
2001 “FAST-SP: A fast algorithm for block placement based on se-

quence pair”, in Proceedings of the 2001 Asia and South Pacific
design automation conference, pp. 521-526. (Cit. on p. 94.)

bibliography 141

The-OpenROAD-Project
2021 https://github.com/The- OpenROAD- Project/OpenROAD.

(Cit. on p. 99.)

Thompson, William R
1933 “On the likelihood that one unknown probability exceeds

another in view of the evidence of two samples”, Biometrika,
25, 3/4, pp. 285-294. (Cit. on pp. 23, 79.)

Tighineanu, Petru, Kathrin Skubch, Paul Baireuther, Attila Reiss, Felix
Berkenkamp, and Julia Vinogradska

2022 “Transfer Learning with Gaussian Processes for Bayesian
Optimization”, in International Conference on Artificial Intel-
ligence and Statistics, PMLR, pp. 6152-6181. (Cit. on p. 108.)

Titsias, Michalis
2009 “Variational learning of inducing variables in sparse Gaus-

sian processes”, in International Conference on Artificial Intelli-
gence and Statistics, PMLR, pp. 567-574. (Cit. on p. 15.)

Titsias, Michalis K, Neil Lawrence, and Magnus Rattray
2008 “Markov chain Monte Carlo algorithms for Gaussian pro-

cesses”, Inference and Estimation in Probabilistic Time-Series Mod-
els, 9.

Trench, William F
1999 “Asymptotic distribution of the spectra of a class of gener-

alized Kac–Murdock–Szegö matrices”, Linear algebra and its
applications, 294, 1-3, pp. 181-192. (Cit. on p. 202.)

Van Laarhoven, Peter JM and Emile HL Aarts
1987 “Simulated annealing”, in Simulated annealing: Theory and ap-

plications, Springer, pp. 7-15. (Cit. on p. 11.)

Vashisht, Dhruv, Harshit Rampal, Haiguang Liao, Yang Lu, Devika
Shanbhag, Elias Fallon, and Levent Burak Kara

2020 “Placement in Integrated Circuits using Cyclic Reinforcement
Learning and Simulated Annealing”,
arXiv preprint arXiv:2011.07577. (Cit. on p. 99.)

Venkitaraman, Arun, Saikat Chatterjee, and Peter Handel
2020 “Gaussian processes over graphs”, in ICASSP 2020-2020 IEEE

International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), IEEE, pp. 5640-5644.

Vert, Jean-Philippe, Koji Tsuda, and Bernhard Schölkopf
2004 “A primer on kernel methods”, Kernel methods in computa-

tional biology, 47, pp. 35-70. (Cit. on pp. 53, 56, 58.)

142 bibliography

Vishwanathan, S Vichy N, Nicol N Schraudolph, Risi Kondor, and
Karsten M Borgwardt

2010 “Graph kernels”, Journal of Machine Learning Research, 11, Apr,
pp. 1201-1242.

Volpp, Michael, Lukas P Fröhlich, Kirsten Fischer, Andreas Doerr,
Stefan Falkner, Frank Hutter, and Christian Daniel

2019 “Meta-Learning Acquisition Functions for Transfer Learn-
ing in Bayesian Optimization”, in International Conference on
Learning Representations. (Cit. on p. 109.)

Vondrák, Jan
2007 “Submodularity in combinatorial optimization

”.

Wan, Xingchen, Vu Nguyen, Huong Ha, Binxin Ru, Cong Lu, and
Michael A Osborne

2021 “Think Global and Act Local: Bayesian Optimisation over
High-Dimensional Categorical and Mixed Search Spaces”, in
International Conference on Machine Learning, PMLR, pp. 10663-
10674. (Cit. on p. 106.)

Wang, Jialei, Scott C Clark, Eric Liu, and Peter I Frazier
2020 “Parallel Bayesian global optimization of expensive functions”,

Operations Research, 68, 6, pp. 1850-1865. (Cit. on pp. 74, 79.)

Wang, Ke, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q Wein-
berger, and Andrew Gordon Wilson

2019 “Exact Gaussian processes on a million data points”, Ad-
vances in Neural Information Processing Systems, 32. (Cit. on
p. 108.)

Wang, Zi, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka
2018 “Batched large-scale bayesian optimization in high-dimensi-

onal spaces”, in International Conference on Artificial Intelli-
gence and Statistics, PMLR, pp. 745-754. (Cit. on pp. 14, 79.)

Wang, Zi, Chengtao Li, Stefanie Jegelka, and Pushmeet Kohli
2017 “Batched high-dimensional Bayesian optimization via struc-

tural kernel learning”, in International Conference on Machine
Learning, PMLR, pp. 3656-3664. (Cit. on pp. 14, 24, 79.)

Wang, Zi, Bolei Zhou, and Stefanie Jegelka
2016 “Optimization as estimation with Gaussian processes in ban-

dit settings”, in Artificial Intelligence and Statistics, PMLR
, pp. 1022-1031. (Cit. on pp. 76, 77, 79, 81, 96, 194-196, 199.)

bibliography 143

Wang, Ziyu and Nando de Freitas
2014 “Theoretical analysis of Bayesian optimisation with unknown

Gaussian process hyper-parameters”,
arXiv preprint arXiv:1406.7758.

Wang, Ziyu, Frank Hutter, Masrour Zoghi, David Matheson, and
Nando de Feitas

2016 “Bayesian optimization in a billion dimensions via random
embeddings”, Journal of Artificial Intelligence Research, 55
, pp. 361-387. (Cit. on pp. 24, 25, 33, 48.)

Weinberger, ED
1996 “NP completeness of Kauffman’s NK model, a tuneable rug-

ged fitness landscape (1996)”, Santa Fe Institute working paper.

White, Colin, Willie Neiswanger, and Yash Savani
2021 “Bananas: Bayesian optimization with neural architectures

for neural architecture search”, in Proceedings of the AAAI
Conference on Artificial Intelligence, 12, vol. 35, pp. 10293-10301.

Wikipedia contributors
2020 Flow shop scheduling — Wikipedia, The Free Encyclopedia, [On-

line; accessed 3-February-2021], https://en.wikipedia.org
/w/index.php?title=Flow_shop_scheduling&oldid=992871

042. (Cit. on p. 207.)

Williams, Christopher KI and Carl Edward Rasmussen
2006 Gaussian processes for machine learning, MIT press Cambridge,

MA, vol. 2. (Cit. on pp. 5, 62, 94, 151.)

Williams, Christopher KI and Matthias Seeger
2001 “Using the Nyström method to speed up kernel machines”,

in Advances in neural information processing systems, pp. 682-
688.

Wilson, Aaron, Alan Fern, and Prasad Tadepalli
2014 “Using trajectory data to improve Bayesian optimization for

reinforcement learning”, The Journal of Machine Learning Re-
search, 15, 1, pp. 253-282. (Cit. on p. 37.)

Wilson, Andrew and Hannes Nickisch
2015 “Kernel interpolation for scalable structured Gaussian pro-

cesses (KISS-GP)”, in International Conference on Machine Learn-
ing, pp. 1775-1784. (Cit. on p. 61.)

Wilson, Andrew G, Zhiting Hu, Russ R Salakhutdinov, and Eric P
Xing

2016 “Stochastic variational deep kernel learning”, Advances in
Neural Information Processing Systems, 29. (Cit. on p. 108.)

144 bibliography

Wilson, James, Viacheslav Borovitskiy, Alexander Terenin, Peter Most-
owsky, and Marc Deisenroth

2020 “Efficiently sampling functions from Gaussian process poste-
riors”, in International Conference on Machine Learning, PMLR,
pp. 10292-10302. (Cit. on pp. 79, 109.)

Wistuba, Martin and Josif Grabocka
2020 “Few-Shot Bayesian Optimization with Deep Kernel Surro-

gates”, in International Conference on Learning Representations.

Wistuba, Martin, Ambrish Rawat, and Tejaswini Pedapati
2019 “A survey on neural architecture search”,

arXiv preprint arXiv:1905.01392. (Cit. on pp. 16, 38, 49, 50.)

Wolpert, David H and William G Macready
1997 “No free lunch theorems for optimization”, IEEE transactions

on evolutionary computation, 1, 1, pp. 67-82.

Wu, Jian and Peter I Frazier
2016 “The parallel knowledge gradient method for batch Bayesian

optimization”, in Proceedings of the 30th International Confer-
ence on Neural Information Processing Systems, pp. 3134-3142.
(Cit. on pp. 79, 95.)

Wu, Jian, Matthias Poloczek, Andrew G Wilson, and Peter Frazier
2017 “Bayesian optimization with gradients”, in Advances in Neu-

ral Information Processing Systems, pp. 5267-5278. (Cit. on pp. 4,
11, 44.)

Xiao, Han, Kashif Rasul, and Roland Vollgraf
2017 “Fashion-mnist: a novel image dataset for benchmarking ma-

chine learning algorithms”, arXiv preprint arXiv:1708.07747.
(Cit. on p. 183.)

Xiaoping Tang, DF and Ruiqi Tian Wong
2000 “Fast evaluation of sequence pair in block placement by lon-

gest common subsequence computation date”, in Design, Au-
tomation and Test in Europe, p. 106.

Xie, Saining, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming
He

2017 “Aggregated residual transformations for deep neural net-
works”, in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492-1500.

Xie, Saining, Alexander Kirillov, Ross Girshick, and Kaiming He
2019 “Exploring randomly wired neural networks for image recog-

nition”, in Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 1284-1293.

bibliography 145

Xu, Chang, Gai Liu, Ritchie Zhao, Stephen Yang, Guojie Luo, and
Zhiru Zhang

2017 “A Parallel Bandit-Based Approach for Autotuning FPGA
Compilation”, in Proceedings of the 2017 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, FPGA
’17, Association for Computing Machinery, pp. 157-166, isbn:
9781450343541. (Cit. on pp. 93, 98, 100.)

Yang, Antoine, Pedro M Esperança, and Fabio M Carlucci
2019 “NAS evaluation is frustratingly hard”, in International Con-

ference on Learning Representations.

Yang, Kevin K, Yuxin Chen, Alycia Lee, and Yisong Yue
2019 “Batched stochastic Bayesian optimization via combinatorial

constraints design”, in The 22nd International Conference on
Artificial Intelligence and Statistics, PMLR, pp. 3410-3419. (Cit.
on p. 18.)

Yuan, Ya-xiang
2000 “A review of trust region algorithms for optimization”, in

Iciam, 1, vol. 99, pp. 271-282.

Zaefferer, Martin, Jörg Stork, and Thomas Bartz-Beielstein
2014 “Distance measures for permutations in combinatorial effi-

cient global optimization”, in International Conference on Par-
allel Problem Solving from Nature, Springer, pp. 373-383. (Cit.
on pp. 71, 78, 80, 96.)

Zagoruyko, Sergey and Nikos Komodakis
2016 “Wide Residual Networks”, in British Machine Vision Confer-

ence 2016, British Machine Vision Association.

Zela, Arber, Julien Niklas Siems, Lucas Zimmer, Jovita Lukasik, Mar-
gret Keuper, and Frank Hutter

2022 “Surrogate NAS benchmarks: Going beyond the limited sear-
ch spaces of tabular NAS benchmarks”, in Tenth International
Conference on Learning Representations, OpenReview. net, pp. 1-
36. (Cit. on p. 106.)

Zhang, Baohe, Raghu Rajan, Luis Pineda, Nathan Lambert, André
Biedenkapp, Kurtland Chua, Frank Hutter, and Roberto Cal-
andra

2021 “On the importance of hyperparameter optimization for mo-
del-based reinforcement learning”, in International Conference
on Artificial Intelligence and Statistics, PMLR, pp. 4015-4023.
(Cit. on p. 3.)

146 bibliography

Zhang, Jianming, Xifan Yao, Min Liu, and Yan Wang
2019 “A Bayesian Discrete Optimization Algorithm for Permuta-

tion Based Combinatorial Problems”, in 2019 IEEE Sympo-
sium Series on Computational Intelligence (SSCI), IEEE, pp. 874-
881. (Cit. on pp. 71, 80.)

Zhang, K, J Peters, D Janzing, and B Schölkopf
2011 “Kernel-based Conditional Independence Test and Applica-

tion in Causal Discovery”, in 27th Conference on Uncertainty
in Artificial Intelligence (UAI 2011), AUAI Press, pp. 804-813.

Zhang, Shuhan, Wenlong Lyu, Fan Yang, Changhao Yan, Dian Zhou,
and Xuan Zeng

2019 “Bayesian optimization approach for analog circuit synthesis
using neural network”, in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), IEEE, pp. 1463-1468.
(Cit. on pp. 3, 8.)

Zhou, Zhenpeng, Steven Kearnes, Li Li, Richard N Zare, and Patrick
Riley

2019 “Optimization of molecules via deep reinforcement learn-
ing”, Scientific reports, 9, 1, pp. 1-10.

Zhu, Ciyou, Richard H Byrd, Peihuang Lu, and Jorge Nocedal
1997 “Algorithm 778: L-BFGS-B: Fortran subroutines for large-

scale bound-constrained optimization”, ACM Transactions on
Mathematical Software (TOMS), 23, 4, pp. 550-560. (Cit. on
pp. 28, 30, 62, 181.)

Zoph, Barret and Quoc Le
2017 “Neural Architecture Search with Reinforcement Learning”,

in International Conference on Learning Representations. (Cit. on
pp. 16-18, 66, 182.)

Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le
2018 “Learning transferable architectures for scalable image recog-

nition”, in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 8697-8710. (Cit. on pp. 3, 17.)

bibliography 147

A C K N O W L E D G M E N T S

First and foremost, I would like to express my gratitude to my
supervisor, Max Welling, for providing me with the opportunity to
pursue a PhD and for his guidance and advice. The feedback and
insight Max gave were the staple sources of learning during my PhD.
I also want to express my appreciation to my co-supervisor, Efstra-
tios Gavves, for his advice and help. Stratis spared no efforts to pro-
vide help on various aspects of research skills, without which my
life would have been much tougher. I am also grateful to my other
co-supervisor, Roberto Bondesan. Roberto provided excellent guidance
in interdisciplinary projects, from which I learned how to manage
interdisciplinary projects.

I was also fortunate to have excellent collaborators. Via discussions
with Jakub Tomczak, I received excellent feedback and learned the im-
portance of a positive attitude in research and collaboration. Thank-
fully, Mijung Park gave me an opportunity to work on a new topic in
a new environment. Mijung also shared many beneficial experiences
and tips helpful to become a good researcher. Thanks to Qualcomm
Combinatorial optimization team, I learned a lot about the real-world
application of machine learning while doing an internship.

I cherish my memory with QUvA/AMLab members, from their wa-
rm welcome to all discussions and fun activities we shared. All of
them boosted my energy for my PhD progress. Discussions with
QUvA/AMLab members taught me various subfields of machine
learning, which enriched my research and broadened my view. Dur-
ing the pandemic, my limited social interaction managed to survive,
thanks to Shuai Liao, Mert Kilickaya, and Noureldien Hussein, which
helped me to stay healthy socially and mentally.

Thanks should also go to Jim Boelrijk, David Ruhe, and Wouter Kool
for the Dutch translation of the Summary. Thank you to Felice Arends,
Virginie Mes, and Dennis Koelma for their help with administration
and IT.

Lastly, I want to thank my family and friends for their support and
interaction. Without them, I could not have decided to do PhD and
would not be greeting this moment.

149

A
B O C K : B AY E S I A N
O P T I M I Z AT I O N W I T H
C Y L I N D R I C A L K E R N E L S

a.1 special treatment for the center point
In Subsec. 3.3.3, we propose a special treatment for the center point

to correct the problem resulting from the over-expansion for the cen-
ter point. We also show that the cylindrical kernel is positive semi-
definiteness with the special treatment for the center point.

The cylindrical kernel Kcyl is a tensor product of the kernel Kr

from the radius component, and the kernel Ka from the angular com-
ponent. If we can show that both Kr and Kd are proper kernels, i.e.
positive semi-definite, then we can conclude that Kcyl is also positive
semi-definite (Williams and Rasmussen, 2006).

Let us denote with T : B(0,R) → C(0,R; 0, 1) the transformation
from a ball to a cylinder, and with πa the projection to angle compo-
nent in a cylinder. For a given set D̃ = D∪{0}, we denote the angle
component πa(T(D)) as Da. Then the gram matrix Ka on D̃ can be
represented by

[
Ka(Da,Da) Ka(Da, aarbitrary)

Ka(aarbitrary,Da) Ka(aarbitrary, aarbitrary)

]

In the special treatment, we set aarbitrary = a∗ = x∗ /‖ x∗ ‖. This is
nothing but the gram matrix of Ka on the dataset a1, a2, · · · , aN, a∗
As long as Ka is a proper kernel, using the special treatment does not
violate the positive semi-definiteness.

The special treatment assumes that the points where the prediction
is made are not the center point, x∗)= 0. A single point is of measure
zero under any non-atomic measure, and thus the assumption holds.
In our experiments, we start with data including 0 as an initial data
point, and thus the acquisition function does not need to go over
x∗ = 0 anymore.

