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Dense Error Correction via `1-Minimization
John Wright, Student Member, and Yi Ma, Senior Member.

Abstract

In this paper, we study the problem of recovering a sparse signal x ∈ Rn from highly corrupted

linear measurements y = Ax+e ∈ Rm, where e is an unknown error vector whose nonzero entries could

be unbounded. Motivated by the problem of face recognition in computer vision, we will prove that if

a signal has a sufficiently sparse representation with respect to a highly correlated dictionary A (either

overcomplete or not), then with overwhelming probability, it can be recovered by solving the following

`1-minimization problem:

min ‖x‖1 + ‖e‖1 subject to y = Ax+ e,

even for very dense e. More precisely, in this paper we prove that under the above conditions,

for any ρ < 1, as m goes to infinity, solving the above `1-minimization problem correctly recovers

any sparse enough non-negative signal x from almost any error e with support size ≤ ρm.

This result suggests that accurate recovery of sparse signals is possible and computationally feasible

even with errors asymptotically approaching 100%! The proof relies on a careful characterization of

the neighborliness of a convex polytope spanned together by the standard cross polytope and a nonzero

mean Gaussian ensemble with a small variance, which we call the “cross-and-bouquet” model. The high

neighborliness of this polytope enables the striking error correction ability of the above `1-minimization.

We will also show simulations and experimental results that corroborate our findings.

Index Terms

Sparse Signal Recovery, Dense Error Correction, `1-minimization, Gaussian Random Ensemble,

Polytope Neighborliness.

J. Wright and Y. Ma are with the Electrical and Computer Engineering Department, University of Illinois at Urbana-

Champaign. Corresponding author: John Wright, 146 Coordinated Science Lab, 1308 W. Main St., Urbana, Illinois 61801.

Email: jnwright@uiuc.edu.
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I. INTRODUCTION

Recovery of high-dimensional sparse signals or errors has been one of the fastest growing research

areas in signal processing for the past few years. At least two factors have contributed to this explosive

progress. On the theoretical side, the progress has been propelled by powerful tools and results from

multiple mathematical areas such as random matrices, discrete geometry, combinatorics, and coding

theory. On the practical side, a lot of excitement has been generated by its remarkable success in many

real-world applications in areas like signal (image or speech) processing, computer vision, and pattern

recognition.

A. A Motivating Example

One notable successful application of sparse representation is automatic face recognition. As described

in [1], face recognition can be cast as a sparse representation problem as follows: For each person, a

set of training images are taken under different illuminations. We can view each image as a vector by

stacking its columns and put all the training images as column vectors of a matrix, say A ∈ Rm×n. Then,

m is the number of pixels in an image and n is the total number of images for all the subjects of interest.

Given a new query image, again we can stack it as a vector y ∈ Rm. To identify which subject y is, we

can try to represent y as a linear combination of all the images, i.e., y = Ax for some x ∈ Rn. Since

in practice n can potentially be larger than m, the equations can be under-determined and the solution x

may not be unique. In this context, it is natural to seek the sparsest solution for x whose large non-zero

coefficients then provide information about the subject’s true identity. This can be done by solving the

typical `1-minimization problem:

min
x
‖x‖1 subject to y = Ax. (1)

The problem becomes more interesting if the query image y is severely occluded or corrupted, as

shown in Figure 1 left, column (a). In this case, one needs to solve a corrupted set of linear equations

y = Ax + e, where e ∈ Rm is an unknown vector whose non-zero entries correspond to the corrupted

pixels. To correct the error e, if A is a tall matrix, i.e. m > n, Candes and Tao [2] has proposed to multiply

the equation y = Ax+ e with the orthogonal complement of A, say B, and then use `1-minimization to

recover the error vector e from the new linear equation By = Be if e is sparse.

As we mentioned earlier, in face recognition (and many other applications), n can be larger than m

and the matrix A can be full rank. One cannot directly apply the above trick even if the error e is known

to be sparse. To resolve this difficulty, in [1], the authors have proposed instead to solve [x, e] altogether

July 28, 2008 DRAFT
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Fig. 1. Face recognition under random corruption. Left: (a) Test images y from Extended Yale B, with random corruption.

