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Abstract. For many complex networks present in nature only a single instance, usually of large size, is
available. Any measurement made on this single instance cannot be repeated on different realizations. In
order to detect significant patterns in a real-world network it is therefore crucial to compare the measured
results with a null model counterpart. Here we focus on dense and weighted networks, proposing a suitable
null model and studying the behaviour of the degree correlations as measured by the rich-club coefficient.
Our method solves an existing problem with the randomization of dense unweighted graphs, and at the same
time represents a generalization of the rich-club coefficient to weighted networks which is complementary
to other recently proposed ones.

PACS. 89.75.Hc Networks and genealogical trees – 89.75.Fb Structures and organization in complex
systems

1 Introduction

Networks, identified by the set of connections (edges, or
links) between units (vertices) of a system, are widespread
in nature [1,2]. One of the most important local quanti-
ties is the number of connections of vertex i, called the
degree ki. Real complex networks are characterised by
specific features such as small-world effect [3] and scale-
invariant degree distribution [4]. At the same time for
many networks (some maps of the Internet [5], or the
whole WWW [6] or biological webs [7]) additional infor-
mation on the intensity of connections is available. In this
case, one can assign a weight wij to the link between ver-
tices i and j. The weighted counterpart of the degree is
given by the strength si =

∑
j wij .

An important quantity, which is the main focus of the
present work, is the rich-club coefficient (RCC) φ(k) in-
troduced as a correlation measure of the interconnectivity
between nodes with a “large” degree [8]. In particular,
given the number E>k of edges between the n>k vertices
whose degree is larger than k the RCC is defined as

φ(k) ≡ 2E>k

n>k(n>k − 1)
. (1)

a e-mail: garlaschelli@unisi.it

In other words the RCC φ(k) measures the probability
that the edges between pairs of vertices whose degree is
larger than k are actually drawn. If no edge is present then
φ(k) = 0, while if all the possible edges are present then
φ(k) = 1. The interest for this quantity comes from the
fact that an increasing trend for the RCC would reveal the
presence of correlations between large hubs. However it is
easy to check that, even without any correlation, it is more
likely that one edge is shared between two hubs rather
than between two vertices with a low degree. In particular
one finds that in an uncorrelated graph the RCC increases
as k2 for large k [9]. To overcome this problem, Colizza
et al. [9] considered a suitable set of randomized versions
of a given graph, and computed the corresponding RCC
φrand(k) on this ensemble. They proposed to consider the
ratio

ρ(k) ≡ φ(k)
φrand(k)

(2)

in order to assess the presence of correlations in a vari-
ety of systems. The randomizing strategy adopted pre-
serves the degree sequence of the original graph by using
an algorithm proposed by Maslov, Sneppen and Zaliznyak
(MSZ) [10,11]. Two edges are selected, and one endvertex
of the first is exchanged with one endvertex of the second
and viceversa, as shown in Figure 1a. This local rewiring
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Fig. 1. (a) The rewiring in the MSZ algorithm. Note that no
other links are present between the vertices. (b) The rewiring
in our new procedure transfers the weight also between exist-
ing links. In unweighted networks this implies the creation of
multiple links. Note that if w1 = wm this would correspond to
the removal of the link between A and B.

is successful only if no edge already exists in place of the
rewired ones. Otherwise, two new edges are selected and
a new rewiring is attempted.

This rewiring procedure presents some limitations in
the case of dense graphs. Consider the limit case of a com-
plete graph with N vertices: here no rewiring is possible
and the randomized set of graphs corresponds to the sin-
gle original instance. Therefore one always finds a value
ρ(k) = 1 for every k, even if only the single value k = N−1
is present in the network. However, this merely reflects the
fact that the configuration space of the possible random-
izations is reduced to only one configuration. For dense
graphs, such as the World Trade Web [12–14] we consider
later on and some food webs [7], the number of available
configuration is also small. Furthermore, note that most
collaboration networks [2] (co-authorship, board of direc-
tors, movie actors) are obtained as projections of a bipar-
tite graph. For example in co-authorship networks there
are two classes of vertices: the papers and the scientists au-
thoring them. Links only exist between vertices belonging
to different classes, and the graph is said to be bipartite.
From this bipartite graph one can obtain a one-mode net-
work whose vertices represent only the scientists, and all
scientists co-authoring at least one paper are connected in
a clique (fully connected subgraph). Thus, even if the net-
work is on average sparse, it is divided into dense cliques.
In all these situations, any pair of edges belonging to the
most important subunits (the cliques) cannot be rewired,
and the ratio ρMSZ(k) = ρ(k) = φ(k)

φMSZ(k) remains close
to 1 and cannot be used to assess the significance of the
results.

