299 research outputs found

    A Groupoid Approach to Discrete Inverse Semigroup Algebras

    Get PDF
    Let KK be a commutative ring with unit and SS an inverse semigroup. We show that the semigroup algebra KSKS can be described as a convolution algebra of functions on the universal \'etale groupoid associated to SS by Paterson. This result is a simultaneous generalization of the author's earlier work on finite inverse semigroups and Paterson's theorem for the universal C∗C^*-algebra. It provides a convenient topological framework for understanding the structure of KSKS, including the center and when it has a unit. In this theory, the role of Gelfand duality is replaced by Stone duality. Using this approach we are able to construct the finite dimensional irreducible representations of an inverse semigroup over an arbitrary field as induced representations from associated groups, generalizing the well-studied case of an inverse semigroup with finitely many idempotents. More generally, we describe the irreducible representations of an inverse semigroup SS that can be induced from associated groups as precisely those satisfying a certain "finiteness condition". This "finiteness condition" is satisfied, for instance, by all representations of an inverse semigroup whose image contains a primitive idempotent

    Turbulence, amalgamation and generic automorphisms of homogeneous structures

    Get PDF
    We study topological properties of conjugacy classes in Polish groups, with emphasis on automorphism groups of homogeneous countable structures. We first consider the existence of dense conjugacy classes (the topological Rokhlin property). We then characterize when an automorphism group admits a comeager conjugacy class (answering a question of Truss) and apply this to show that the homeomorphism group of the Cantor space has a comeager conjugacy class (answering a question of Akin-Hurley-Kennedy). Finally, we study Polish groups that admit comeager conjugacy classes in any dimension (in which case the groups are said to admit ample generics). We show that Polish groups with ample generics have the small index property (generalizing results of Hodges-Hodkinson-Lascar-Shelah) and arbitrary homomorphisms from such groups into separable groups are automatically continuous. Moreover, in the case of oligomorphic permutation groups, they have uncountable cofinality and the Bergman property. These results in particular apply to automorphism groups of many ω\omega-stable, ℵ0\aleph_0-categorical structures and of the random graph. In this connection, we also show that the infinite symmetric group S∞S_\infty has a unique non-trivial separable group topology. For several interesting groups we also establish Serre's properties (FH) and (FA)

    The Complexity of Rooted Phylogeny Problems

    Full text link
    Several computational problems in phylogenetic reconstruction can be formulated as restrictions of the following general problem: given a formula in conjunctive normal form where the literals are rooted triples, is there a rooted binary tree that satisfies the formula? If the formulas do not contain disjunctions, the problem becomes the famous rooted triple consistency problem, which can be solved in polynomial time by an algorithm of Aho, Sagiv, Szymanski, and Ullman. If the clauses in the formulas are restricted to disjunctions of negated triples, Ng, Steel, and Wormald showed that the problem remains NP-complete. We systematically study the computational complexity of the problem for all such restrictions of the clauses in the input formula. For certain restricted disjunctions of triples we present an algorithm that has sub-quadratic running time and is asymptotically as fast as the fastest known algorithm for the rooted triple consistency problem. We also show that any restriction of the general rooted phylogeny problem that does not fall into our tractable class is NP-complete, using known results about the complexity of Boolean constraint satisfaction problems. Finally, we present a pebble game argument that shows that the rooted triple consistency problem (and also all generalizations studied in this paper) cannot be solved by Datalog

    Classification from a computable viewpoint

    Get PDF
    Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism or other important equivalence, in terms of relatively simple invariants. Where this is impossible, it is useful to have concrete results saying so. In model theory and descriptive set theory, there is a large body of work showing that certain classes of mathematical structures admit classification while others do not. In the present paper, we describe some recent work on classification in computable structure theory. Section 1 gives some background from model theory and descriptive set theory. From model theory, we give sample structure and non-structure theorems for classes that include structures of arbitrary cardinality. We also describe the notion of Scott rank, which is useful in the more restricted setting of countable structures. From descriptive set theory, we describe the basic Polish space of structures for a fixed countable language with fixed countable universe. We give sample structure and non-structure theorems based on the complexity of the isomorphism relation, and on Borel embeddings. Section 2 gives some background on computable structures. We describe three approaches to classification for these structures. The approaches are all equivalent. However, one approach, which involves calculating the complexity of the isomorphism relation, has turned out to be more productive than the others. Section 3 describes results on the isomorphism relation for a number of mathematically interesting classes—various kinds of groups and fields. In Section 4, we consider a setting similar to that in descriptive set theory. We describe an effective analogue of Borel embedding which allows us to make distinctions even among classes of finite structures. Section 5 gives results on computable structures of high Scott rank. Some of these results make use of computable embeddings. Finally, in Section 6, we mention some open problems and possible directions for future work
    • …
    corecore