Interestingly, the special treatment bears similarity to Bayesian Op-
timization using treed Gaussian Processes (Assael et al., 2014). When
there is 0 in our training data set, at each prediction, we have a Gaus-
sian Process on the same data except for one point. Namely, one
can view this as having different Gaussian Processes at different pre-
diction points, in the sense that the data conditioning the Gaussian
Process change (not the kernel parameters). As the treed Bayesian
Optimization guarantees continuity between the regions having the
different Gaussian Processes, the cylindrical kernel with the special

151

152 bock : bayesian optimization with cylindrical kernels

treatment also has continuity since the Gram matrix is a continuous
function of darbitrary.

However, at different prediction points, we have different gram
matrices. Hence, a naive implementation of the above idea makes
the maximization of the acquisition function infeasible. In Gaus-
sian process prediction, the main computation bottle is to calculate
a quadratic form as below.

[
pT p0

]
([

Kcyl(D,D) Kcyl(D, 0)
Kcyl(0,D) Kcyl(0, 0)

]
+ σ2

obsI

)−1 [
qT

q0

]
(A.1)

Fortunately, we can calculate the quadratic form Eq. (A.1) efficiently
by using block matrix inversion. Once we calculate Kcyl(D,D)−1, by
using pre-calculated, Kcyl(D,D)−1, calculating eq (A.1) for different
x∗ requires marginal computation.

positive semi-definiteness of the cylindrical kernel
Theorem A.1. If Ka(a, a) = η > 0, ∀ a ∈ Sd−1, then cylindrical kernels
are positive semi-definite with the special treatment for the centre point.

Proof. We need to show that ∀n ∈ N, ∀ ai ∈ Rn, c ∈ Rn

cT Ka(Da,Da) c " 0

where Da = πa(T(D)) and D = {ai}i=1,··· ,n.
Case 1. 0 /∈ D. In this case, this is positive semi-definite as shown

in (Jayasumana et al., 2014).
Case 2. 0 ∈ D. Let us denote D = D>0 ∪{0a}, where 0a = πa(T(0))

and [cT c]T ∈ Rn. Then we need to show following

[
cT c

] [K(D>0,a,D>0,a) η1
η1T η

] [
c
c

]

= cT K>0,a c−2ηc1T c+ηc2 " 0 (A.2)

where D>0,a = πa(D>0), 1 ∈ Rn−1 and K>0,a = K(D>0,a,D>0,a).
After differentiation, we have

∂

∂ c
cT K>0,a c−2ηc1T c+ηc2 = 2K>0,a c−2ηc1

∂

∂c
cT K>0,a c−2ηc1T c+ηc2 = −2η1T c+2ηc

Thus the minimum of the quadratic form Eq. A.2 satisfies

K>0,a c = ηc1 and η1T c = ηc

By substituting this into Eq. A.2, we get

η cT 11T c−2η cT 11T c+η(1T c)2 = η · 0 " 0

The minimum of Eq. A.2 is zero. We have shown that the special
treatment for the center point guarantees that cylindrical kernels are
positive semi-definite.

a.2 benchmarks 153

a.2 benchmarks
a.3 benchmark functions

The suggested search space for below benchmark functions are ad-
justed to be [−1, 1]D in our experiments.

repeated branin

frep−branin(x1, x2, · · · , xD) = 1/5D
2
6
(D/2)∑

i=1

fbranin(x2i−1, x2i)

where fbranin is branin function whose formula can be found in (La-
guna and Marti, 2005). The original search space of branin function
is [−5, 10]× [0, 15].

repeated hartmann6

frep−hartmann6(x1, x2, · · · , xD)

= 1/5D
6
6
(D/6)∑

i=1

fhartmann6(x6i−5, x6i−4, x6i−3, x6i−2, x6i−1, x6i)

where fhartmann6 is hartmann6 function whose formula can be found
in (Laguna and Marti, 2005). The original search space of hartmann6
function is [0, 1]6.

rosenbrock (Laguna and Marti, 2005)

frosenbrock(x1, x2, · · · , xD) =
D−1∑

i=1

[
100(xi+1 − x2i)

2 + (xi − 1)2
]

The original search space is [−5, 10]D.

levy (Laguna and Marti, 2005)

flevy(x1, x2, · · · , xD) = sin2(πw1)
D−1∑

i=1

{
(wi − 1)2

[
1+ 100 sin2(πwi + 1)

]

+ (wD − 1)2
[
1+ sin2(2πwD)

]}

where wi = 1+
xi − 1

4

The original search space is [−10, 10]D.

154 bock : bayesian optimization with cylindrical kernels

Repeated Branin Repeated Hartmann6 Levy

Figure A.1: Accuracy vs wall clock time on 20 dim. benchmarks

a.4 additional experiments
a.4.1 Efficiency vs Accuracy

We conduct the same analysis for efficiency vs accuracy with other
benchmark functions on 20 dimensional case. In all cases, BOCK is
the closest to the optimum operating point (0, · · · , 0). Matern is also
accurate enough, although considerably slower, while SMAC and ad-
ditive BO are faster but considerably less accurate.

a.4.2 Scalability
We also experiment to check the scalability of algorithms with other

benchmark functions on 20 and 100 dim. with 200 and 600 function
evaluations respectively for all methods. In Fig. A.2, The solid lines
and colored regions represent the mean wall clock time and one stan-
dard deviation over these 5 runs. As obtaining the evaluation score
y = f(x∗) on these benchmark functions is instantaneous, the wall
clock time is directly related to the computational efficiency of algo-
rithms. In Fig. A.2, we compare BOCK and BOs with relative high
accuracy in all benchmark functions, such as Spearmint and Matern.
BOCK is clearly more efficient, all the while being less affected by
the increasing number of dimensions. We make the same observa-
tion that BOCK is more efficient and less affected by the increasing
dimensionality.

Repeated Branin Repeated Hartmann6 Levy

Figure A.2: Wall clock time on benchmarks of 20 and 100 dim.

a.4 additional experiments 155

B
C O M B I N ATO R I A L
B AY E S I A N O P T I M I Z AT I O N
U S I N G T H E G R A P H
C A R T E S I A N P R O D U C T

b.1 graph cartesian product
b.1.1 Graph Cartesian product and Hamming distance
Theorem B.1. Assume a combinatorial graph G = (V,E) constructed from
categorical variables, C1, · · · ,CN, that is, G is the graph Cartesian prod-
uct #i G(Ci) of complete sub-graphs {G(Ci)}i. Then the shortest path
s(v1, v2;G) between vertices v1 = (c(1)1 , · · · , c(1)N), v2 = (c(2)1 , · · · , c(2)N) ∈
V on G is equal to the Hamming distance between (c(1)1 , · · · , c(1)N) and
(c(2)1 , · · · , c(2)N).

Proof. From the definition of the graph Cartesian product, we have
that the shortest path between v1 and v2 consists of edges that change
a value in one categorical variable at a time. As a result, an edge be-
tween c

(1)
i and c

(2)
i , i.e. a difference in the i-th categorical variable,

and all other edges fixed contributes one error to the Hamming dis-
tance. Therefore, we can define the shortest path between v1 and
v2 as the sum over all edges for which c

(1)
i and c

(2)
i are different,

s(v1, v2;G) =
∑

i 1[c
(1)
i)= c

(2)
i]. It is equivalent to the definition of

the Hamming distance between two sets of categorical choices.

b.1.2 Graph Fourier transform with the graph Cartesian product
The graph Cartesian products can help us improve the scalability

of the eigendecomposition (Hammack et al., 2011). The Laplacian of
the graph Cartesian product G1#G2 of two sub-graphs G1 and G2

can be algebraically expressed using the Kronecker product ⊗ and
the Kronecker sum ⊕ (Hammack et al., 2011):

L(G1#G2) = L(G1)⊕ L(G2) = L(G1)⊗ I1 + I2 ⊗ L(G2), (B.1)

where I denotes the identity matrix. As a consequence, considering
the eigensystems {(λ(1)i ,u(1)

i)} and {(λ(2)j ,u(2)
j)} of G1 and G2, respec-

tively, the eigensystem of G1#G2 is {(λ(1)i + λ
(2)
j ,u(1)

i ⊗ u
(2)
j)}.

Proposition B.2. Assume a graph G = (V,E) is the graph Cartesian
product of sub-graphs G = #i,Gi. Then the graph Fourier Transform of
G can be computed in O(

∑m
i=1 | Vi |

3) while the direct computation takes
O(

∏m
i=1 | Vi |

3).

157

158 combinatorial bayesian optimization

Proof. The graph Fourier Transform is the eigendecomposition of the
graph Laplacian L(G) where G = (V,E). The eigendecomposition is of
cubic complexity with respect to the number of rows(= the number of
columns), which is the number of vertices | V | for the graph Laplacian
L(G). If we directly compute the eigendecomposition of L(G), it costs
O(

∏
i | V |3). If we utilize the graph Cartesian product, then we com-

pute the eigendecomposition for each sub-graphs and combine those
to obtain the eigendecomposition of the original full graph G. The
cost for the eigendecomposition of each subgraphs is O(| Vi |

3) and in
total, it is summed to O(

∑
i | V |3). For the graph Cartesian product,

the graph Fourier Transform can be computed in O(
∑

i | V |3).

remark In the computation of gram matrices, eigenvalues from
sub-graphs are summed and entries of eigenvectors are multiplied.
Compared to the cost of O(

∏
i | V |3), this overhead is marginal. Thus

with the graph Cartesian product, the ARD diffusion kernel can be
computed efficiently with a pre-computed eigensystem for each sub-
graphs. This pre-computation is performed efficiently by Prop. B.2.

b.2 implementation details
b.2.1 GP-parameter posterior sampling

In the surrogate model fitting step of COMBO, GP-parameters are
sampled from the posterior using slice sampling (Murray and Adams,
2010; Neal, 2003) as in Spearmint (Snoek, Larochelle, et al., 2012;
Snoek, K. Swersky, et al., 2014).

For a nonzero mean function, the marginal likelihood of D = (V , y)
is

−
1

2
(y−m)T (σ2

fKVV + σ2
nI)

−1(y−m)

−
1

2
log det(σ2

fKVV + σ2
nI)−

n

2
log 2π

where m is the value of constant mean function. With ARD diffusion
kernel, the gram matrix is given by

σ2
fKVV + σ2

nI = σ2
f

⊗

i

Ui exp−βiΛi UT
i + σ2

nI (B.2)

where Λi is a diagonal matrix whose diagonal entries are eigenvalues
of a sub-graph given to a combinatorial variable L(G(Ci)), Ui is a
orthogonal matrix whose columns are corresponding eigenvalues of
L(G(Ci)), signal variance σ2

f and noise variance σ2
n.

remark In the implementation of Eq. (B.2), a normalized version

exp−βiΛi /Ψi where Ψi = 1/|Vi|
∑

j=1,···|Vi|
exp−βiλ

(i)
j is used for nu-

merical stability instead of exp−βiΛi .

b.2 implementation details 159

In the surrogate model fitting step of COMBO, all GP-parameters
are sampled from the posterior which is proportional to the product
of above marginal likelihood and priors on all GP-parameters such as
βi’s, signal variance σ2

f , noise variance σ2
n and constant mean func-

tion value m. We use the slice sampling (Neal, 2003).
A single step of the slice sampling in COMBO consists of multiple

univariate slice sampling steps:

1. m : constant mean function value m

2. σ2
f : signal variance

3. σ2
n : noise variance

4. {βi}i with a randomly shuffled order

In COMBO, the slice sampling does warm-up with 100 burn-in steps
and at every new evaluation, 10 more samples are generated to ap-
proximate the posterior.

Priors
Especially in BO where data is scarce, priors used in the posterior

sampling play an extremely important role. The Horseshoe priors are
specified for βi’s with the design goal of variable selection as stated in
the main text. Here, we provide details about other GP-parameters
including constant mean function value m, signal variance σ2

f and
noise variance σ2

n.

prior on constant mean function value m Given D = (V , y)
the prior over the mean function is the following:

p(m) ∝
{
N(µ,σ2) if ymin ! m ! ymax

0 otherwise

where µ = mean(y), σ = (ymax − ymin)/4, ymin = min(y) and
ymax = max(y).

This is the truncated Gaussian distribution between ymin and ymax

with a mean at the sample mean of y. The truncation bound is set
so that untruncated version can sample in truncation bound with the
probability of around 0.95.

prior on signal variance σ2
f Given D = (V , y) the prior over the

log-variance is the following:

p(log(σ2
f)) ∝

{
N(µ,σ2) if σ2

y
KVVmax

! σ2
f ! σ2

y
KVVmin

0 otherwise

160 combinatorial bayesian optimization

where σ2
y = variance(y), µ = 1

2(
σ2

y
KVVmin

+
σ2

y
KVVmax

), σ = 1
4(

σ2
y

KVVmin
+

σ2
y

KVVmax
), KVVmin = min(KVV), KVVmax = max(KVV) and KVV =

K(V ,V).
This is the truncated Log-Normal distribution. The intuition be-

hind this choice of prior is that in GP prior, σ2
fKVV is the covariance

matrix of y with the assumption of very small noise variance σ2
n. The

truncation bound is set so that the untruncated version can sample in
truncation bound with the probability of around 0.95. Since for larger
σ2
f , the magnitude of the change of σ2

f has less significant effect than
for smaller σ2

f . In order to take into account the relative amount of
change in σ2

f , the Log-Normal distribution is used rather than the
Normal distribution.

priors on scaling factor βi and noise variance σ2
n We use

the Horseshoe prior for βi and σ2
n in order to encourage sparsity.

Since the probability density of the Horseshoe is intractable, its closed-
form bound is used as a proxy (Carvalho et al., 2010):

K

2
log(1+

4τ2

x2
) < p(x) < K log(1+

2τ2

x2
)

where x = βi or x = σ2
n, τ is a global shrinkage parameter and

K = (2π3)−1/2 (Carvalho et al., 2010). Typically, the upper bound
is used to approximate Horseshoe density. For βi, we use τ = 5 to
avoid excessive sparsity. For σ2

n, we use τ =
√
0.05 that prefers very

small noise similarly to the Spearmint implementation.34

Slice Sampling
At every new evaluation in COMBO, we draw samples of βi. For

each βi the sampling procedure is the following:

SS-1 Set t = 0 and choose a starting β
(t)
i for which the probability is

non-zero.

SS-2 Sample a value q uniformly
from [0,p(β(t)

i |D,β(t)
−i ,m(t), (σ2

f)
(t), (σ2

n))
(t)].

SS-3 Draw a sample βi uniformly
from regions, p(βi|D,β(t)

−i ,m(t), (σ2
f)

(t), (σ2
n)

(t)) > q.

SS-4 Set β(t+1)
i = βi and repeat from SS-2 using β

(t+1)
i .

In SS-2, we step out using doubling and shrink to draw a new value.
For detailed explanation about slice sampling, please refer to (Neal,
2003). For other GP-parameters, the same univariate slice sampling
is applied.

34 https://github.com/JasperSnoek/spearmint

b.3 architecture search details 161

b.2.2 Acquisition Function Optimization
In the acquisition function maximization step, we begin with can-

didate vertices chosen to balance between exploration and exploita-
tion. 20, 000 vertices are randomly selected for exploration. To bal-
ance exploitation, we use 20 spray vertices similar to spray points35

in (Snoek, Larochelle, et al., 2012). Spray vertices are randomly cho-
sen in the neighborhood of a vertex with the best evaluation (e.g,
nbd(vbest, 2) = {v|d(v, vbest) ! 2}). Out of 20, 020 initial vertices, 20
vertices with the highest acquisition values are used as initial points
for further optimization. This type of combination of heuristics for
exploration and exploitation has shown improved performances (Gar-
nett et al., 2010; Malkomes et al., 2016).

We use a breadth-first local search (BFLS) to further optimize the
acquisition function. At a given vertex, we compare acquisition val-
ues on adjacent vertices. We then move to the vertex with the highest
acquisition value and repeat until no acquisition value on an adjacent
vertex is higher than the acquisition value at the current vertex.

non-local search for acquisition function optimization We
tried simulated annealing as a non-local search in different ways,
namely:

• Randomly split 20 initial points into 2 sets of 10 points and
optimize from 10 points in one set with BFLS and optimize from
10 points in another set with simulated annealing.

• For given 20 initial points, optimize from 20 points with BFLS
and optimize from the same 20 points with simulated anneal-
ing.

• For given 20 initial points, firstly optimize from 20 points with
BFLS and use 20 points optimized by BFLS as initial points for
optimization using simulated annealing.

The optimum of all 3 methods is hardly better than the optimum dis-
covered solely by BFLS. Therefore, we decided to stick to the simpler
procedure without SA.

b.3 architecture search details
search space In our architecture search problem, the cell con-
sists of one input state(IN), one output state(OUT) and five hidden
states(H1∼H5). The connectivity between 7 states are specified as in
the left of Tab. 4.4 where it can be read that (IN→H1) and (IN→H5)

35 https://github.com/JasperSnoek/spearmint/blob/b37a541be1ea035f82c7c82bbd
93f5b4320e7d91/spearmint/spearmint/chooser/GPEIOptChooser.py#L235

162 combinatorial bayesian optimization

Table B.1: Comparison to NASNet search space

Binary NASNet

Yes Invalid Architecture No
Not fixed The number of inputs to each state 2

4 The number of computation type of states 13

from the first row. Input and output states are identity maps. The
computation type of each of 5 hidden states are determined by com-
bination of 2 binary choices as in the right of Tab. 4.4.

