83,049 research outputs found

    Optimizing E-Commerce Product Classification Using Transfer Learning

    Get PDF
    The global e-commerce market is snowballing at a rate of 23% per year. In 2017, retail e-commerce users were 1.66 billion and sales worldwide amounted to 2.3 trillion US dollars, and e-retail revenues are projected to grow to 4.88 trillion USD in 2021. With the immense popularity that e-commerce has gained over past few years comes the responsibility to deliver relevant results to provide rich user experience. In order to do this, it is essential that the products on the ecommerce website be organized correctly into their respective categories. Misclassification of products leads to irrelevant results for users which not just reflects badly on the website, it could also lead to lost customers. With ecommerce sites nowadays providing their portal as a platform for third party merchants to sell their products as well, maintaining a consistency in product categorization becomes difficult. Therefore, automating this process could be of great utilization. This task of automation done on the basis of text could lead to discrepancies since the website itself, its various merchants, and users, all could use different terminologies for a product and its category. Thus, using images becomes a plausible solution for this problem. Dealing with images can best be done using deep learning in the form of convolutional neural networks. This is a computationally expensive task, and in order to keep the accuracy of a traditional convolutional neural network while reducing the hours it takes for the model to train, this project aims at using a technique called transfer learning. Transfer learning refers to sharing the knowledge gained from one task for another where new model does not need to be trained from scratch in order to reduce the time it takes for training. This project aims at using various product images belonging to five categories from an ecommerce platform and developing an algorithm that can accurately classify products in their respective categories while taking as less time as possible. The goal is to first test the performance of transfer learning against traditional convolutional networks. Then the next step is to apply transfer learning to the downloaded dataset and assess its performance on the accuracy and time taken to classify test data that the model has never seen before

    Multifractal Network Generator

    Full text link
    We introduce a new approach to constructing networks with realistic features. Our method, in spite of its conceptual simplicity (it has only two parameters) is capable of generating a wide variety of network types with prescribed statistical properties, e.g., with degree- or clustering coefficient distributions of various, very different forms. In turn, these graphs can be used to test hypotheses, or, as models of actual data. The method is based on a mapping between suitably chosen singular measures defined on the unit square and sparse infinite networks. Such a mapping has the great potential of allowing for graph theoretical results for a variety of network topologies. The main idea of our approach is to go to the infinite limit of the singular measure and the size of the corresponding graph simultaneously. A very unique feature of this construction is that the complexity of the generated network is increasing with the size. We present analytic expressions derived from the parameters of the -- to be iterated-- initial generating measure for such major characteristics of graphs as their degree, clustering coefficient and assortativity coefficient distributions. The optimal parameters of the generating measure are determined from a simple simulated annealing process. Thus, the present work provides a tool for researchers from a variety of fields (such as biology, computer science, biology, or complex systems) enabling them to create a versatile model of their network data.Comment: Preprint. Final version appeared in PNAS

    A High-Throughput Solver for Marginalized Graph Kernels on GPU

    Get PDF
    We present the design and optimization of a linear solver on General Purpose GPUs for the efficient and high-throughput evaluation of the marginalized graph kernel between pairs of labeled graphs. The solver implements a preconditioned conjugate gradient (PCG) method to compute the solution to a generalized Laplacian equation associated with the tensor product of two graphs. To cope with the gap between the instruction throughput and the memory bandwidth of current generation GPUs, our solver forms the tensor product linear system on-the-fly without storing it in memory when performing matrix-vector dot product operations in PCG. Such on-the-fly computation is accomplished by using threads in a warp to cooperatively stream the adjacency and edge label matrices of individual graphs by small square matrix blocks called tiles, which are then staged in registers and the shared memory for later reuse. Warps across a thread block can further share tiles via the shared memory to increase data reuse. We exploit the sparsity of the graphs hierarchically by storing only non-empty tiles using a coordinate format and nonzero elements within each tile using bitmaps. Besides, we propose a new partition-based reordering algorithm for aggregating nonzero elements of the graphs into fewer but denser tiles to improve the efficiency of the sparse format.We carry out extensive theoretical analyses on the graph tensor product primitives for tiles of various density and evaluate their performance on synthetic and real-world datasets. Our solver delivers three to four orders of magnitude speedup over existing CPU-based solvers such as GraKeL and GraphKernels. The capability of the solver enables kernel-based learning tasks at unprecedented scales

    On the rich-club effect in dense and weighted networks

    Get PDF
    For many complex networks present in nature only a single instance, usually of large size, is available. Any measurement made on this single instance cannot be repeated on different realizations. In order to detect significant patterns in a real--world network it is therefore crucial to compare the measured results with a null model counterpart. Here we focus on dense and weighted networks, proposing a suitable null model and studying the behaviour of the degree correlations as measured by the rich-club coefficient. Our method solves an existing problem with the randomization of dense unweighted graphs, and at the same time represents a generalization of the rich--club coefficient to weighted networks which is complementary to other recently proposed ones.Comment: Final version accepted for publication on EPJ

    GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU

    Full text link
    High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs because of three challenges: (1) the difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address some of these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based on sparse linear algebra, which will allow graph algorithms to be expressed in a performant, succinct, composable and portable manner. In this paper, we examine the performance challenges of a linear-algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction. Exploiting output sparsity allows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in "GraphBLAST", the first high-performance linear algebra-based graph framework on NVIDIA GPUs that is open-source. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse and GBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework, while offering a simpler and more concise programming model.Comment: 50 pages, 14 figures, 14 table
    • …
    corecore