8,430 research outputs found

    Dense Error Correction via L1-Minimization

    Get PDF
    This paper studies the problem of recovering a non-negative sparse signal \x \in \Re^n from highly corrupted linear measurements \y = A\x + \e \in \Re^m, where \e is an unknown error vector whose nonzero entries may be unbounded. Motivated by an observation from face recognition in computer vision, this paper proves that for highly correlated (and possibly overcomplete) dictionaries AA, any non-negative, sufficiently sparse signal \x can be recovered by solving an β„“1\ell^1-minimization problem: \min \|\x\|_1 + \|\e\|_1 \quad {subject to} \quad \y = A\x + \e. More precisely, if the fraction ρ\rho of errors is bounded away from one and the support of \x grows sublinearly in the dimension mm of the observation, then as mm goes to infinity, the above β„“1\ell^1-minimization succeeds for all signals \x and almost all sign-and-support patterns of \e. This result suggests that accurate recovery of sparse signals is possible and computationally feasible even with nearly 100% of the observations corrupted. The proof relies on a careful characterization of the faces of a convex polytope spanned together by the standard crosspolytope and a set of iid Gaussian vectors with nonzero mean and small variance, which we call the ``cross-and-bouquet'' model. Simulations and experimental results corroborate the findings, and suggest extensions to the result.Comment: 40 pages, 9 figure

    Worst Configurations (Instantons) for Compressed Sensing over Reals: a Channel Coding Approach

    Full text link
    We consider the Linear Programming (LP) solution of the Compressed Sensing (CS) problem over reals, also known as the Basis Pursuit (BasP) algorithm. The BasP allows interpretation as a channel-coding problem, and it guarantees error-free reconstruction with a properly chosen measurement matrix and sufficiently sparse error vectors. In this manuscript, we examine how the BasP performs on a given measurement matrix and develop an algorithm to discover the sparsest vectors for which the BasP fails. The resulting algorithm is a generalization of our previous results on finding the most probable error-patterns degrading performance of a finite size Low-Density Parity-Check (LDPC) code in the error-floor regime. The BasP fails when its output is different from the actual error-pattern. We design a CS-Instanton Search Algorithm (ISA) generating a sparse vector, called a CS-instanton, such that the BasP fails on the CS-instanton, while the BasP recovery is successful for any modification of the CS-instanton replacing a nonzero element by zero. We also prove that, given a sufficiently dense random input for the error-vector, the CS-ISA converges to an instanton in a small finite number of steps. The performance of the CS-ISA is illustrated on a randomly generated 120Γ—512120\times 512 matrix. For this example, the CS-ISA outputs the shortest instanton (error vector) pattern of length 11.Comment: Accepted to be presented at the IEEE International Symposium on Information Theory (ISIT 2010). 5 pages, 2 Figures. Minor edits from previous version. Added a new reference

    Robust Regression via Hard Thresholding

    Full text link
    We study the problem of Robust Least Squares Regression (RLSR) where several response variables can be adversarially corrupted. More specifically, for a data matrix X \in R^{p x n} and an underlying model w*, the response vector is generated as y = X'w* + b where b \in R^n is the corruption vector supported over at most C.n coordinates. Existing exact recovery results for RLSR focus solely on L1-penalty based convex formulations and impose relatively strict model assumptions such as requiring the corruptions b to be selected independently of X. In this work, we study a simple hard-thresholding algorithm called TORRENT which, under mild conditions on X, can recover w* exactly even if b corrupts the response variables in an adversarial manner, i.e. both the support and entries of b are selected adversarially after observing X and w*. Our results hold under deterministic assumptions which are satisfied if X is sampled from any sub-Gaussian distribution. Finally unlike existing results that apply only to a fixed w*, generated independently of X, our results are universal and hold for any w* \in R^p. Next, we propose gradient descent-based extensions of TORRENT that can scale efficiently to large scale problems, such as high dimensional sparse recovery and prove similar recovery guarantees for these extensions. Empirically we find TORRENT, and more so its extensions, offering significantly faster recovery than the state-of-the-art L1 solvers. For instance, even on moderate-sized datasets (with p = 50K) with around 40% corrupted responses, a variant of our proposed method called TORRENT-HYB is more than 20x faster than the best L1 solver.Comment: 24 pages, 3 figure
    • …
    corecore