In total, our search space consists of 31 binary variables. Note that
we design a binary search space for NAS so that to also compare with
BOCS. COMBO is not restricted to binary choices for NAS, however.
We compare our search space with the NASNET search space.

evaluation For a given 31 binary choices, we construct a cell and
stack 3 cells as follows

Input
Conv(3× 16× 3× 3)-BN-ReLU

Cell with 16 channels
MaxPool(2× 2)-Conv(16× 32× 1× 1)

Cell with 32 channels
MaxPool(2× 2)-Conv(32× 64× 1× 1)

Cell with 64 channels
MaxPool(2× 2)-FC(1024× 10)

Output

At each MaxPool, the height and the width of features are halved.
The network is trained for 20 epochs with Adam (Kingma and Ba,

2015) with the default settings in pytorch (Paszke et al., 2017) except
for the weight decay of 5× 10−5. CIFAR10 (Krizhevsky and Hinton,
2009) training data is randomly shuffled with random seed 0 in the
command “numpy.RandomState(0).shuffle(indices)”. In the shuffled
training data, the first 30000 is used for training and the last 10000 is
used for evaluations. The batch size is 100. Early stopping is applied
when the current validation accuracy is worse than the validation
accuracy 10 epochs ago.

Due to the small number of epochs, evaluations are a bit noisy. In
order to stabilize evaluations, we run 4 times of training for a given
architecture. On GTX 1080 Ti with 11GB, 4 runs can be run in parallel.
Depending on a given architecture training took approximately 5∼30
minutes.

Since the some binary choices result in invalid architectures, in
such case, validation accuracy is given as 10%, which is the expected
accuracy of constant prediction.

b.4 experimental results 163

The final evaluation is given as

Errorvalidation + 0.02 · FLOPs of a given architecture
Maximim FLOPs in the search space

where “Maximim FLOPs in the search space” is computed from the
cell with all connectivity among states and Conv(5× 5) for all H1∼H5.
0.02 is set with the assumption that we can afford 1% of increased
error with 50% reduction in FLOPs.

regularized evolution hyperparameters In evolutionary sear-
ch algorithms, the choice of mutation is critical to the performance.
Since our binary search space is different from the NASNet search
space where Regularized Evolution (RE) was originally applied, we
modify mutation steps. All possible mutations proposed in (Real
et al., 2019) can be represented as simple binary flipping in binary
search space. In the binary search space, some binary variables are
about computation type and others are about connectivity. Thus
uniform-randomly choosing binary variables to flip can mutate com-
putation type or connectivity. Since the binary search space is redun-
dant we did not explicitly include identity mutation (not mutating).
Since evolutionary search algorithms are believed to be less sample
efficient than BO, we gave an advantage to RE by only allowing valid
architectures in mutation steps.

On other crucial hyperparameters, population size P and sample
size S, motivated by the best value used in (Real et al., 2019), P = 100,
S = 25.

b.4 experimental results
b.4.1 Bayesian optimization with binary variables
ising sparsification Ising sparsification is about approximating
a zero-field Ising model expressed by p(z) = 1

Zp
exp{z*Jpz}, where

z ∈ {−1, 1}n, Jp ∈ Rn×n is an interaction symmetric matrix, and
Zp =

∑
z exp{z*Jpz} is the partition function, using a model q(z)

with Jqij = xijJ
p
ij where xij ∈ {0, 1} are the decision variables. The

objective function is the regularized Kullback-Leibler divergence be-
tween p and q

L(x) = DKL(p||q) + λ‖x‖1
where λ > 0 is the regularization coefficient DKL could be calcu-

lated analytically (Baptista and Poloczek, 2018). We follow the same
setup as presented in (Baptista and Poloczek, 2018), namely, we con-
sider 4× 4 grid of spins, and interactions are sampled randomly from
a uniform distribution over [0.05, 5]. The exhaustive search requires
enumerating all 224 configurations of x that is infeasible. We consider
λ ∈ {0, 10−4, 10−2}. We set the budget to 170 evaluations.

164 combinatorial bayesian optimization

Method λ = 0.0

SMAC 0.1516±0.0404
TPE 0.4039±0.1087
SA 0.0953±0.0331
BOCS − SDP 0.1049±0.0308

COMBO 0.1030±0.0351

Figure B.1: Ising sparsification (λ = 0.0)

Method λ = 0.0001

SMAC 0.2192±0.0522
TPE 0.4437±0.0952
SA 0.1166±0.0353
BOCS − SDP 0.0586±0.0125

COMBO 0.0812±0.0279

Figure B.2: Ising sparsification (λ = 0.0001)

Method λ = 0.01

SMAC 0.3501±0.0447
TPE 0.6091±0.1071
SA 0.3342±0.0636
BOCS − SDP 0.3001±0.0389

COMBO 0.3166±0.0420

Figure B.3: Ising sparsification (λ = 0.01)

contamination control The contamination control in food sup-
ply chain is a binary optimization problem (Hu et al., 2010). The
problem is about minimizing the contamination of food where at
each stage a prevention effort can be made to decrease a possible
contamination. Applying the prevention effort results in an addi-
tional cost ci. However, if the food chain is contaminated at stage
i, the contamination spreads at rate αi. The contamination at the
i-th stage is represented by a random variable Γi. A random vari-
able zi denotes a fraction of contaminated food at the i-th stage,
and it could be expressed in an recursive manner, namely, zi =
αi(1− xi)(1− zi−1) + (1− Γixi)zi−1, where xi ∈ {0, 1} is the decision
variable representing the preventing effort at stage i. Hence, the op-
timization problem is to make a decision at each stage whether the

b.4 experimental results 165

prevention effort should be applied so that to minimize the general
cost while also ensuring that the upper limit of contamination is ui

with probability at least 1 − ε. The initial contamination and other
random variables follow beta distributions that results in the follow-
ing objective function

L(x) =
d∑

i=1

[
cixi +

ρ

T

T∑

k=1

1{zk>ui}

]
+ λ‖x‖1

where λ is a regularization coefficient, ρ is a penalty coefficient (we
use ρ = 1) and we set T = 100. Following (Baptista and Poloczek,
2018), we assume ui = 0.1, ε = 0.05, and λ ∈ {0, 10−4, 10−2}. We set
the budget to 270 evaluations.

Method λ = 0.0

SMAC 21.4644±0.0312
TPE 21.6408±0.0437
SA 21.4704±0.0366
BOCS − SDP 21.3748±0.0246

COMBO 21.2752±0.0292

Figure B.4: Contamination control (λ = 0.0)

Method λ = 0.0001

SMAC 21.5011±0.0329
TPE 21.6868±0.0406
SA 21.4871±0.0372
BOCS − SDP 21.3792±0.0296

COMBO 21.2784±0.0314

Figure B.5: Contamination control (λ = 0.0001)

Method λ = 0.01

SMAC 21.6512±0.0403
TPE 21.8440±0.0422
SA 21.6120±0.0385
BOCS − SDP 21.5232±0.0269

COMBO 21.4436±0.0293

Figure B.6: Contamination control (λ = 0.01)

166 combinatorial bayesian optimization

b.4.2 Bayesian optimization with ordinal and multi-categorical vari-
ables

oridinal variables : discretized branin In order to test COM-
BO on ordinal variables. We adopt widely used continuous bench-
mark branin function. Branin is defined on [0, 1]2, we discretize each
dimension with 51 equally space points so that center point can be
chosen in the discretized space. Therefore, the search space is com-
prised of 2 ordinal variables with 51 values(choices) for each.

COMBO outperforms all of its competitors. In Fig. B.7, SMAC and
TPE exhibit similar search progress as COMBO, but in term of the fi-
nal value at 100 evaluations, those two are overtaken by SA. COMBO
maintains its better performance over all range of evaluations up to
100.

Method Branin

SMAC 0.6962±0.0705
TPE 0.7578±0.0844
SA 0.4659±0.0211

COMBO 0.4113±0.0012

Figure B.7: Ordinal variables : discretized branin

Method Pest

SMAC 14.2614±0.0753
TPE 14.9776±0.0446
SA 12.7154±0.0918

COMBO 12.0012±0.0033

Figure B.8: Multi-categorical variables : pest control

multi-categorical variables : pest control In the chain of
stations, pest is spread in one direction, at each pest control station,
the pest control officer can choose to use a pesticide from 4 different
companies which differ in their price and effectiveness.

For N pest control stations, the search space for this problem is 5N,
4 choices of a pesticide and the choice of not using any of it.

The price and effectiveness reflect following dynamics.

b.4 experimental results 167

• If you have purchased a pesticide a lot, then in your next pur-
chase of the same pesticide, you will get discounted propor-
tional to the amount you have purchased.

• If you have used a pesticide a lot, then pests will acquire strong
tolerance to that specific product, which decrease effectiveness
of that pesticide.

Formally, there are four variables: at i-th pest control Zi is the
portion of the product having pest, Ai is the action taken, C(l)

i is the
adjusted cost of pesticide of type l, T (l)

i is the beta parameter of the
Beta distribution for the effectiveness of pesticide of type l. It starts
with initial Z0 and follows the same evolution as in the contamination
control, but after each choice of pesticide type whenever the taken
action is to use one out of 4 pesticides or no action. {C

(l)
i }1,··· ,4 are

adjusted in the manner that the pesticide which has been purchased
most often will get a discount for the price. {T

(l)
i }1,··· ,4 are adjusted

in the fashion that the pesticide which has been frequently used in
previous control point cannot be as effective as before since the insects
have developed tolerance to that.

The portion of the product having pest follows the dynamics below

zi = αi(1− xi)(1− zi−1) + (1− Γixi)zi−1 (B.3)

when the pesticide is used, the effectiveness xi of pesticide follows
beta distribution with the parameters, which has been adjusted ac-
cording to the sequence of actions taken in previous control points.

Under this setting, our goal is to minimize the expense for pes-
ticide control and the portion of products having pest while going
through the chain of pest control stations. The objective is similar to
the contamination control problem

L(x) =
d∑

i=1

[
cixi +

ρ

T

T∑

k=1

1{zk>ui}

]

However, we want to stress out that the dynamics of this problem
is far more complex than the one in the contamination control case.
First, it has 25 variables and each variable has 5 categories. More
importantly, the price and effectiveness of pesticides are dynamically
adjusted depending on the previously made choice.

b.4.3 Weighted maximum satisfiability(wMaxSAT)
Satisfiability problem is the one of the most important and general

form of combinatorial optimization problems. SAT solver competi-
tion is held in Satisfiability conference every year.36 Due to the resem-
blance between combinatorial optimizations and weighted Maximum

36 http://satisfiability.org/, http://sat2018.azurewebsites.net/competitions/

168 combinatorial bayesian optimization

satisfiability problems, in which the goal is to find boolean values that
maximize the combined weights of satisfied clauses, we optimize cer-
tain benchmarks taken from Maximum atisfiability(MaxSAT) Compe-
tition 2018. We took randomly 3 benchmarks of weighted maximum
satisfiability problems with no hard clause with the number of vari-
ables not exceeding 100.37 The weights are normalized by mean sub-
traction and standard deviation division and evaluations are negated
to be minimization problems.pp

Method 28

SMAC -20.0530±0.6735
TPE -25.2010±0.8750
SA -31.8060±1.1929
BOCS-SDP -29.4865±0.5348
BOCS-SA3 -34.7915±0.7814

COMBO -37.7960±0.2662

Figure B.9: wMaxSAT28

Method 43

SMAC -57.4217±1.7614
TPE -52.3856±1.9898
SA -75.7582±2.3048
BOCS-SDP -51.1265±1.6903
BOCS-SA3∗ -61.0186±2.2812

COMBO -85.0155±2.1390

∗BOCS-SA3 was run for 168 hours but could not finish 270 evaulations.
Figure B.10: wMaxSAT43

Method 60

SMAC -148.6020±1.0135
TPE -137.2104±2.8296
SA -187.5506±1.4962
BOCS-SDP -153.6722±2.0096
COMBO/GM -152.0745±8.5167

COMBO -195.6527±0.0000

Figure B.11: wMaxSAT60

37 https://maxsat-evaluations.github.io/2018/benchmarks.html maxcut-johnson8-2-
4.clq.wcnf (28 variables), maxcut-hamming8-2.clq.wcnf (43 variables), frb-frb10-6-
4.wcnf (60 variables)

b.4 experimental results 169

Figure B.12: Runtime VS. Minimum on wMaxSAT28

∗BOCS-SA3 was run for 168 hours but could not finish 270 evaulations.

Figure B.13: Runtime VS. Minimum on wMaxSAT4

b.4.4 Neural architecture search(NAS)

search space In our architecture search problem, the cell con-
sists of one input state(IN), one output state(OUT) and five hidden
states(H1∼H5). The connectivity between 7 states are specified as in
the left of Tab. B.2 where it can be read that (IN→H1) and (IN→H5)
from the first row. Input and output states are identity maps. The
computation type of each of 5 hidden states are determined by com-
bination of 2 binary choices as in the right of Tab. B.2.

In total, our search space consists of 31 binary variables.38

comparison to nasnet search space
38 We design a binary search space for NAS so that to also compare with BOCS.

COMBO is not restricted to binary choices for NAS, however.

170 combinatorial bayesian optimization

Table B.2: Connectivity and Computation type.

IN H1 H2 H3 H4 H5 OUT

IN - O X X X O X
H1 - - X O X X O
H2 - - - X O X X
H3 - - - - X O X
H4 - - - - - O O
H5 - - - - - - X

OUT - - - - - - -

MaxPool Conv

Small Id ≡ MaxPool(1×1) Conv(3×3)

Large MaxPool(3×3) Conv(5×5)

Method NAS

RS 0.1969±0.0011
BOCS − SDP 0.1978±0.0017
RE 0.1895±0.0016

COMBO 0.1846±0.0005

Figure B.14: Neural architecture search experiment.

Method(#eval) NAS

RE(260) 0.1895±0.0016
RE(500) 0.1888±0.0019

COMBO(260) 0.1846±0.0005

Figure B.15: Neural architecture search experiment with additional evalua-
tions for RE (up to 500 evaluations).

Binary NASNet

Yes Invalid Architecture No
Not fixed The number of inputs to each state 2

4 The number of computation type of states 13

regularized evolution hyperparameters In evolutionary search
algorithms, the choice of mutation is critical to the performance. Since

b.4 experimental results 171

our binary search space is different from NASNet search space where
Regulairzed Evolution(RE) was originally applied, we modify muta-
tion steps. All possible mutations proposed in (Real et al., 2019) can
be represented as simple binary flipping in binary search space. In bi-
nary search space, some binary variables are about computation type
and others are about connectivity. Thus uniform-randomly choos-
ing binary variable to flip can mutate computation type or connec-
tivity. Since binary search space is redundant we did not explicitly
include identity mutation (not mutating). Since evolutionary search
algorithms are believed to be less sample efficient than BO, we gave
an advantage to RE by only allowing valid architectures in mutation
steps.

On other crucial hyperparameters, population size P and sample
size S, motivated by the best value used in (Real et al., 2019), P = 100,
S = 25. We set our P and S to have similar ratio as the one originally
proposed. Since, we assumed less number of evaluations(260, 500)
compared to 20000 in (Real et al., 2019), we reduced P and S. In NAS
on binary search space, we used P = 50 and S = 15.

C
M I X E D VA R I A B L E
B AY E S I A N O P T I M I Z AT I O N
W I T H F R E Q U E N C Y
M O D U L AT E D K E R N E L S

c.1 proofs
c.1.1 Positive Definiteness of FM kernels

For a weighted undirected graph G = (V,E) with graph Laplacian
L(G) = UΛUT . The frequency modulating kernel is defined as

k((c, v), (c ′, v ′)‖θ,β) = [

‖V‖∑

i=1

[U]:,if(λi, ‖ c− c ′ ‖θ‖β)[U]:,i]v,v ′ (C.1)

where [U]:,i are eigenvectors of L(G) which are columns of U and λi =
[Λ]ii are corresponding eigenvalues. c and c ′ are continuous variables
in RDC , θ ∈ RDC is a kernel parameter similar to the lengthscales in
the RBF kernel. β ∈ R is a kernel parameter from kernels derived
from the graph Laplacian.

Theorem C.1. If f(λ, ‖ c− c ′ ‖θ‖β) defines a positive definite kernel on
(c, c ′) ∈ RDC ×RDC , then a FreMod kernel defined with such f is positive
definite jointly on (c, v).

Proof.

k((c, v), (c ′, v ′)‖θ,β) =
[‖V‖∑

i=1

[U]:,if(λi, ‖ c− c ′ ‖θ‖β)[U]:,i
]

v,v ′

=

‖V‖∑

i=1

[U]v,if(λi, ‖ c− c ′ ‖θ‖β)[U]v ′,i

Since a sum of positive definite (PD) kernels is PD, we prove PD of fre-
quency modulating kernels by showing that ki((c, v), (c ′, v ′)‖θ,β) =
[U]v,if(λi, ‖ c− c ′ ‖θ‖β)[U]v ′,i is PD.

Let us consider a ∈ RS, D = {(c1, v1), · · · , (cS, vS)}, then

aT




[U]v1,if(λi, ‖ c1− c1 ‖θ |β)[U]v1,i · · · [U]v1,if(λi, ‖ c1− cS ‖θ |β)[U]vS,i

... · · ·
...