2 New randomization and definition
for the rich-club coefficient

To overcome this problem we propose to generalize the
MSZ algorithm and the definition of the rich-club coeffi-

cient by explicitly transforming the graphs analysed into
weighted graphs. Our proposal is then to consider the net-
work as weighted, and redistribute the weights of the edges
(possibly also on existing links) preserving the strength of
the vertices as follows. Specifically, if wm is the minimum
value of the weights in the original network we can modify
the rewiring procedure by changing by an amount wm the
weights of two pairs of edges as shown in Figure 1b. This
randomization (denoted hereafter as NEW) corresponds
to the original MSZ algorithm when the network is sparse
and unweighted. Indeed in this case the minimum weight
wm is one and it is unlikely to draw twice the same edge.
We then make a second generalization by defining a rich-
club coefficient for the weighted case as

φw(s) ≡ 2E>s

n>s(n>s − 1)
(3)

where E>s is the number of weighted edges between ver-
tices whose strength is larger than s and n>s is the number
of vertices whose strength is larger than s. We finally define

ρw(s) ≡ φw(s)
φNEW

w (s)
. (4)

We stress that our focus here is different from other recent
generalizations of the rich-club coefficient, which are spe-
cific to weighted networks [15,16]. Our approach originates
from the aforementioned problem with the randomization
of dense unweighted networks. The above definition, when
coupled with our new randomization procedure, solves this
problem even for complete graphs. Moreover, it automat-
ically recovers the original (and intuitive) MSZ approach
for sparse unweighted networks. Additionally, it provides
a coherent generalization of the rich-club to weighted net-
works, emphasising patterns which are complementary to
those investigated by other proposals [15,16]. In our above
definition we are considering only the numbers E>s of
edges and n>s of vertices, and not their weight. This cap-
tures a structural property of many social and/or eco-
nomic networks where only the presence of a tie, even if
weak [17], plays a role in the organization of the system. If
combined with the other available definitions, this prop-
erty allows to recover a richer picture of the correlation
structure of weighted networks, as we show below for a
particular example. Finally, the choice of the minimum
value wm automatically sets a scale for the weights in the
randomized ensemble. In this way we preserve the original
strengths without the need to regard each weighted edge
as a superposition of binary edges and split them as in
other approaches [15]. Indeed, the latter procedure is very
sensitive to the (arbitrary) choice of the unit of weight [18].
Remarkably, through a single definition we can address all
the above problems and unambiguously characterize any
network, ranging from unweighted to weighted, and from
sparse to dense.

Note that in our randomization strong links present in
the original network can be diluted into more and weaker
links in the randomized ensemble. However, the strength
sequence {si}N

i=1, representing the vector of the strengths
of all vertices, is preserved at any instance. As a result,
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it is possible to exploit the results for randomized net-
works with preserved strength sequence [19] to character-
ize how a particular strength distribution affects the prop-
erties of the randomized networks. The main lesson is that
weighted properties, including the weighted clustering co-
efficient, the weighted average nearest neighbour degree
and the disparity, display a kind of Bosonic behaviour that
parallels the Fermionic one observed for unweighted net-
works with preserved degree [19]. In the present study we
are interested in understanding how the rich-club coeffi-
cient of the original network relates to that of the ran-
domized variants.

Also note that, among the other randomization dis-
cussed in the literature, one in particular showed that
preserving both the degree sequence and the modularity
is in most cases enough to explain the correlations of the
network [20]. Due to the close relation between degree cor-
relations and the rich-club coefficient, we expect that such
a randomization would preserve the rich-club as well. Our
perspective is however in some sense reversed: we shall re-
gard dense subgraphs as arising in a bottom-up manner
from the local constraints, rather than as forcing the rich-
club to emerge in a top-down fashion from the modular-
ity. In particular, we expect initially dense (either topo-
logically or in a weighted sense) modules to dilute, and
a possible reordering of vertices among modules for each
randomized variant.