[U]vS,if(λi, ‖ cS− c1 ‖θ |β)[U]v1,i · · · [U]vS,if(λi, ‖ cS− cS ‖θ |β)[U]vS,i



 a

= (a ◦[U]:,i)
T




f(λi, ‖ c1− c1 ‖θ‖β) · · · f(βλi, ‖ c1− cS ‖θ |β)

... · · ·
...

f(λi, ‖ cS− c1 ‖θ‖β) · · · f(βλi, ‖ cS− cS ‖θ |β)



 (a ◦[U]:,i)

(C.2)

173

174 mixed variable bayesian optimization

where ◦ is elementwise product and [U]:,i = [[U]v1,i, · · · , [U]vS,i]T .
By letting a ′ = a ◦[Ui]πi(v:),n, since f(λi, ‖ c− c ′ ‖θ‖β) is PD, we

show that ki((c, v), (c ′, v ′)‖θ,β) = ui,vf(λi, ‖ c− c ′ ‖θ‖β)ui,v ′ is PD.

c.1.2 Frequency Modulation Principle

Theorem C.2. For a connected and undirected graph G = (V,E) with non-
negative weights on edges, define a kernel k(v, v ′) = [Uf(Λ)UT]v,v ′ where
U and Λ are eigenvectors and eigenvalues of the graph Laplacian L(G) =
UΛUT . If f is any non-negative and strictly decreasing convex function on
[0,∞), then K(v, v ′) " 0 for all v, v ′ ∈ V.

Proof. We show that, for a connected weighted undirected graph G =
(V,E),

min
v,v ′

kG(v, v ′) = min
p,q=1,··· ,D

[Uf(Λ)UT]p,q " 0 where L(G) = UΛUT .

For a connected weighted undirected graph G = (V,E), the graph
Laplacian L(G) = UΛUT has exactly one zero eigenvalue 0 = λ1 <

λ2 ! · · · ! λD where λi = [Λ]i,i and the corresponding eigenvector is
[U]1,· =

1√
D

and | V | = D. Note that UTU = UUT = I. Importantly,
from the definition of the graph Laplacian, [UΛUT]p,q ! 0 when
p)= q.

For given eigenvalues 0 = λ1 < λ2 ! · · · ! λD, we solve the
following minimization problem

min
[U]p,i,[U]q,i

f(0)

D
+

D∑

i=2

f(λi)[U]p,i[U]q,i (C.3)

with the constraints

D∑

i=2

λi[U]p,i[U]q,i ! 0(p)= q)

D∑

i=2

[U]2p,i =
D∑

i=2

[U]2q,i = 1−
1

D

D∑

i=2

[U]p,i[U]q,i = −
1

D
(p)= q)

When p = q, Eq. (C.3) is nonnegative since f(·) " 0. From now on,
we assume p)= q.

c.1 proofs 175

With η " 0, Lagrange multiplier is given as

LKKT ([U]p,i,[U]q,i,η,a,b, c) =
f(0)

D
+

D∑

i=2

f(λi)[U]p,i[U]q,i

+ η
(D∑

i=2

λi[U]p,i[U]q,i

)
+ a

(D∑

i=2

[U]2p,i − (1−
1

D
)
)

+ b
(D∑

i=2

[U]2q,i − (1−
1

D
)
)
+ c

(D∑

i=2

[U]p,i[U]q,i +
1

D

)
.

From the stationary conditions ∂LKKT
∂[U]p,i

= f(λi)[U]q,i + ηλi[U]q,i +

c[U]q,i + 2a[U]p,i = 0 and ∂LKKT
∂[U]q,i

= f(λi)[U]p,i + ηλi[U]p,i + c[U]p,i +

2b[U]q,i = 0, we have

(f(λi) + ηλi + c)[U]q,i = −2a[U]p,i

(f(λi) + ηλi + c)[U]p,i = −2b[U]q,i (C.4)

and

((f(λi) + ηλi + c)2 − 4ab)[U]q,i = 0

((f(λi) + ηλi + c)2 − 4ab)[U]p,i = 0

using a = b that is derived from
∑D

i=2
∂LKKT
∂[U]p,i

· [U]p,i =
∑D

i=2
∂LKKT
∂[U]q,i

·
[U]q,i = 0.

If i ∈ {i|(f(λi) + ηλi + c)2 − 4ab)= 0}, we have [U]p,i = [U]q,i = 0.
On the other hand, if (f(λi) + ηλi + c)2 − 4ab = 0, then we have
f(λi) + ηλi + c = −2a or f(λi) + ηλi + c = 2a because a = b.

With the three index sets defined below and Eq. (C.1.2), we have

I0 = {i|(f(λi) + ηλi + c)2 − 4a2)= 0} i ∈ I0 ⇒ [U]p,i = [U]q,i = 0

I+ = {i|f(λi) + ηλi + c+ 2a = 0}− {1} i ∈ I+ ⇒ [U]p,i = [U]q,i

I− = {i|f(λi) + ηλi + c− 2a = 0} i ∈ I− ⇒ [U]p,i = −[U]q,i

With these conditions, the constraints can be expressed as
∑

i+∈I+

λi+ [U]2p,i −
∑

i−∈I−

λi− [U]2p,i ! 0,

∑

i+∈I+

[U]2p,i+ =
1

2
−

1

D
,

∑

i−∈I−

[U]2p,i− =
1

2

We divide cases according to the number of solutions g(λ) = f(λ)+
ηλ can have. i) f(λ) + ηλ can have at most one solution, ii) f(λ) + ηλ

may have two solutions. Note that g(λ) is convex as sum of two
convex functions. Since a convex function can have at most two zeros
unless it is constantly zero, these two cases are exhaustive. When
η = 0, f(λ) is strictly decreasing function and, thus g(λ) has at most
one solution. Also, when η " −f ′(0) = maxλ−f ′(λ), f ′(λ) + η is
positive except for λ = 0 and g(λ) has at most one solution.

176 mixed variable bayesian optimization

case i) f(λ) + ηλ can have at most one solution. (η = 0 or η "
−f ′(0) = maxλ−f ′(λ))

Let us denote λE the unique solution of f(λi) + ηλi + c+ 2a = 0

and λN the unique of f(λi) + ηλi + c− 2a = 0.
Therefore λi+ = λE, ∀i+ ∈ I+ and λi− = λN, ∀i− ∈ I−. The

minimization objective becomes

f(0)

D
+

D∑

i=2

f(λi)[U]p,i[U]q,i

=
f(0)

D
+ f(λE)

∑

i+∈I+

[U]2p,i − f(λN)
∑

i−∈I−

[U]2p,i

=
f(0)

D
+
(1
2
−

1

D

)
f(λE)−

1

2
f(λN) =: g1(λ

E, λN) (C.5)

The inequality constraint becomes

D∑

i=2

λi[U]p,i[U]q,i =
f(0)

D
+ λE

∑

i+∈I+

[U]2p,i+ − λN
∑

i−∈I−

[U]2p,i−

=
(1
2
−

1

D

)
λE −

1

2
λN ! 0.

Since λE, λN ∈ {λ2, · · · , λD}, there is maximum value with respect
to the choice of λE and λN. We consider continuous relaxation of
the minimization problem with respect to λE and λN. By show-
ing that the objective is nonnegative when λE " 0 and λN " 0,
we prove our claim. When we consider continuous optimization
over λE and λN, the minimum is obtained when the inequality con-
straint becomes equality constraints. If

(
1
2 − 1

D

)
λE − 1

2λ
N < 0, then

(
1
2 − 1

D

)
(λE + δ)− 1

2λ
N = 0 for some δ > 0. Since f is decreasing,

f(λE) is decreased to f(λE + δ) and thus Eq. C.5 further decreases
by replacing λE with λE + δ. Thus, the minimum is obtained when
the inequality constraint is equality. When η > 0, the inequality con-
straint automatically becomes an equality constraint by the slackness
condition of the Karush-Kuhn-Tucker conditions.

The minimum is obtained when
(
1
2 − 1

D

)
λE − 1

2λ
N = 0. h1(λE) =

g1(λE, (1− 2/D)λE) is increasing with respect to λE from the convex-
ity of f and limλE→0 h1(λE) = 0. Thus, the minimum of Eq. C.5 is
bounded below by 0.

case i i) f(λ) + ηλ may have two solutions. (0 < η < −f ′(0) =
maxλ−f ′(λ))

By the slackness condition, the inequality constraint becomes an
equality constraint. Since f(λ) + ηλ is convex, it has at most two solu-

c.1 proofs 177

tions. Let us denote λE1 < λE2 two solutions of f(λ) + ηλ+ c+ 2a = 0

and λN1 < λN2 two solutions of f(λ) + ηλ+ c− 2a = 0. Then

f(λE1) + ηλE1 + c+ 2a = 0 f(λE2) + ηλE2 + c+ 2a = 0

f(λN1) + ηλN1 + c− 2a = 0 f(λN2) + ηλN2 + c− 2a = 0

The objective becomes

f(0)

D
+ f(λE1)

∑

i+∈I+:λi+=λE
1

[U]2p,i+ + f(λE2)
∑

i+∈I+:λi+=λE
2

[U]2p,i+

− f(λN1)
∑

i−∈I−:λi−=λN
1

[U]2p,i− − f(λN2)
∑

i−∈I−:λi−=λN
2

[U]2p,i−

with the constraints

C1:
∑

i+∈I+:λi+=λE
1

[U]2p,i+ +
∑

i+∈I+:λi+=λE
2

[U]2p,i+ =
1

2
−

1

D

C2:
∑

i−∈I−:λi=λN
1

[U]2p,i− +
∑

i−∈I−:λi=λN
2

[U]2p,i− =
1

2

C3: λE1
∑

i+∈I+:λi+=λE
1

[U]2p,i+ + λE2
∑

i+∈I+:λi+=λE
2

[U]2p,i+

−λN1
∑

i−∈I−:λi−=λN
1

[U]2p,i− − λN2
∑

i−∈I−:λi−=λN
2

[U]2p,i− = 0.

Let

AE =
∑

i+∈I+:λi+=λE
1

[U]2p,i+ ∈ [0,
1

2
−

1

D
]

AN =
∑

i−∈I−:λi−=λN
1

[U]2p,i− ∈ [0,
1

2
].

Then the objective becomes

f(0)

D
+ f(λE1)A

E + f(λE2)(
1

2
−

1

D
−AE)− f(λN1)AN − f(λN2)(

1

2
−AN).

Taking derivatives

∂

∂AE
⇒ f(λE1)− f(λE2) > 0 and

∂

∂AN
⇒ −f(λN1) + f(λN2) < 0.

Thus the minimum is obtained at the boundary point where AE = 0

and AN = 1
2 which falls back to Case i) whose minimum is bounded

below by zero.

Remark C.1. Thm. C.2 holds for weighted undirected graphs, that is,
for any arbitrary graph with arbitrary symmetric nonnegative edge
weights.

178 mixed variable bayesian optimization

Remark C.2. Note that in numerical simulations, you may observe
small negative values (≈ 10−7) due to numerical instability.

Remark C.3. In numerical simulations, the convexity condition does
not appear to be necessary for complete graphs where maxp .=q[L(G)]p,q
< −ε for some ε > 0. For complete graphs, the convexity condition
may be relaxed, at least, in a stochastic sense.

Corollary C.3. The random walk kernel derived from normalized Lapla-
cian Smola and R. Kondor, 2003 and the diffusion kernels R. I. Kondor and
Lafferty, 2002, the ARD diffusion kernel Changyong Oh, Tomczak, et al.,
2019 and the regularized Laplacian kernel Smola and R. Kondor, 2003 de-
rived from normalized and unnormalized Laplacian are all positive valued
kernels.

Proof. The condition that off-diagonal entries are nonpositive holds
for both normalized and unnormalized graph Laplacian. Therefore
for normalized graph Laplacian, the proof in the above theorem can
be applied without modification. The positivity of kernel value also
holds for kernels derived from normalized Laplacian as long as it
satisfies the conditions in Thm.C.2.

Remark C.4. In numerical simulations with nonconvex functions and
arbitrary connected and weighted undirected graphs, negative val-
ues easily occur. For example, the inverse cosine kernel (Smola and
R. Kondor, 2003) does not satisfies the convexity condition and has
negative values.

c.1.3 Frequency Modulating functions
In this section, we first review the definition of conditionally nega-

tive definite (CND) and relations between positive definite (PD). Uti-
lizing relations between PD and CND and the properties of PD and
CND, we provide an example of a flexible family of frequency mod-
ulating functions.

Definition C.1 (3.1.1 (Berg et al., 1984)). A symmetric function k :
X×X → R is called a conditionally negative definite (CND) kernel if
∀n ∈ N, x1, · · · , xn ∈ X a1, · · · ,an ∈ R such that

∑n
i=1 ai = 0

n∑

i,j=1

aik(xi, xj)aj ! 0

Please note that CND requires the condition
∑n

i=1 ai = 0.

Theorem C.4 (3.2.2 (Berg et al., 1984)). K(x, x ′) is conditionally negative
definite if and only if e−tK(x,x ′) is positive definite for all t > 0.

As mentioned in p.75 Berg et al., 1984, from Thm. C.4, we have

c.1 proofs 179

Theorem C.5. K(x, x ′) is conditionally negative definite and K(x, x ′)) " 0

if and only if (t+K(x, x ′))−1 is positive definite for all t > 0.

Theorem C.6 (3.2.10 (Berg et al., 1984)). If K(x, x ′) is conditionally
negative definite and K(x, x) " 0, then (K(x, x ′))a for 0 < a < 1 and
logK(x, x ′) are conditionally negative definite.

Theorem C.7 (3.2.13 (Berg et al., 1984)). K(x, x ′) = ‖x− x ′‖p is condi-
tionally negative definite for all 0 < p ! 2.

Using above theorems, we provide a quite flexible family of fre-
quency modulating functions

Proposition C.8. For S ∈ (0,∞), a finite measure µ on [0,S] and µ-
measurable τ : [0,S] → [0, 2] and ρ : [0,S] → N,

f(λ, ‖ c− c ′ ‖θ |α,β) =
∫S

0

1

(1+βλ+α‖ c− c ′ ‖τ(s)θ)ρ(s)
µ(ds)

is a frequency modulating function.

Proof. First we show that

fp,t(λ, ‖ c− c ′ ‖θ |α,β) =
1

(1+βλ+α‖ c− c ′ ‖tθ)p

is a frequency modulating function for t ∈ (0, 2] and p ∈ N.
Property FM-P1 on fp,t) fp,t(λ, ‖ c− c ′ ‖θ |α,β) is positive valued

and decreasing with respect to λ.
Property FM-P2 on fp,t) ‖ c− c ′ ‖θ is conditionally negative definite

by Thm.C.7 Then by Thm.C.5, 1
(1+βλ+α‖ c− c ′ ‖tθ)

is positive definite
with respect to c and c ′. Since the product of positive definite kernels
is positive definite, fp,t(λ, ‖ c− c ′ ‖θ |α,β) is positive definite.

Property FM-P3 on fp,t) Let hp,t = fp,t(λ, ‖ c− c ′ ‖θ |α,β)− fp,t(λ,
‖c̃ − c̃ ′‖θ |α,β), then

hp,t
λ =

∂hp,t

∂λ

= −pβ
(1

(1+βλ+α‖ c− c ′ ‖tθ)p+1
−

1

(1+βλ+α‖c̃ − c̃ ′‖tθ)p+1

)

hp,t
λλ =

∂2hp,t

∂λ2

= p(p+ 1)β2
(1

(1+βλ+α‖ c− c ′ ‖tθ)p+2
−

1

(1+βλ+α‖c̃ − c̃ ′‖tθ)p+2

)

For ‖ c− c ′ ‖θ < ‖c̃ − c̃ ′‖θ, h > 0, hλ < 0 and hλλ > 0, therefore this
satisfies the frequency modulation principle.

Now we show that

f(λ, ‖ c− c ′ ‖θ |α,β) =
∫S

0

1

(1+βλ+α‖ c− c ′ ‖τ(s)θ)ρ(s)
µ(ds)

180 mixed variable bayesian optimization

satisfies all 3 conditions.
Property FM-P1) Trivial from the definition.
Property FM-P2) Since a measurable function can be approximated

by simple functions (Folland, 1999), we approximate f(λ, ‖ c− c ′ ‖θ |α,β)
with following increasing sequence

fn(λ, ‖ c− c ′ ‖θ |α,β) =
2n∑

i=1

n∑

j=1

µ(Ai,j)

(1+βλ+α‖ c− c ′ ‖
i−1
2n 2
θ)j

where Ai,j =
{
s|
i− 1

2n
2 < ρ(s) ! i

2n
2, τ(s) = j

}

Each summand µ(Ai,j)/(1 + βλ + α‖ c− c ′ ‖
i−1
2n 2
θ)j is positive defi-

nite as shown above and sum of positive definite kernels is positive
definite. Therefore, fn(λ, ‖ c− c ′ ‖θ |α,β) is positive definite. Since
the pointwise limit of positive definite kernels is a kernel (Fukumizu,
2010), we show that f(λ, ‖ c− c ′ ‖θ |α,β) is positive definite.