In the same spirit, our method is different from ran-
domizations that step back to the bipartite structure of
collaboration or affiliation networks, rewire links preserv-
ing the degrees in the bipartite graph, and then project the
latter to obtain a randomized one-mode network. In both
methods, cliques that are present in the original network
will not be preserved. However, the bipartite randomiza-
tion will create other cliques in any variant of the network,
arising as the two-mode network is projected onto the one-
mode one.

3 Sparse and dense unweighted graphs

The simplest example to describe our procedure is to start
from a simple unweighted graph, where wm = 1. If the net-
work is sparse the procedure is the analogous of the MSZ
one. By contrast, dense unweighted graphs give rise to the
creation of multiple edges. For instance, we illustrate the
possible outcomes for a complete graph with 4 vertices
(K4). Starting from the original configuration A shown
in Figure 2, the flipping of edges ε and ζ will produce
either the configurations B or D. If different edges are
selected, we find that starting from A we can reach also
the configurations C, E, F, G. Similarly, starting from
the configuration H, we can flip any of the edges α, β, γ
once with any of the edges δ, ε, ζ. In one half of the cases
we move to the configuration D, in the other half to the
configuration E. Therefore pHD = pHE = 1/2. One can
repeat this calculation for any other starting configuration
keeping track of the various probabilities. In this way we
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Fig. 2. The 10 configurations arising from the randomization
of the complete graph K4. In all configurations the strength
s of each vertex is preserved. However, for s = 0, 1, 2 one has
E>s = 6 in A, while E>s = 4 in B-G, and E>s = 2 in H-J.

can write the following transition matrix T :

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2/5 2/5 2/5 2/5 2/5 2/5 0 0 0

1/6 0 1/10 2/5 0 0 0 0 1/2 0

1/6 1/10 0 0 0 0 2/5 0 1/2 0

1/6 2/5 0 0 1/10 0 0 1/2 0 0

1/6 0 0 1/10 0 2/5 0 1/2 0 0

1/6 0 0 0 2/5 0 1/10 0 0 1/2

1/6 0 2/5 0 0 1/10 0 0 0 1/2

0 0 0 1/10 1/10 0 0 0 0 0

0 1/10 1/10 0 0 0 0 0 0 0

0 0 0 0 0 1/10 1/10 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Iterating T yields the steady state matrix T∞, whose
columns are all equal to each other and represent the
vector of densities of the various configurations. We find
N(A) = 4/15, N(B) = N(C) = N(D) = N(E) =
N(F) = N(G) = 1/9, N(H) = N(I) = N(J) = 1/45.
Note that in this case the strength is always an inte-
ger number, corresponding to multiple links (wm = 1).
In particular, the strength of every vertex remains equal
to the original value 3. However, the E>s in our defi-
nition (3) counts all multiple edges created by the ran-
domization as a single weighted edge. Therefore, while in
the original instance φw(s) = φ(k) = 1 for every value
of s and k, across the randomized ensemble we obtain a
φNEW

w (s) = 11/15 � 0.73 for s = 0, 1, 2 smaller than the
value φMSZ(k) = 1. This yields ρw(s) = 15/11 � 1.36. In
general, for complete graphs our procedure yields values
of ρw(s) systematically larger than the value 1, correctly
indicating the presence of the rich-club effect.

In order to investigate the rich-club effect in the
whole range between the extreme examples of sparse and
fully connected networks, we consider (Gilbert) Random
Graphs [21,22] corresponding to different values of the
probability p to draw an edge. We consider the range from
p = 10−3 to 1/2. We study the difference between our
method and the traditional unweighted one by considering
the ratio of the two densities ρw(s)/ρMSZ(k) computed
with the present randomization and with the original MSZ
algorithm. As previously noticed, when randomizing an
originally unweighted graph the strength s is given by
the number of multiple edges that may be created in it.
However, the original random graph has no such multiple
edges, thus for the initial instance k = s and φw(s) = φ(k).
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Fig. 3. Rich-club analysis of random graphs. For sparse net-
works the ratio φMSZ/φw is close to 1 and therefore our
proposed randomization has the same desired properties as
the MSZ procedure. When the density increases, φw becomes
smaller than φMSZ , meaning that ρMSZ > ρw. This is cor-
rect since in the limit of a complete graph the MSZ procedure
can only yield φMSZ = φ, as no randomization is possible.
However, this is the configuration for which one expects the
maximum value of the rich-club coefficient.