Property FM-P3) If we show that ∂
∂λ and

∫
µ(ds) are interchange-

able, from the Condition #3 on fp,t, we show that f(λ, ‖ c− c ′ ‖θ |α,β)
satisfies the frequency modulating principle.

Let h = f(λ, ‖ c− c ′ ‖θ |α,β)− f(λ, ‖c̃− c̃ ′‖θ |α,β). There is a constant
A > 0 such that
∣∣∣
hτ(s),ρ(s)(λ+ δ)− hτ(s),ρ(s)(λ)

δ

∣∣∣ <
∣∣∣
∂hτ(s),ρ(s)

∂λ

∣∣∣+A <
∣∣∣
∂h0,1

∂λ

∣∣∣+A

For a finite measure,
∣∣∣∂h

0,1

∂λ

∣∣∣ + A is integrable. Therefore, ∂
∂λ and

∫
µ(ds) are interchangeable by dominated convergence theorem (Fol-

land, 1999). With the same argument, ∂2

∂λ2 and
∫
µ(ds) are inter-

changeable.
Now, we have

hλ =
∂h

∂λ
=

∫S

0

∂hτ(s),ρ(s)

∂λ
µ(ds)

hλλ =
∂2h

∂λ2
=

∫S

0

∂2hτ(s),ρ(s)

∂λ2
µ(ds)

From the Condition #3 on fp,t, hλ < 0 and hλλ > 0 follow and thus
we show that f(λ, ‖ c− c ′ ‖θ |α,β) satisfies the frequency modulating
principle.

f(λ, ‖ c− c ′ ‖θ |α,β) is a frequency modulating function.

Proposition C.9. If kH : H×H → R on a RKHS H is bounded above by
u > 0, then for any δ > 0

f(λ,kH(h,h ′)|α,β) =
1

δ+ u+βλ− kH(h,h ′)

is positive definite on (h,h ′) ∈ H×H.

c.2 implementation details 181

Proof. The negation of a positive definite kernel is conditionally neg-
ative definite by Appx. Def. C.1. Also, by definition, a constant plus
a conditionally negative definite kernel is conditionally negative defi-
nite. Therefore, u− kH(h,h ′) is conditionally negative definite.

Using Appx. Thm.C.5, we show that 1/(δ+ u+ βλ− kH(h,h ′)) is
positive definite on (h,h ′) ∈ H×H.

c.2 implementation details
In this section, we provide the details of each component of BO

pipeline, the surrogate model and how it is fitted to evaluation data,
the acquisition function and how it is optimized. We also provide
each experiment specific details including the search spaces, evalua-
tion detail, run time analysis and etc. The code used for the experi-
ments will be released upon acceptance.

c.2.1 Acquisition Function Optimization

We use Expected Improvement (EI) acquisition function (Donald,
1998). Since, in mixed variable BO, acquisition function optimization
is another mixed variable optimization task, we need a procedure to
perform an optimization of acquisition functions on mixed variables.

acquisition function optimization Similar to (Daxberger et al.,
2021), we alternatively call continuous optimizer and discrete opti-
mizer, which is similar to coordinate-wise ascent, and, in this case,
it is so-called type-wise ascent. For continuous variables, we use L-
BFGS-B (Zhu et al., 1997) and for discrete variables, we use hill climb-
ing (Skiena, 1998). Since the discrete part of the search space is repre-
sented by graphs, hill climbing is amount to greedy ascent in neigh-
borhood. We alternate one discrete update using hill climbing call
and one continuous update by calling scipy.optimize.minimize(method=
"L-BFGS-B", maxiter=1).

spray points Acquisition functions are highly multi-modal and
thus initial points with which the optimization of acquisition func-
tions starts have an impact on exploration-exploitation trade-off. In
order to encourage exploitation, spray points (Garnett et al., 2010;
ChangYong Oh et al., 2018; Snoek, Larochelle, et al., 2012), which are
points in the neighborhood of the current optimum (e.g, optimum
among the collected evaluations), has been widely used.

initial points for acquisition function optimization On 50
spray points and 100000 randomly sampled points, acquisition values

182 mixed variable bayesian optimization

are computed, and the highest 40 are used as initial points to start
acquisition function optimization.

c.2.2 Joint optimization of neural architecture and SGD hyperpa-
rameter

discrete part of the search space The discrete part of the
search space, A, is modified from the NASNet search space (Zoph
and Q. Le, 2017). Each block consists of 4 states S1,S2,S3,S4 and
takes two inputs S−1,S0 from a previous block. For each state, two
inputs are chosen from the previous states, Then two operations are
chosen and the state finishes its process by summing up two results
of the chosen operation For example, if two inputs S−1, S2 and two
operations OP

(1)
3 , OP

(2)
3 are chosen for S3, we have (S−1,S2)

S3−→
OP

(1)
3 (S−1) +OP

(2)
3 (S2).

Operations are chosen from 8 types below

• ID

• Conv1× 1

• Conv3× 3

• Conv5× 5

• Sep. Conv3× 3

• Sep. Conv5× 5

• Max Pool3× 3

• Max Pool5× 5

Two inputs for each state are chosen from states with smaller sub-
script(e.g Si is allowed to have Sj as an input if j < i). By choosing
S4 and one of S1,S2,S3 as outputs of the block, the configuration of
a block is completed.

In ModLap, it is required to specify graphs for discrete variables.
For graphs representing operation types, we use complete graphs.
For graphs representing inputs of each states, we use graphs which
reflect the ordering structure. In a graph representing inputs of each
state, each vertex is represented by a tuple, for the graph representing
inputs of S3, its vertex set is {(−1, 0), (−1, 1), (−1, 2), (0, 1), (0, 2), (1, 2)}.
For example, choosing (−1, 0) means S3 takes S−1(input 1 of the
block) and S0(input 2 of the block) as inputs of the cell and choos-
ing (0, 2) means S3 takes S0(input 2 of the block) and S2(cell 2) as
inputs. There exists an edge between vertices as long as one input is
shared and two distinct inputs differ by one. For example, there is an
edge between (−1, 0) and (−1, 1) because −1 is shared and |0− 1| = 1

and there is no edge between (−1, 0) and (−1, 2) because |0− 1|)= 1

even though −1 is shared. Note that in the graph representing inputs
for S4, we exclude the vertex (−1, 0) to avoid the identity block. For
graphs representing outputs of the block, we use the path graph with
3 vertices since we restrict the output is one of (1, 4), (2, 4), (3, 4). By
defining graphs corresponding variables in this way, a prior knowl-

c.2 implementation details 183

edge about the search space can be infused and be of help to Bayesian
optimization.

continuous part of the search space The space of continu-
ous hyperparameters H comprises 6 continuous hyperparameters of
the SGD with a learning rate scheduler: learning rate, momentum,
weight decay, learning rate reduction factor, 1st reduction point ratio1
and 2nd reduction point ratio. The ranges for each hyperparameter
are given in Tab. C.1.

Table C.1: SGD Hyperparameter Range

SGD hyperparameter Trans. Range

Learning Rate log [log(0.001), log(0.1)]
Momentum · [0.8, 1.0]

Weight Decay log [log(10−6), log(10−2)]
Learning Rate Reduction Factor · [0.1, 0.9]

1st Reduction Point Ratio · [0, 1]
2nd Reduction Point Ratio · [0, 1]

For a given learning rate l, learning rate reduction factor γ, 1st
reduction point ratio r1 and 2nd reduction point ratio r2, the schedul-
ing detail is shown below.

Table C.2: Learning Rate Scheduling. In the experiment, the number of
epochs E is set to 25.

Begin Epoch(<) (!)End Epoch Learning Rate

0 E× r1 l

E× r1 E× (r1 + (1− r1)r2) l · γ
E× (r1 + (1− r1)r2) E l · γ2

evaluation For a given block configuration a ∈ A, the model is
built by stacking 3 blocks with downsampling between blocks. Note
that there are two inputs and two outputs of the blocks. Therefore,
the downsampling is applied separately to each output. The two
outputs of the last block are concatenated after max pooling and then
fed to the fully connected layer.

The model is trained with the hyperparameter h ∈ H on a half
of FashionMNIST (Xiao et al., 2017) training data for 25 epochs and
the validation error is computed on the rest half of training data. To
reduce the high noise in validation error, the validation error is aver-
aged over 4 validation errors from models trained with different ran-
dom initialization. With the batch size of 32, each evaluation takes
12∼21 minutes on a single GTX 1080 Ti depending on architectures

184 mixed variable bayesian optimization

regularized evolution hyperparameters RE has hyperparam-
eters, the population size and the sample size. We set to 50 and 15,
respectively, to make those similar to the optimal choice in (Changy-
ong Oh, Tomczak, et al., 2019; Real et al., 2019). Accordingly, RE
starts with a population with 50 random initial points. In each run of
4 runs, the first 10 initial points of 50 random initial points are shared
with 10 initial points used in GP-BO.

Another hyperparameter is the mutation rule. In addition to the
mutation of architectures used in (Real et al., 2019), for continuous
variables, a randomly chosen single continuous variable is mutated
by Gaussian noise with small variance. In each round, one continuous
variable and one discrete variable are altered.

wall-clock run time The total run time of ModLap(200), 61.44±
4.09 hours, is sum of 9.27± 2.60 hours for BO suggestions and 52.16±
1.79 hours for evaluations. BO suggestions were run on Intel Xeon
Processor E5-2630 v3 and evaluations were run on GTX 1080 Ti.

In the actual execution of RE, two different types of GPUs were
used, GTX 1080 Ti(fast) and GTX 980(slow). Therefore, the evalua-
tion time for RE is estimated by assuming that RE were also run on
GTX 1080 Ti(fast) only. During the total run time of ModLap(200),
61.44± 4.09 hours, RE is estimated to collects 230 evaluations. 230 ≈
61.44/52.16× (200− 10) + 10 where 10 is adjusted because the evalu-
ation time for 10 random initial points was not measured.

Since in both RE and BOHB, we assume zero seconds to acquire
new hyperparameters and only consider times spent for evaluations,
the wall-clock runtime of BOHB is estimated to be equal to wall-clock
runtime of RE.

c.3 additional experimental results
In this section, in addition to the results reported in Sec. 5.5, we

provide additional results.
On 3 synthetic problems and 2 hyperparameter optimization prob-

lems, along with the frequency modulation, we also compare other
kernel combinations such as the kernel addition and the kernel prod-
uct as follows.

We make following observations with this additional comparison.
Firstly, ModDif which does not respect the similarity measure behav-
ior, sometimes severely degrades BO performance. Secondly, the ker-
nel product often performs better than the kernel addition. Thirdly,
ModLap shows the equally good final results as the kernel product
and finds the better solution faster than the kernel product consis-
tently. This can be clearly shown by comparing the area above the
mean curve of BO runs using different kernels. The area above the

c.3 additional experimental results 185

ProdLap : kRBF × kLap AddLap : kRBF + kLap ModLap : Eq.5.5 with f = fLap

ProdDif : kRBF × kDif AddDif : kRBF + kDif ModDif : Eq.5.5 with f = fDif

where kRBF is the RBF kernel and

kLap(v, v ′) =
P∏

p=1

|Vp |∑

i=1

[Up]vp,i
1

1+βpλ
p
i

[Up]v′
p,i

kDif(v, v ′) =
P∏

p=1

|Vp |∑

i=1

[Up]vp,i exp(−βpλ
p
i)[U

p]v′
p,i (C.6)

mean curve of BO using ModLap is larger than the are above the
mean curve of BO using the kernel product. Moreover, the gap be-
tween the area from ModLap and the area from kernel product in-
creases in problems with larger search spaces. Even on the smallest
search space, Func2C, ModLap lags behind the kernel product up to
around 90th evaluation and outperforms after it. The benefit of Mod-
Lap modeling complex dependency among mixed variables is more
prominent in higher dimension problems.

On the joint optimization of SGD hyperparameters and architec-
ture, we show the additional result where RE and BOHB are contin-
ued 600 evaluations and 350 evaluations, respectively.

186 mixed variable bayesian optimization

Func2C Method Mean±Std.Err.
SMAC +0.0060± 0.0387
TPE −0.1917± 0.0053
AddDif −0.1167± 0.0472
ProdDif −0.2060± 0.0002
ModDif −0.0662± 0.0463
AddLap −0.1669± 0.0127
ProdLap −0.2060± 0.0001
ModLap −0.2063± 0.0000
CoCaBO-0.0 −0.1594± 0.0130
CoCaBO-0.5 −0.2025± 0.0018
CoCaBO-1.0 −0.1861± 0.0090

Func3C Method Mean±Std.Err.
SMAC +0.1194± 0.0723
TPE −0.4068± 0.1204
AddDif −0.3979± 0.1555
ProdDif −0.7100± 0.0106
ModDif −0.0977± 0.0742
AddLap −0.3156± 0.1125
ProdLap −0.7213± 0.0005
ModLap −0.7215± 0.0004
CoCaBO-0.0 −0.6730± 0.0274
CoCaBO-0.5 −0.7202± 0.0016
CoCaBO-1.0 −0.7139± 0.0051

Ackley5C Method Mean±Std.Err.
SMAC +2.3809± 0.1648
TPE +1.8601± 0.1248
AddDif +0.0040± 0.0015
ProdDif +0.0152± 0.0044
ModDif +0.0008± 0.0003
AddLap +0.0042± 0.0018
ProdLap +0.0177± 0.0038
ModLap +0.0186± 0.0057
CoCaBO-0.0 +1.4986± 0.2012
CoCaBO-0.5 +1.3720± 0.2110
CoCaBO-1.0 +1.8114± 0.2168

c.3 additional experimental results 187

SVM Hyperparameter Method Mean±Std.Err.
SMAC +4.7588± 0.1414
TPE +4.3986± 0.1632
AddDif +4.9463± 0.4960
ProdDif +4.1857± 0.0017
ModDif +4.1876± 0.0012
AddLap +4.5600± 0.2014
ProdLap +4.1856± 0.0012
ModLap +4.1864± 0.0015
CoCaBO-0.0 +4.4122± 0.1703
CoCaBO-0.5 +4.1957± 0.0040
CoCaBO-1.0 +4.1958± 0.0037

XGBoost Hyperparameter Method Mean±Std.Err.
SMAC +0.1215± 0.0045
TPE +0.1084± 0.0007
AddDif +0.1046± 0.0001
ProdDif +0.1045± 0.0003
ModDif +0.1071± 0.0013
AddLap +0.1048± 0.0007
ProdLap +0.1044± 0.0001
ModLap +0.1038± 0.0003
CoCaBO-0.0 +0.1184± 0.0062
CoCaBO-0.5 +0.1079± 0.0010
CoCaBO-1.0 +0.1086± 0.0008

Joint Optimization of SGD hyperparameters & neural architecture

Method(#Eval.) Mean±Std.Err.
BOHB(200) 7.158× 10−2±1.0303× 10−3

BOHB(230) 7.151× 10−2±9.8367× 10−4

BOHB(350) 7.061× 10−2±5.9322× 10−4

RE(200) 7.067× 10−2±1.1417× 10−3

RE(230) 7.061× 10−2±1.1329× 10−3

RE(400) 6.929× 10−2±6.4804× 10−4

RE(600) 6.879× 10−2±1.0039× 10−3

ModLap(200) 6.850× 10−2±3.7914× 10−4

ModLap(230) 6.826× 10−2±2.2317× 10−4

ModLap(290) 6.826× 10−2±2.2317× 10−4

D

B ATC H B AY E S I A N
O P T I M I Z AT I O N O N
P E R M U TAT I O N S U S I N G
T H E A C Q U I S I T I O N
W E I G H T E D K E R N E L S

d.1 law regret bound
d.1.1 Outline

We show that LAW with GP-UCB or EST has the vanishing simple
regret with high probability.

In Bayesian optimization (BO), the goal is to find a minimum for a
given objective f

x! = argmin
x∈X

f(x)

First, we introduce different types of regret. Our analysis on the
vanishing simple regret of LAW only requires batch version of all
regrets below. Therefore, the proof for the vanishing simple regret can
be read without referring to sequential version of regrets below. The
sequential version definitions are used when we contrast our regret
analysis with the regret analysis in existing works (Desautels et al.,
2014; Kandasamy, Krishnamurthy, et al., 2018).

We begin with two equivalent round indexing in the batch setting,
the sequential indexing, an 1-tuple and the batch indexing, an or-
dered 2-tuple which are related via following mappings.

T(B)
bat : N → N × [B] t .→ ([(t− 1) mod B] + 1, [(t− 1) rem B] + 1)

T(B)
seq : N × [B] → N (t,b) .→ (t− 1)×B+ b

The batch indexing is primarily used and the sequential indexing is
expressed via T(B)

seq.
With two indexing, we have batch and sequential versions of regret

definitions with the instantaneous regret rt,b = f(x!) − f(xt,b) at a
query point xt,b. In the case of a noisy objective, yt,b = f(xt,b) + εt,b
is a corresponding evaluation with a noise εt,b.

Note that we use the definition of sequential simple/cumulative
regret in the context of batch BO. Since sequential simple regret is
equal to batch simple regret, we call both simple regret without pre-
fixes. In (Contal et al., 2013), sequential cumulative regret is termed
full cumulative regret to contrast with batch cumulative regret.