We can then write

ρw(s)
ρMSZ(s)

=
φMSZ(s)
φNEW (s)

(5)

which is independent of the original instance. For MSZ
the argument s always coincides with the original degree
k which is preserved, while this is not the case for our
definitions. The behaviour of the above ratio is shown in
Figure 3 for various random graphs. In the main panel we
show different plots corresponding to different choices of p.
The trends are all characterized by a flat plateau whose
height is larger than one. Therefore we find that our ap-
proach systematically yields φMSZ > φNEW , correspond-
ing to ρw < ρMSZ . This effect becomes more pronounced
as the density increases. This is clearly illustrated in the
inset, where the height of the plateau shown in the main
panel is now plotted as a function of p. As expected, for
sparse graphs the ratio is close to one, since our gener-
alized approach recovers the MSZ one. By contrast, for
denser networks we correctly find that our algorithm ex-
plores a larger portion of configuration space, confirming
the results discussed for the extreme example of K4.

4 Weighted graphs

Finally, we illustrate our approach on inherently weighted
networks. The example we consider is that of the World
Trade Web (WTW) [12–14]. In this network the vertices
are world countries, and a link represents a reciprocal
trade relationship whose weight is given in millions of dol-
lars. The data report trading exchanges between world
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Fig. 4. Main panel: our weighted rich-club coefficient ρw, com-
pared with the unweighted one ρMSZ, for 4 different years of
WTW when the network is considered weighted. Inset: same
analysis on the unweighted version of the WTW for the year
1970. Other possible comparisons show similar discrepancies
between the two procedures.

countries for each year starting from 1948 to 2000 [23].
The values of the weights span six orders of magnitude;
for this reason it is more convenient to redefine the weight
as the logarithm of the original trade volume in dollars. In
the mail panel of Figure 4 we present the rich-club analy-
sis on different snapshots of the weighted WTW. The first
immediate result is that ρMSZ(k) sometimes indicates an-
ticorrelation between hubs. However, since in this region
the number of configurations accessible by MSZ is really
small, we interpret this feature as fluctuations in the rich-
club coefficient given by the poor statistics. In the case
of ρw(s) obtained with our algorithm, we instead identify
a positive correlation between medium and large hubs as
confirmed by a series of studies on the wealth and devel-
opment of nations [23,24]. This detects a significant cor-
relation for countries with an intermediate strength value.
Interestingly, this correlated region moves towards larger
strength values as time proceeds from 1960 to 1990. Fur-
thermore we note that we can detect additional informa-
tion, as compared with the MSZ algorithm, even if we
ignore the information about the weights of the WTW.
Indeed, if we discard the weights and simply consider the
WTW as an unweighted network, then we can apply our
strategy as already illustrated in the previous unweighted
examples. For the year 1970, this is shown in the inset of
Figure 4. The original network has a connectance (num-
ber of actual edges divided by the number of possible ones)
approximately equal to the very large value 0.5. As usual,
when using the traditional MSZ algorithm we obtain a
constant value of ρMSZ(k) close to one, mostly due to the
small number of available random configurations. How-
ever, using our measure ρw(s) we observe a decreasing
trend towards 1. This partially recovers the information on
the positively correlated range for small and intermediate
strength values. For larger values we find ρw = 1, and no
particular correlation can be extracted from the data. In
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this case, however, we can exclude that this feature is orig-
inated by the collapse of the available configuration space
for randomized configurations.

5 Conclusions

In conclusion, we have presented here a novel way to de-
fine a suitable randomization for dense and weighted net-
works. Various null models for weighted graphs have al-
ready been introduced [14–16,25–27], depending on the
properties one is interested in. Our emphasis here is on a
problem arising when dense unweighted graphs are ran-
domized while keeping the topological degrees fixed. In
this case the collapse of the available configuration space
has undesired effects on the rich club coefficient. We have
therefore defined a procedure that solves this problem and
at the same time provides a generalization of the rich-club
property which is complementary to other recently pro-
posed ones [15,16]. We have shown the advantage of our
approach on unweighted graphs ranging from sparse to
dense, and even complete. We have also shown its appli-
cation to the real World Trade Web, both in its weighted
and unweighted version. Our method outperforms the un-
weighted approach and recovers significant information on
the correlation structure of this network, which is in ac-
cordance with independent analyses of it.

G.C. acknowledges support from grant 2006PIV0001 (AGAUR
of the Generalitat de Catalunya).
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