189

190 batch bayesian optimization on permutations

Type Batch Sequential

Instantaneous r
(B)
t = min

b=1,··· ,B
rt,b r

T(B)
seq(t,b) = rt,b

Simple S
(B)
T = min

t=1,··· ,T
r
(B)
t S

T(B)
seq(T ,b) = min

T(B)
seq(t,b′)!T(B)

seq(T ,b)
r
T

(B)
seq(t,b′)

Cumulative R
(B)
T =

T∑
t=1

r
(B)
t R

T(B)
seq(T ,b) =

∑

T(B)
seq(t,b′)!T(B)

seq(T ,b)
r
T

(B)
seq(t,b′)

Simple & Cumulative S
(B)
T ! 1

T R
(B)
T S

T(B)
seq(T ,b) !

1

T(B)
seq(T ,b)

R
T(B)

seq(T ,b)

Between Simple S
(B)
T = S

T(B)
seq(T ,B)

Between Cumulative R
(B)
T ! 1

BR
T(B)

seq(T ,B)

Table D.1: Types of regrets

The simple regret is in accord with the goal of BO (Kandasamy,
Krishnamurthy, et al., 2018) while the cumulative regret is prevalent
in bandit (Lattimore and Szepesvári, 2020).

When an algorithm exhibits that cumulative regret averaged over
rounds converges to zero, then the algorithm is called no regret. As
stated in Tab. D.1, simple regret is bounded above by cumulative re-
gret averaged over rounds, therefore, vanishing simple regret is often
proved by showing that the algorithm is no regret (Kandasamy, Kr-
ishnamurthy, et al., 2018).

In batch BO, there are two types of query depending on the acces-
sible information. Non-delayed query point uses all previous query
points with all corresponding evaluations, e.g. {xt,1}t∈[T] in round T

of LAW while delayed query point uses all previous query points but
evaluations corresponding to the query points {xT ,b}b=2,··· ,B are not
used in round T of LAW. For evaluation, instantaneous regret and
posterior variance, we can say non-delayed and delayed according to
the query point with which it is defined.

The our analysis consists of steps below

1. Bound batch cumulative regret with the sum of non-delayed
instantaneous regrets, i.e, the regrets from the first points in
each batch

R
(B)
T =

T∑

t=1

r
(B)
t !

T∑

t=1

rt,1

2. Bound non-delayed instantaneous regrets with non-delayed pos-
terior variance, i.e, posterior variance conditioned on all previ-
ous query points with their evaluations.

T∑

t=1

rt,1 !
T∑

t=1

ηtσt−1,1(xt,1)

ηt depends on the acquisition function and the details are given
in Thm. D.8.

d.1 law regret bound 191

3. Bound non-delayed posterior variance with all posterior vari-
ance (Lem. D.2)

T∑

t=1

σt−1,1(xt,1) ! 1+
w+

w−

1

B

T∑

t=1

B∑

b=1

σt−1,b(xt,b)

While the regret analysis on sequential cumulative regret (Desautels
et al., 2014; Kandasamy, Krishnamurthy, et al., 2018)39 requires high
probability confidence interval for rt,b for all t ∈ [T] and b ∈ [B], our
analysis on batch cumulative regret requires high probability confi-
dence interval for rt,1 for all t ∈ [T]. More detailed discussion on
the differences between two approaches is given after the proof (see
Appx. D.1.3).

d.1.2 Regret Bound of LAW
In Bayesian optimization using LAW, the surrogate model is Gaus-

sian processes with a kernel K. At t-th round of batch Bayesian op-
timization with the batch size of B, we have LAW

t which defines L-
ensembles of k-DPP. LAW

t is the product of the predictive covariance
function of K conditioned on Dt−1 = {(xs,b,ys,b)}s∈[t−1],b∈[B] and
the acquisition function at using the evaluation data Dt−1 as follows

LAW
t (x, x ′) = w(at(x)) · Lt(x, x ′) ·w(at(x ′)). (D.1)

where Lt(x, x ′) = K(x, x ′ | Dt−1) is the diversity gauge and w : R → R

is positive increasing, w− = inf
x∈R

w(x) > 0 and w+ = sup
x∈R

w(x) < ∞,

which we call the weight function.
The batch with B points xt,1, · · · , xt,B are acquired by

xt,1 = argmax
x∈X

at(x) = argmax
x∈X

w(at(x)) = argmax
x∈X

logw(at(x))2

xt,b = argmax
x∈X

log det([LAW
t (x, x)]{xi}i∈[b−1]∪{x})

= argmax
x∈X

log(Lt(x, x |{xt,i}i∈[b−1]) ·w(at(x))2) (D.2)

where Lt(x, x |{xt,i}i∈[b−1]) is the posterior variance of the kernel Lt
conditioned on {xt,i}i∈[b−1].

Note that the posterior variance of the posterior covariance function
Kt conditioned on {xt,i}i∈[b−1] is equal to the posterior variance of
the prior covariance function K conditioned on Dt−1 ∪{xt,i}i∈[b−1].

In the rest of the section, we use below simpler notation

σ2
t−1,b(x) = Lt(x, x |{xt,i}i∈[b−1]) = K(x, x | Dt−1 ∪{xt,i}i∈[b−1]) (D.3)

39 In (Kandasamy, Krishnamurthy, et al., 2018), vanishing simple regret is proved by
showing that a bound with sequential cumulative regret averaged over rounds con-
verges to zero.

192 batch bayesian optimization on permutations

with [0] = ∅, and µt(x) for the predictive mean conditioned on Dt−1.
Note that σ2

t−1,b is well defined for b = 2, · · · ,B since the posterior
variance does not depend on output values while the predictive mean
is defined only when b = 1 where evaluated output ys,b exists for
each xs,b in conditioning data.

We start with lemmas used in the regret bound analysis.

Lemma D.1. Assume a kernel such that K(·, ·) ! 1. For each t ∈ [T],
LAW acquires a batch using the evaluation data Dt−1, the diversity measure
Lt(·, ·) = K(·, ·| Dt−1), an acquisition function at(·) and a weight function
w(·) (as defined below Eq. D.1). The posterior variance defined as Eq. D.3.
has the following relation

σt,1(xt+1,1) !
w+

w−
σt−1,b(xt,b) 1 ! t ! T , 2 ! b ! B

Proof. By the definition of xt,b

xt,b = argmax
x∈X

log(Lt(x |{xt,i}i∈[b−1]) ·w(at(x))2)

= argmax
x∈X

log(σ2
t−1,b(x) ·w(at(x)))

we have

w(at(x))σt−1,b(x) ! w(at(xt,b))σt−1,b(xt,b) ∀ x ∈ X (D.4)

thus ∀ x ∈ X

σt−1,b(x) !
w(at(x))

w(at(xt,b))
σt−1,b(xt,b) !

w+

w−
σt−1,b(xt,b). (D.5)

By the "Information never hurts" principle (Krause, Singh, et al., 2008),
i.e. the posterior variance decreases as the conditioning set increases,
we have

σt,1(x) ! σt−1,b(x) ∀ x ∈ X

since σt is conditioned by Dt = Dt−1 ∪{xt,i}i∈[B] while σt,b is condi-
tioned by Dt−1 ∪{xt,i}i∈[b−1]. Combining these two inequalities, we
have

σt,1(x) ! σt−1,b(x) !
w+

w−
σt−1,b(xt,b) ∀ x ∈ X

which also applies when x = xt+1,1.
Q.E.D.

Remark D.1. LAW does not use the heuristic called the relevant re-
gion (Contal et al., 2013; Kathuria et al., 2016), which makes the proof
simpler compared with the Lemma 6.5 in (Kathuria et al., 2016).
Remark D.2. The Lemma 6.5 in (Kathuria et al., 2016) claims that the
inequality similar to Eq. D.4 and Eq. D.5 holds for sampling (DPP-
SAMPLE). However, such inequality relies on fact that xt,b is the max-
imum of an objective which is not guaranteed to hold for sampling
(DPP-SAMPLE). The regret analysis of DPP-SAMPLE in (Kathuria et
al., 2016) appears to need a revision. In our version, we do not make
any claim for the case of sampling.

d.1 law regret bound 193

Lemma D.2. Assume a kernel such that K(·, ·) ! 1. For each t ∈ [T],
LAW acquires a batch using the evaluation data Dt−1, the diversity measure
Lt(·, ·) = K(·, ·| Dt−1), an acquisition function at(·) and a weight function
w(·) (as defined below Eq. D.1). The posterior variance defined as Eq. D.3.
has the following relation

T∑

t=1

σt−1,1(xt,1) ! 1+
w+

w−

1

B

T∑

t=1

B∑

b=1

σt−1,b(xt,b). (D.6)

Proof. From Lem. D.1, for b = 2, · · · ,B, we have

σt,1(xt+1,1) = σt(xt+1,1) !
w+

w−
σt−1,b(xt,b)

Summing these for b = 2, · · · ,B and σt−1,1(xt,b)

σt−1,1(xt,b) + (B− 1)σt,1(xt+1,1) !
w+

w−

B∑

b=1

σt−1,b(xt,b)

since w− ! w+. Summing this with respect to t, we have
T∑

t=1

σt−1,1(xt,b) + (B− 1)
T∑

t=1

σt,1(xt+1,1) !
w+

w−

T∑

t=1

B∑

b=1

σt−1,b(xt,b)

The term on the left hand side can be rewritten

B
T∑

t=1

σt−1,1(xt,b) + (B− 1)(σT ,1(xT+1,1)− σ0,1(x1,1))

Since (B− 1)(σ0,1(x1,1)− σT ,1(xT+1,1)) ! Bσ0,1(x1,1)

T∑

t=1

σt−1,1(xt,b) ! σ0,1(x1,1) +
w+

w−

1

B

T∑

t=1

B∑

b=1

σt−1,b(xt,b)

Q.E.D.

Remark D.3. In Lemma 3 in (Contal et al., 2013) and Lemma 6.5
in (Kathuria et al., 2016), the second term in Eq. D.7 is ignored. How-
ever, σT ,1(xT+1,1)− σ0,1(x1,1) can be negative, which should not be
ignored. Nevertheless, this error does not change the regret analysis
in (Contal et al., 2013) because constant terms divided by T vanishes.
Our version has the additional constant 1 on the right hand side of
Eq. D.6.

Definition D.1. The maximum information gain γT is defined as be-
low

γT = γ(T ;X) = max
X⊂X,|X|=T

I(YX; fX) = max
X⊂X,|X|=T

H(YX)−H(YX| fX)

where Y is the observation at X and H is the differential entropy.
For Gaussian processes with the kernel K and the variance of ob-

servation noise σ2

γT = γ(T ;X,K,σ2) = max
X⊂X,|X|=T

1

2
log det(I+ σ−2K(X,X))

194 batch bayesian optimization on permutations

We rephrase lemmas from previous works with the batch indexing
for notational ease and discuss the noteworthy points in the rephrased
version compared with the original ones.

Lemma D.3 (Lemma 3 (Srinivas et al., 2010), Lemma 4 (Contal et
al., 2013), Theorem 3.1 (Zi Wang, B. Zhou, et al., 2016)). Assume a
kernel such that K(·, ·) ! 1. For each t ∈ [T], LAW acquires a batch using
the evaluation data Dt−1, the diversity measure Lt(·, ·) = K(·, ·| Dt−1),
an acquisition function at(·) and a weight function w(·) (as defined below
Eq. D.1). The posterior variance defined as Eq. D.3. has the following
relation

T∑

t=1

B∑

b=1

σ2
t−1,b(xt,b) ! C1γTB

where C1 = 2
log(1+σ−2)

and γTB is the maximum information gain at TB

Proof. Following the trick used in the proof of Lemma 5.4 in (Srinivas
et al., 2010),

σ2
t−1,b(x) = σ2σ−2σ2

t−1,b(x) !
1

log(1+ σ−2)
log(1+ σ−2σ2

t−1,b(x)).

In LAW, xt,1 and xt,b deterministic conditioned respectively on
Dt−1 = {(xs,b,ys,b)}s∈[t−1],b∈[B] and Dt−1 ∪{xt,c}c=2,··· ,b−1 for b =
2, · · · ,B. Also, xt,b does not depend on {ys,c}T(B)

seq(s,c)<T
(B)
seq(t,b) as

long as {xs,c}T(B)
seq(s,c)!T

(B)
seq(t,b). Therefore, the proof of Lemma 5.3

in (Srinivas et al., 2010) can be applied

T∑

t=1

B∑

b=1

σ2
t−1,b(xt,b) !

1

log(1+ σ−2)

T∑

t=1

B∑

b=1

log(1+ σ−2σ2
t−1,b(xt,b))

=
2

log(1+ σ−2)
I(Y{xt,b}t∈[T],b∈[B]

; f{xt,b}t∈[T],b∈[B]
) ! 2

log(1+ σ−2)
γTB

Remark D.4. In contrast to Lemma 5.4 in (Srinivas et al., 2010) which
bounds the sum of square of regrets, Lem. D.3 bounds the sum of the
posterior variances. The delayed evaluation {yt,b}t∈[T],b∈[B] does not
cause any impediment in the proof.

Lemma D.4 (Lemma 6.1 (Kathuria et al., 2016), Lemma 3.2 (Zi Wang,

B. Zhou, et al., 2016)). For ζt =
(
2 log

(π2
t

2δ

))1/2
with δ ∈ (0, 1) and

πt > 0 such that
∑∞

t=1 πt ! 1, an arbitrary sequence of actions x1,1, · · · ,
xT ,1 ∈ X

P

(⋂

t∈[T]

{
f
∣∣∣ |f(xt,1)− µt−1(xt,1)| ! ζt · σt−1,1(xt,1)

})
" 1− δ.

d.1 law regret bound 195

Remark D.5. ζt only depends on the number of batch round t and is
independent with the batch size B. Therefore, ζt in batch BO is the
same as one in the sequential BO.

Lemma D.5 (Lemma 3.3 (Zi Wang, B. Zhou, et al., 2016)). If |f(xt,1)−
µt−1(xt,1)| ! ζtσt−1,1(xt,1)

rt,1 = f(xt,1)− f(x!) ! (νt + ζt)σt−1,1(xt,1)

where νt =
(

min
x∈X

µt−1(x)−m̂
σt−1,1(x)

)
, m̂ is the estimate of the optimum(Zi Wang,

B. Zhou, et al., 2016) and ζt =
(
2 log

(π2
t

2δ

))1/2
with δ ∈ (0, 1) and πt > 0

such that
∑∞

t=1 π
−1
t ! 1.

Remark D.6. In Lem. D.5, we only bound regrets in (t, 1)-th round
where there is no delayed evaluation.

Remark D.7. In contrast to the original condition
∑T

t=1 πt ! 1, we use∑∞
t=1 πt ! 1 so that πts are T independent as the recommendation

of the choice πt = 1
6π

2t2 in (Zi Wang, B. Zhou, et al., 2016). When
the number of rounds T is known in advance, T dependent πt is
possible, e.g, πt = T (Zi Wang, B. Zhou, et al., 2016). By making πt

independent with T , EST becomes anytime, i.e. not requiring that the
number of rounds is known in advance.

Lemma D.6 (Lemma 5.1 (Srinivas et al., 2010)). For δ ∈ (0, 1) and

β
(B)UCB
t,1 = 2 log

(
|X |π2(T

(B)
seq(t,1))2
6δ

)
,

P

(⋂

x∈X

{
f
∣∣∣ |f(x)− µt−1(x)| ! (β(B)UCB

t,1)1/2 · σt−1,1(x)
})

" 1− δ.

Remark D.8. Note that β
(B)UCB
t,1 = βUCB

T
(B)
seq(t,1)

. in batch BO with the

batch size of B, β is set as if there is B times more rounds.

Lemma D.7 (Lemma 5.2 (Srinivas et al., 2010), Lemma 1 (Contal et al.,
2013)). If |f(x)− µt−1(x)| ! (β(B)UCB

t,1)1/2σt−1,1(x) for all x ∈ X, then

rt,1 = f(xt,1)− f(x!) ! 2(β(B)UCB
t,1)1/2σt−1,1(xt,1).

Remark D.9. In Lem. D.7, we only bound regrets in (t, 1)-th round
where there is no delayed evaluation.

Theorem D.8. Assume a kernel such that K(·, ·) ! 1, | X | < ∞ and f :
X → R is sampled from GP(0,K). In each round t ∈ [T] of batch Bayesian
optimization, LAW acquires a batch using the evaluation data Dt−1, the
diversity measure Lt(·, ·) = K(·, ·| Dt−1), an acquisition function at(·) and
a weight function w(·) (as defined below Eq. D.1).

Let C1 = 36
log(1+σ−2)

where σ2 is the variance of the observation noise
and δ ∈ (0, 1).

196 batch bayesian optimization on permutations

For GP-UCB, define β(B)UCB
t,1 = 2 log

(
|X |π2(T

(B)
seq(t,1))2
6δ

)
and let

η
(B)
t = 2(β(B)UCB

t,1)1/2

For EST, define νt = min
x

(
µt−1(x)−m̂t

σt−1,1(x)

)
where m̂t is the estimate of the

optimum (Zi Wang, B. Zhou, et al., 2016), ζt =
(
2 log

(π2
t

2δ

))1/2
, πt > 0

such that
∑∞

t=1 π
−1
t ! 1 and let

η
(B)
t = νt∗ + ζt

where t∗ = argmax
s∈[t]

νs.

Then batch cumulative regret satisfies the following bound

P

({
R
(B)
T

T
! η

(B)
T

T
+ ηT

w+

w−

√
C1

γTB

TB

})

" 1− δ.

Proof. Let η(B)
t =

{
νt∗ + ζt EST
2(β(B)UCB

t,1)1/2 UCB
.

For the batch cumulative regret case, we use Lem. D.1.

R
(B)
T =

T∑

t=1

r
(B)
t =

T∑

t=1

min
b=1,··· ,B

rt,b

!
T∑

t=1

rt,1 (D.7)

! η
(B)
T ·

T∑

t=1

σt−1,1(xt,1) by

{
Lem. D.5 EST
Lem. D.7 UCB

! η
(B)
T ·

(
1+

w+

w−

1

B

T∑

t=1

B∑

b=1

σt−1,b(xt,b)
)

by Lem. D.1

! η
(B)
T ·

(
1+

w+

w−

√√√√T

B

T∑

t=1

B∑

b=1

σ2
t−1,b(xt,b)

)
by Cauchy-Schwarz

! η
(B)
T ·

(
1+

w+

w−

√
T

B
C1γTB

)
by Lem. D.3

By Lem. D.4 for EST and Lem. D.6 for UCB, above two inequalities
hold with the probability at least 1− δ.

Remark D.10. Due to the difference of the statements in Lem. D.1, the
batch cumulative regret bound additionally has the term w+

w−
. Even

with this additional term, it shows that the bound of the batch cumu-
lative regret of LAW enjoys the same asymptotic behavior as existing
methods (Contal et al., 2013; Desautels et al., 2014; Kathuria et al.,
2016).

d.1 law regret bound 197

Remark D.11. This theorem provides a rough guideline how to choose
a weight function, that is, bounded below by a positive value and
bounded above, which is the condition we specify for the weight func-
tion. Even though this shows that simple regret vanishes, this regret
bound for LAW is loose because not much specific structure of the
weight function other than the bound is used. We expect that, using
other properties of the weight function along with the boundedness,
the bound can be improved.

d.1.3 Difference to the analysis of sequential cumulative regret
In our regret analysis, we analyze batch cumulative regret. In

existing works, sequential cumulative regret is analyzed as an end
goal (Desautels et al., 2014) and as a medium to show vanishing sim-
ple regret in (Kandasamy, Krishnamurthy, et al., 2018). In (Contal et
al., 2013),40 both batch cumulative regret and sequential cumulative
regret are analyzed.41 We discuss the differences between these two
approaches and the technical details in their proofs.

By definition, the analysis of sequential cumulative regret takes
into account all instantaneous regrets incurred while batch cumula-
tive regret considers minimum instantaneous regrets in each batch.
Therefore, bounds on sequential cumulative regret are stronger than
ones on batch cumulative regret in this sense (as shown in Tab. D.1
Relation between two Cumulative). However, each has its own more
appropriate scenario to use. The sequential cumulative regret is often
appropriate in the situation where the optimization objective repre-
sents the cost of evaluations. For example, in multi-armed bandit,
each instantaneous regret represents the cost of evaluation (playing
arm-pulling) and the goal is to minimize the incurred cost in finding
the best bandit machine. On the other hand, batch cumulative regret
is often reasonable when the optimization objective is different to the
cost of evaluations. For example, in hyperparameter optimization,
the cost of evaluations can be wall-clock time and the objective is the
cross-validation error. In this case, we want to find a good hyperpa-
rameter no matter how bad hyperparameters are evaluated, which
possibly acts as exploratory query points.

In proofs, each analysis takes a slightly different route. As argued
in (Desautels et al., 2014), to bound all instantaneous regret, a wider
confidence bound is needed to bound instantaneous regret with the
corresponding posterior variance. While the posterior mean is not
update in the batch acquisition until all query points are evaluated,
the posterior variance is updated whenever a new query point is

40 Sequential cumulative regret is termed full cumulative regret in (Contal et al., 2013).
41 The analysis of sequential cumulative regret in (Contal et al., 2013) may need modi-

fication and not be correct, see following paragraph for a brief explanation and for
more elaborated explanation, refer to (Desautels et al., 2014).

198 batch bayesian optimization on permutations

given no matter whether it is evaluated or not. To guarantee high
probability bound for all instantaneous regrets, an additional kernel-
dependent constant is introduced and the constant is controlled with
an initialization scheme(Desautels et al., 2014). In (Kandasamy, Krish-
namurthy, et al., 2018), the analysis relies on such kernel-dependent
constant and the initialization scheme but it is empirically shown that
the algorithm performs well without the initialization scheme. The
necessity of the kernel-dependent constant suggests that the analy-
sis of sequential cumulative regret in (Contal et al., 2013) requires a
revision.

For the purpose to show vanishing simple regret, batch cumula-
tive regret can be used circumventing the additional constant and
the initialization scheme proposed in (Desautels et al., 2014). In the
analysis using batch cumulative regret, only non-delayed regret is
considered and bounded by non-delayed posterior variance (Eq. D.7).
Then non-delayed posterior variance is bounded by the average of
non-delayed posterior variance and delayed posterior variances in
the same batch (Lem. D.2). Therefore, the effect of the batch size
influences the bound in this posterior variance bounding step. How-
ever, in the analysis using sequential cumulative regret(Desautels et
al., 2014; Kandasamy, Krishnamurthy, et al., 2018), both non-delayed
and delayed instantaneous regrets need to be bounded. The bound
is the corresponding posterior variance multiplied by a specially de-
sign number to handle delayed cases. In response to this, the ad-
ditional kernel-dependent constant and the initialization scheme are
introduced in (Desautels et al., 2014).

Batch cumulative regret is enough in showing vanishing simple re-
gret. The proof only considers non-delayed instantaneous regrets in
batches. Therefore, the analysis of batch cumulative regret reveals
how delayed query points in a batch explore effectively and help
to reduce future non-delayed instantaneous regrets. We admit that
some may argue that a tighter bound is possible by taking into ac-
count delayed evaluations with smaller instantaneous regrets. Still,
this is aligned with the intuition of many batch acquisition methods
promoting diversity in batches. In practice, it is not unlikely to ob-
serve a delayed evaluation is better than the non-delayed evaluation
in the same batch.

d.1.4 Growth Rate of UCB/EST hyperparameter

η
(B)
t =

{
νt∗ + ζt EST
2(β(B)UCB

t,1)1/2 UCB

d.2 position kernel 199

where β
(B)UCB
t,1 = 2 log

(
|X |π2((t−1)B+1)2

6δ

)
, t∗ = argmax

s∈[t]

νs, νt =

min
x

(
µt−1(x)−m̂t

σt−1,1(x)

)
where m̂t is the estimate of the optimum (Zi Wang,

B. Zhou, et al., 2016), ζt =
(
2 log

(π2
t

2δ

))1/2
, πt > 0 such that

∑∞
t=1 π

−1
t

! 1.
For UCB, it is clear that 2(β(B)UCB

t,1)1/2 = O((log(tB))1/2).
For EST, we first look into ζt. If we choose πt = π2t2

6 as suggested
in (Zi Wang, B. Zhou, et al., 2016), then ζt = O((log(tB))1/2). Since
m̂t = Ef∼GP(µt−1(·),σ2

t−1(·))
[inf

x
f(x)] (Zi Wang, B. Zhou, et al., 2016),

from Lemma 5.1 in (Srinivas et al., 2010), we have

|f(x)− µt−1(x)| ! τtσt−1(·) ∀ x ∈ X

where τ
1/2
t = 2 log

(|X |π2t2

6δ

)
.

Then
m̂t " µt−1(xlb)− τtσt−1(xlb)

with xlb = argmin
x

µt−1(x) + τtσt−1(x),

min
x

(
µt−1(x)− m̂t

σt−1,1(x)

)
! µt−1(xlb)− µt−1(xlb) + τtσt−1(xlb)

σt−1,1(xlb)
= τt

Since, τt is increasing, we have νt∗ ! τt and νt∗ = O((log(tB))1/2).
Therefore, for EST, η(B)

t = νt∗ + ζt = O((log(tB))1/2).

d.2 position kernel
d.2.1 Information gain of kernels on a finite space

In this subsection, we show a bound of the information gain of
kernels defined on a finite set.

Theorem D.9. K is a kernel on a finite set X (| X | < ∞), σ2 is the variance
of the observation noise and Λ = {λn}1,··· ,|X | (λn " λn+1 " 0) is the set
of eigenvalues of the gram matrix K(X,X).

The number of elements in a set A is denoted by NA, so NX is the number
of elements of X and is equal to the number of eigenvalues of K(X,X).

Then

γ(T ;K,X,σ2) ! 1

2
min

{
T · log det(1+ σ−2 max

x∈X
K(x, x)),

NX · log(1+ σ−2λmax · T)
}

Proof. Let us consider the eigenvalues and the eigenvectors of the
gram matrix K(X,X).

K(X,X) = UΛUT

200 batch bayesian optimization on permutations

with Λ = diag(λ1, · · · , λNX
), U = [u1, · · · ,uNX

] ∈ RNX×NX where λi
is an eigenvalue and ui is the corresponding eigenvector.

Since

K(x, x ′) =
NX∑

i=1

λi[ui]x[ui]x ′ ,

the map

φ(x) = [
√
λ1[u1]x, · · · ,

√
λNX

[uNX
]x]

T

is a NX dimensional feature map

K(x, x ′) = φ(x)T ·φ(x ′).

For a sequence A = {a1, · · · ,aNA
} of ai ∈ X = xi

NX
i=1, the gram

matrix K(A,A) can be expressed with the projection matrix PX
A ∈

{0, 1}NA×NX from X to A such that [PX
A]ij = 1 if ai = xj

K(A,A) = PX
AUΛUT (PX

A)T .

Remark D.12. Note that (PX
A)T · PX

A is NX ×NX diagonal matrix and
[(PX

A)T · PX
A]ii is how many times xi appears in the sequence A.

We obtain two bounds. The first one is

log det(I+ σ−2K(A,A)) !
∑

a∈A

log det(1+ σ−2K(a,a))

using Hadamard’s inequality.42

Adopting the proof for the information gain of the linear kernel
from (Srinivas et al., 2010), the second one is

log det(I+ σ−2K(A,A))

= log det(I+ σ−2PX
AK(X,X)(PX

A)T)

= log det(I+ σ−2PX
AUΛUT (PX

A)T) by Eq. D.8

= log det(I+ σ−2Λ
1
2UT (PX

A)TPX
AUΛ

1
2) by Weinstein-Aronszajn identity

!
NX∑

i=1

log det(1+ σ−2λi[U
T (PX

A)TPX
AU]ii) by Hadamard’s inequality

!
NX∑

i=1

log det(1+ σ−2λiT) by Eq. D.9 (D.8)

42 https://en.wikipedia.org/wiki/Hadamard%27s_inequality

d.2 position kernel 201

using Weinstein-Aronszajn identity43, Hadamard’s inequality44 and
below

[UT (PX
A)TPX

AU]ii

=
NX∑

k=1

NX∑

l=1

([U]ki)[(P
X
A)TPX

A]kl([U]li)

=
NX∑

k=1

[(PX
A)TPX

A]kk([U]ki)
2 by Rmk. D.12

!
NX∑

k=1

[(PX
A)TPX

A]kk

︸ ︷︷ ︸
=NA=T

·
NX∑

k=1

([U]ki)
2

︸ ︷︷ ︸
=1

∑

i

aibi ! (
∑

i

ai)(
∑

i

bi) if ai,bi " 0

(D.9)

where the second equality comes from the fact that (PX
A)T ·PX

A is NX×
NX diagonal matrix and the last inequality is possible because every
numbers are non-negative since [(PX

A)T · PX
A]ii is how many times xi

appears in the sequence A.
Putting Eq. D.8 and Eq. D.8 together,

log det(I+ σ−2K(A,A)) ! min
{
T · log det(1+ σ−2 max

x∈X
K(x, x)),

NX · log det(1+ σ−2λmaxT)
}

Q.E.D.

d.2.2 Positive definiteness of the Position kernel
In this subsection, we show that the positive definiteness of the

position kernel and the bound of its eigenvalues.

Theorem D.10. The position kernel K(·, ·|τ) defined on SN is positive defi-

nite and the eigenvalues of the K(A,A) where A ⊂ X lie between
(
1−ρ
1+ρ

)N

and
(
1+ρ
1−ρ

)N
where ρ = exp(−τ).

Proof. We show that the kernel is positive definite on a larger set

X =
N∏

i=1

{1, · · · ,N}.

Since SN ⊂ X, K(SN,SN) is a principal submatrix of K(X,X) With
Poincaré seperation theorem (or Cauchy interlacing theorem), we
show that the position kernel is positive definite and that the eigenval-
ues of K(SN,SN) lie between the smallest eigenvalue and the largest
eigenvalue of K(X,X).

43 https://en.wikipedia.org/wiki/Weinstein%E2%80%93Aronszajn_identity
44 https://en.wikipedia.org/wiki/Hadamard%27s_inequality

202 batch bayesian optimization on permutations

On X, the position kernel is a product kernel of N kernels defined
{1, · · · ,N} as below

K(π1,π2|τ) = exp
(
− τ ·

∑

i

|π−1
1 (i)− π−1

2 (i)|
)

.

and its gram matrix on each component has following form

[ρ|i−j|]ij =





1 ρ ρ2 · · · ρN−2 ρN−1

ρ 1 ρ · · · ρN−3 ρN−2

...
...

... · · ·
...

...
ρN−1 ρN−2 ρN−3 · · · ρ 1





where ρ = exp(−τ).
This form of matrix is known as Kac-Murdock-Szegö (KMS) ma-

trix (Grenander and Szegö, 1958; Trench, 1999), which we denote by
KMS(ρ) (0 < ρ < 1).

Their eigenvalues λn are bounded as below (Grenander and Szegö,
1958; Trench, 1999)

λn =
1− ρ2

1+ ρ2 − 2ρ cos(θn)

where
n− 1

N+ 1
π < θn <

n

N+ 1
π

Therefore
1− ρ

1+ ρ
<

1− ρ2

1+ ρ2 − 2ρ cos(n
N+1π)

< λn <
1− ρ2

1+ ρ2 − 2ρ cos(n−1
N+1π)

<
1+ ρ

1− ρ

We observe that the each component kernel is positive definite with
above bounds on the eigenvalues.

Since

K(X,X) =
N⊗

i=1

K({1, · · · ,N}, {1, · · · ,N})

where
⊗

is the Kronecker product, the lower bound and the upper

bound of the eigenvalues of K(X,X) are
(
1−ρ
1+ρ

)N
and

(
1+ρ
1−ρ

)N
, re-

spectively.
For A ∈ SN ∈ X, these bounds also apply to the eigenvalues of

K(A,A) by Poincaré seperation theorem (or Cauchy interlacing theo-
rem).

Q.E.D.

d.2.3 Information Gain of the Position kernel
Theorem D.11. K(·, ·|τ) is the position kernel defined on SN, σ2

obs is the
variance of the observation noise, ρ = exp(−τ) and

Dmax =

{
N2

2 N mod 2 = 0
N2−1

2 N mod 2 = 1

d.2 position kernel 203

Then
γT ! 1

2
min{A(T),NX · log(1+ σ−2

obsλmax · T)}

where

A(T) = log(1+ σ−2
obs(1+ (T − 1)ρDmax))

+ (T − 1) log(1+ σ−2
obs(1− ρDmax))

which is smaller than T · log det(1+ σ−2
obs maxx∈X K(x, x)).

Proof. γT is defined as

1

2
max

A⊂X,|A|=T
log det(I+ σ−2

obsK(A,A))

By Appx. Lem. D.12, for i, , j = 1, · · · , T , ρDmax ! [K(A,A)]ij ! 1.
By Perron-Frobenius theorem, the largest eigenvalue of K(A,A) is

bounded below by
1+ (T − 1)ρDmax

When λ
(A)
i is the i-th eigenvalue of K(A,A), with the constraint

λ
(A)
1 " 1+ (T − 1)ρDmax ,

T∏

i=1

(1+ σ−2
obsλ

(A)
i)

is bounded above by

(1+ σ−2
obs(1+ (T − 1)ρDmax))

T∏

i=2

(
1+ σ−2

obs

T − (1+ (T − 1)ρDmax)

T − 1

)

= (1+ σ−2
obs(1+ (T − 1)ρDmax))

T∏

i=2

(1+ σ−2
obs(1− ρDmax))

Here, we use the fact that for
∑

i xi = C, xi > 0 if there are p and
q such that xp < xq, then for x ′

i defined as x ′
i = xi for i)= p, 1 and

x ′
p = xp + d, x ′

q = xq − d where d ! (xq − xp)/2

∏

i

xi !
∏

i

x ′
i.

Note that without the constraint on the lower bound of the largest
eigenvalue,

T∏

i=1

(1+ σ−2
obsλ

(A)
i) !

(
1+ σ−2

obs

trace(K(A,A))

T

)T

where trace(K(A,A)) = T for kernels such that K(x, x) is a constant
independent of x ∈ X as is for the position kernel.

This shows that the bound in this theorem is tighter than that of
Thm. D.9.

Q.E.D.

204 batch bayesian optimization on permutations

Remark D.13. specially when σ2
obs and/or ρ is large, i.e. log(1 +

σ−2
obs(1 − ρDmax)) ≈ 0, we can observe that even in the finite-time

regime, the regret is almost sublinear since it is dominated by log(1+
σ−2
obs(1+ (T − 1)ρDmax)). In this case, the theorem provide a bound

which is significantly tighter than the bound in Thm. 6.2 even in the
finite-time regime. Even though both are the same in the asymptotic
regime, they may differ significantly in the finite-time regime.

Lemma D.12. For π1,π2 in SN,

dpos(π1,π2) =
∑

i

|π−1
1 (i)− π−1

2 (i)| " Dmax

where

Dmax =

{
N2

2 N mod 2 = 0
N2−1

2 N mod 2 = 1

Proof. Note that dpos is left-invariant, that is,

dpos(π1,π2) = dpos(π ◦ π1,π ◦ π2)

for π ∈ SN, and thus

dpos(π1,π2) = dpos(πid, (π1)
−1 ◦ π2)

where πid = (1, · · · ,N).
By induction on N, we show that

max
π∈SN

dpos(πid,π) = dpos((1, 2, 3, · · · ,N), (N,N− 1, · · · , 2, 1))

base case(N = 2) This is trivial.

induction step As the induction hypothesis, assume that above is
true for N = k. When N = k+ 1, let us consider π = (−,−, · · · ,, a) ∈
Sk+1 an arbitrary permutation whose last element is a)= 1,

dpos(πid,π) =
∑

i:π−1(i)<a,i<k+1

|i− π−1(i)|

+
∑

i:π−1(i)>a,i<k+1

|i− π−1(i)|+ |k+ 1− a|

where a)= N.

d.3 implementation & experiment details 205

Then
∑

i:π−1(i)<a,i<k+1

|i− π−1(i)|+
∑

i:π−1(i)>a,i<k+1

|i− π−1(i) + 1− 1|

!
∑

i:π−1(i)<a,i<k+1

|i− π−1(i)|

+
∑

i:π−1(i)>a,i<k+1

|i− (π−1(i)− 1) +
∑

i:π−1(i)>a,i<k+1

1

! dpos((1, · · · ,k), (k, · · · , 1)) + (k− a)

! dpos((1, · · · ,k), (k, · · · , 1)) + k+ (k mod 2)

= dpos((1, · · · ,k+ 1), (k+ 1, · · · , 1))

where
∑

i:π−1(i)<a,i<k+1

|i− π−1(i)|+
∑

i:π−1(i)>a,i<k+1

|i− (π−1(i)− 1)|

! dpos((1, · · · ,k), (k, · · · , 1))

is from the induction hypothesis.
Therefore

max
π∈SN

dpos(πid,π) = Dmax =

{
N2

2 N mod 2 = 0
N2−1

2 N mod 2 = 1

Q.E.D.

d.3 implementation & experiment details
d.3.1 Submodular Maximization

A set function g : 2Ω → R, where 2Ω is the power set of Ω, is
submodular when it has the diminishing returns property, that is, for
all P ⊂ Q ⊂ Ω and p ∈ Ω \Q

g(P ∪ {p})− g(P) " g(Q∪ {p})− g(Q)

As a combinatorial version of convexity (Lovász, 1983), submodular-
ity has been playing a critical role in combinatorial optimization (Fu-
jishige, 2005).

One important property of the submodular function is that when
it is positive (g(·) " 0) and monotone (P ⊂ Q =⇒ g(P) ! g(Q)),
its maximization can be performed greedily with an approximation
guarantee (Nemhauser et al., 1978) as given below. In the maxi-
mization of a positive monotone submodular function with the car-
dinality constraints, g(P∗) = max|P|=M g(P), the solution P∗

greedy =
{p∗

1, · · · , p∗
M} from the greedy strategy which sequentially solves p∗

m =

206 batch bayesian optimization on permutations

argmaxp∈Ω g({p∗
1, · · · , p∗

m−1, p}) has the following approximation gua-
rantee

(1− e−1)g(P∗) ! g(P∗
greedy) ! g(P∗)

In practice, this greedy method often provides almost optimum so-
lutions (Sharma et al., 2015). Moreover, it is possible to relax the
conditions (positivity, monotonicity, and even submodularity) (Bian
et al., 2017; Feige et al., 2011; Sakaue, 2020).

d.3.2 Resemblance to Local Penalization
Taken from (González et al., 2016), the local penalization strategy

selects b-th point in a batch as follows

xt,b = argmax
x∈X

{
g(at(x))

b−1∏

i=1

φ(x, xt,i)
}

(D.10)

where φ(x, xt,i) is a local penalizer which is non-decreasing function
of Euclidean distance ‖ x− xt,i ‖2 and g(·) is a positive increasing
function similar to our weight function.

If we use the prior covariance function K(·, ·), which is the kernel
of the GP surrogate model in place of the posterior covariance func-
tion Kt(·, ·) as the diversity gauge of LAW

t , the greedy maximization
objective becomes

xb = argmax
x∈X

w(at(x))2 ·K(x, x |{xi}|b−1|) (D.11)

where K(x, x |{xi}|b−1|) = K(x, x)−K(x, {xi}|b−1|)(K({xi}|b−1|, {xi}|b−1|)
+σ2I)−1(K({xi}|b−1|, x). We call this LAW variant as LAW-prior-EST
and LAW-prior-EI according to the acquisition function each uses.

Since the closer to the conditioning data it is, the smaller the predic-
tive variance is, the predictive variance behaves exactly as what the
local penalizer aims at. Another key difference is that, while the local
penalizer Eq. D.10 is heuristically designed, LAW-prior-EST\EI use
the kernel whose hyperparameters are fitted in the surrogate model
fitting step. Therefore, the diversity measured in LAW-prior-EST\EI
is more guided by the collected evaluation data.

Additional comparison to these variants (Appx. D.4) reveals the
contribution of the acquisition weights and thus further confirms the
benefit of using acquisition weights in the optimization performance

d.3.3 Benchmarks of optimization on permutations
quadratic assignment problems (Koopmans and Beckmann,
1957) Given N facilities P and N locations L, a distance d(·, ·) is given
for each pair of locations and a weight k(·, ·) is given for each pair
of facilities, for example, the cost of delivery between facilities. Then

d.3 implementation & experiment details 207

the goal is to find an assignment represented by a permutation π∗

minimizing f(π) =
∑

a,b∈P k(a,b) · d(π(a),π(b)).
Data source (https://www.opt.math.tugraz.at/qaplib/inst.htm

l): char12a (Christofides and Benavent, 1989), nug22 (Nugent et al.,
1968), esc32a (Eschermann and Wunderlich, 1990)

flowshop scheduling problems (Wikipedia contributors, 2020)
There are N machines and M jobs. Each job requires N operations
to complete. The n-th operation of the job must be executed on the
m-th machine. Each machine can process at most one operation at
a time. Each operation in each job has its own execution specified.
Even though jobs can be executed in any order, operations in each
job should obey the given order. The problem is to find an optimal
order of jobs to minimize execution time. For a formal description,
please refer to (Reeves, 1995).

Data source (http://people.brunel.ac.uk/~mastjjb/jeb/orlib
/flowshopinfo.html): car5 (Carlier, 1978), hel2 (Heller, 1960), reC19
(Reeves, 1995)

traveling salesman problems For given cities, a salesman vis-
its each city exactly once while minimizing a given cost incurred in
travelling. TSP is the most widely known example of combinatorial
optimization on permutations.

Data source (http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/)

d.3.4 Normalized Maximum Likelihood
Model Selection with Minimum Description Length

In minimum description length (MDL) principle (P. D. Grünwald
and Grunwald, 2007), a distribution called a universal distribution
is associated with each model class, for example, p̄G(·) is associated
with the MG, BNs with a given DAG G. For a given data D, model
selection can be performed by comparing the universal distribution
relative to a model class

p̄G1
(D) VS p̄G2

(D)

Normalized Maximum Likelihood
Normalized Maximum Likelihood (NML) is regarded as the most

fundamental universal distribution (P. Grünwald and Roos, 2019).
For the discrete BNs with a DAG G with the data D, NML is defined
as

p̄G(D) =
pBN(D |G, θ̂ML(G,D))

∑
|D |=|D ′ | pBN(D ′ | G, θ̂ML(G,D ′))

208 batch bayesian optimization on permutations

where θ̂ML(G,D) is the maximum likelihood estimator of the pa-
rameters of the BN with the DAG G on the data D. The summa-
tion over all possible data with the same cardinality is the compu-
tational bottleneck. The log of the denominator REGNML(G,N) =
log(

∑
|D ′ |=N pBN(D ′ | G, θ̂ML(G,D ′))) is called NML regret.45

NML regret estimation
Even though it is strongly principled, NML computation is restrict-

ed to certain classes of models, e.g, multinomial distribution (Kon-
tkanen and Myllymäki, 2007), naive Bayes (Mononen and Myllymäki,
2007), which prevents its use in score-based structure learning. In
Bayesian networks, efficient approximations were proposed and sho-
wn to perform better in model selection (Roos et al., 2008; Silander
et al., 2018).

Even though REGNML(G,N) cannot be exactly computed, the sum-
mation can be estimated using Monte carlo with proper scaling when
BN is discrete.

log
(∑

|D |=|D ′ |

pBN(D ′ | G, θ̂ML(G,D ′))
)

≈ log
(∑

|D |=|D ′ | 1

| S |

)
+ log

(
LSED ′∈S log(pBN(D ′ | G, θ̂ML(G,D ′)))

)

where LSE is the logsumexp whose implementation increases the nu-
merical stability significantly.46

In our scaled MC estimate of REGNML(·, ·), we observed that small-
er samples tend to marginally underestimate the value. However, the
estimation seems quickly saturated with respect to the sample size.
We observed that a MC-estimate of NML regret using | S | = 10, 000
is a good compromise between the stability of the estimation and the
time needed for the evaluation. With 10,000 samples, the estimation
is stable and the difference made by using more samples is marginal
to the difference made by the choice of different DAGs. On machines
with Intel(R) Xeon(R) CPU E5-2630 v3 2.40GHz, the evaluation time
of the objectives (Tab. 6.4) ranges from one minute to four minutes.

d.4 additional experimental results
In this section, we provide the additional experimental results which

we cannot present in the main text due to the page limit. Following
results are presented from the next page

45 Originally, it is called regret but not to confuse with bandit regret, we prefix it with
NML.

46 https://pytorch.org/docs/stable/generated/torch.logsumexp.html

d.4 additional experimental results 209

• Comparison with other LAW variants as combinatorial versions
of the local penalization(González et al., 2016) (Subsec. 6.5.2)

• Figures of the structure learning experiments (Subsec. 6.5.3)

210 batch bayesian optimization on permutations

Quadratic Assignment Problems

Method Mean±Std.Err. #Eval
BUCB +18104.80± 955.15 530
DPP-MAX-EST +14731.60± 633.79 530
DPP-SAMPLE-EST +19969.60± 718.90 530
MACE-EST +14126.13± 596.29 530
MACE-UCB +13440.13± 347.78 530
q-EI +12769.20± 457.11 530
q-EST +11790.13± 497.59 530
LAW-EI +11914.40± 345.21 530
LAW-EST +12067.07± 237.50 530
LAW-prior-EI +11875.67± 771.34 530
LAW-prior-EST +11842.53± 301.49 530

Method Mean±Std.Err. #Eval
DPP-MAX-EST +3899.60± 23.04 530
DPP-SAMPLE-EST +4446.13± 22.45 530
MACE-EST +4085.87± 19.65 530
MACE-UCB +4030.80± 26.37 530
q-EI +3653.07± 10.06 530
q-EST +3690.00± 15.16 530
LAW-EI +3724.00± 12.71 530
LAW-EST +3730.93± 9.03 530
LAW-prior-EI +3777.47± 7.90 530
LAW-prior-EST +3695.47± 11.49 530

Method Mean±Std.Err. #Eval
DPP-MAX-EST +276.53± 3.87 510
DPP-SAMPLE-EST +319.60± 3.78 510
MACE-EST +285.60± 3.13 830
MACE-UCB +250.27± 3.51 830
q-EI +172.67± 3.23 830
q-EST +171.20± 1.84 830
LAW-EI +192.53± 5.26 830
LAW-EST +191.73± 2.89 830
LAW-prior-EI +216.13± 5.30 830
LAW-prior-EST +188.93± 1.91 830

d.4 additional experimental results 211

Flow-shop Scheduling Problems

Method Mean±Std.Err. #Eval
BUCB +7887.20± 32.37 275
DPP-MAX-EST +7795.67± 11.11 530
DPP-SAMPLE-EST +7972.73± 25.60 530
MACE-EST +7791.27± 9.34 530
MACE-UCB +7775.87± 9.73 530
q-EI +7782.67± 10.76 530
q-EST +7781.94± 9.25 530
LAW-EI +7793.53± 7.89 530
LAW-EST +7779.87± 7.29 530
LAW-prior-EI +7774.93± 9.97 530
LAW-prior-EST +7751.94± 7.80 530

Method Mean±Std.Err. #Eval
DPP-MAX-EST +142.47± 0.48 530
DPP-SAMPLE-EST +151.73± 0.58 530
MACE-EST +142.53± 0.45 530
MACE-UCB +143.13± 0.42 530
q-EI +141.20± 0.66 530
q-EST +141.00± 0.49 530
LAW-EI +141.20± 0.45 530
LAW-EST +140.67± 0.31 530
LAW-prior-EI +142.73± 0.49 530
LAW-prior-EST +140.33± 0.35 530

Method Mean±Std.Err. #Eval
DPP-MAX-EST +2262.13± 7.66 810
DPP-SAMPLE-EST +2409.87± 6.09 830
MACE-EST +2282.40± 5.86 830
MACE-UCB +2252.00± 5.79 830
q-EI +2231.07± 8.39 830
q-EST +2241.87± 12.06 830
LAW-EI +2211.20± 4.47 830
LAW-EST +2202.00± 4.17 830
LAW-prior-EI +2243.60± 6.56 830
LAW-prior-EST +2215.27± 7.20 830

212 batch bayesian optimization on permutations

Traveling Salesman Problems

Method Mean±Std.Err. #Eval
BUCB +4184.20± 132.13 405
DPP-MAX-EST +3786.00± 73.76 530
DPP-SAMPLE-EST +4602.93± 52.15 530
MACE-EST +3575.53± 25.04 530
MACE-UCB +3582.93± 20.93 530
q-EI +3426.53± 39.93 530
q-EST +3526.80± 75.02 530
LAW-EI +3465.87± 25.69 530
LAW-EST +3369.27± 7.20 530
LAW-prior-EI +3445.53± 51.35 530
LAW-prior-EST +3367.40± 10.66 530

Method Mean±Std.Err. #Eval
DPP-MAX-EST +2726.93± 50.37 530
DPP-SAMPLE-EST +3652.87± 29.48 530
MACE-EST +2939.67± 49.04 530
MACE-UCB +2697.93± 50.18 530
q-EI +2065.13± 36.48 530
q-EST +2059.73± 47.93 530
LAW-EI +2486.87± 47.36 530
LAW-EST +2038.40± 36.28 530
LAW-prior-EI +2491.27± 46.49 530
LAW-prior-EST +2250.00± 56.72 530

Method Mean±Std.Err. #Eval
DPP-MAX-EST +39539.47± 486.85 130
DPP-SAMPLE-EST +40893.30± 265.03 170
MACE-EST +32710.55± 212.19 830
MACE-UCB +25772.51± 370.62 820
q-EI +20472.44± 502.39 830
q-EST +21199.09± 619.65 830
LAW-EI +26864.42± 589.32 680
LAW-EST +19846.04± 484.86 830
LAW-prior-EI +32670.35± 614.68 190
LAW-prior-EST +32072.59± 544.12 190

d.4 additional experimental results 213

Structure Learning

C = 76100
Method #Eval Mean±Std.Err.
GA 620 (C+ 53.46)± 4.99
GA 1240 (C+ 31.90)± 5.86
q-EI 620 (C+ 55.98)± 10.11
q-EST 620 (C+ 70.67)± 16.31
LAW-EST 620 (C+ 29.58)± 6.36

C = 124000
Method #Eval Mean±Std.Err.
GA 620 (C+ 1387.12)± 79.26
GA 1240 (C+ 1368.07)± 92.26
q-EI 620 (C+ 864.85)± 0.16
q-EST 620 (C+ 928.83)± 32.97
LAW-EST 620 (C+ 866.64)± 0.39

C = 135000
Method #Eval Mean±Std.Err.
GA 620 (C+ 5330.60)± 406.92
GA 1240 (C+ 4814.04)± 418.49
q-EI 620 (C+ 2433.23)± 357.18
q-EST 620 (C+ 3215.75)± 556.36
LAW-EST 620 (C+ 2033.95)± 174.04

C = 117000
Method #Eval Mean±Std.Err.
GA 620 (C+ 5825.19)± 570.55
GA 1240 (C+ 5114.97)± 449.93
q-EI 620 (C+ 2969.00)± 581.67
q-EST 620 (C+ 2739.77)± 554.12
LAW-EST 620 (C+ 1409.27)± 227.57