Top row: 30% of pixels are corrupted, Middle row: 50% corrupted, Bottom row: 70% corrupted. (b) Estimated errors ê. (c)

Estimated sparse coefficients x̂. (d) Reconstructed images yr = Ax̂. The extended `1-minimization (2) correctly recovers and

identifies all three corrupted face images. Right: The recognition rate across the entire range of corruption for all the 38 subjects

in the database. It performs almost perfectly upto 60% random corruption.

as the sparsest solution to the extended equation y = [A I]w with w = [ xe ] ∈ Rm+n, and w can be found

by solving the extended `1-minimization problem:

min
w
‖w‖1 subject to y = [A I]w. (2)

This seemingly minor modification to the previous error correction approach has drastic consequences on

the performance of robust face recognition. Solving the modified `1-minimization enables almost perfect

recognition even with more than 60% pixels of the query image are arbitrarily corrupted (see Figure 1

for an example), far beyond the amount of error that can theoretically be corrected by the previous error

correction method [2].

Although `1-minimization is expected to recover sparse solutions with high probability for general

systems of linear equations, it is rather surprising that it works for the equation y = [A I]w at all.

The columns of A are highly correlated in the case of face recognition. As m becomes large (i.e. the

resolution of the image becomes high), the convex hull spanned by all face images of all subjects is

July 28, 2008 DRAFT
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Ai ∼ N (µ, σ2I)
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Gaussian Random Ensemble

Fig. 2. The “cross-and-bouquet” model. Left: the bouquet A and the crosspolytope spanned by the matrix ±I . Right: the

tip of the bouquet magnified, which is a Gaussian random ensemble with a small variance σ2 around the mean vector µ. The

cross-and-bouquet polytope is spanned by vertices from both the bouquet A and the cross ±I .

only an extremely tiny portion of the unit sphere Sm−1. 1 Geometrically, the vectors in A are all tightly

bundled together as a “bouquet,” whereas the vectors associated with the identity matrix and its negative

±I together2 form a standard “cross” in Rm, as illustrated in Figure 2. Notice that such a “cross-and-

bouquet” type matrix [A I] is neither incoherent nor (restrictedly) isometric, at least not uniformly. Also,

the density of the desired solution w is not uniform either. The x part of w is usually a very sparse non-

negative vector, but the e part can be very dense and have arbitrary signs. Existing results for recovering

sparse signals suggest that `1-minimization may have difficulty in dealing with such signals, contrary to

its empirical success in face recognition.

We have experimented with similar cross-and-bouquet type models where the matrix A could be any

random matrix with highly correlated column vectors. The simulation results in Section III indicate that

what we have seen in face recognition is not an isolated phenomenon. In fact, the simulations reveal

something even more striking and puzzling: As the dimension m increases (and the sample size n grows

in proportion), the percentage of errors that the `1-minimization (2) can correct seems to approach to

100% asymptotically!

1At first sight, this seems somewhat surprising as faces of different people look so different to human eyes. That is probably

because human brain has adapted to distinguish highly correlated visual signals such as faces or voices. The result of this paper

may help understand why such tasks can be done accurately and robustly as long as the dimension of the signal is high enough.
2Here we allow the entries of the error e to assume either positive or negative signs.
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B. The Main Model and Result

Motivated by the above empirical observations, this paper aims to resolve the apparent discrepancy

between theory and practice of `1-minimization and gives a more careful characterization of its behavior

in recovering [x, e] from the cross-and-bouquet (CAB) type models:

y = Ax+ e = [A I]w. (3)

We model the bouquet, the columns of A, as iid samples from a multivariate Gaussian distribution

N
(
µ, σ2I

)
, where σ = νm−1/2 with ν sufficiently small and ‖µ‖2 = 1 and ‖µ‖∞ ≤ Cµm

−1/2 for

some Cµ ∈ R+. The first condition ensures that the bouquet remains tight as the dimension m grows;

the second condition requires that the mean of the bouquet is mostly incoherent with the columns of the

cross ±I .

We will consider proportional growth for m and n, that is, m/n → δ ∈ R+ as m → ∞. However,

the support size of the sparse signal x is only allowed to grow sublinearly in m, or more precisely

‖x‖0 = o(m1−η) for some η > 0. Be aware that this is different from the typical assumption in the

sparse representation literature where the support normally grows proportionally with the dimension – no

matter how small that proportion might be. There are technical reasons why the support of the signal x

can only be sublinear if we allow the support of the error e to be arbitrarily dense, which we will explain

soon. In practice, this sublinear bound of sparsity is in fact more than adequate for signals in many

practical problems, including the face recognition problem where ideally the support of x is bounded by

a constant – the number of images per subject.

This paper proves that under the above conditions

for any ρ < 1, as m goes to infinity, solving the above `1-minimization problem correctly

recovers any non-negative sparse signal x from almost any error e with support size ≤ ρm.

While we will leave a more precise statement and the proof of the fact to Section II, for the rest of this

section, we will discuss some of the main implications of this result, in the broader context of sparse

signal recovery and many of its potential applications.

C. Relations to Previous Results

a) Restricted isometry and incoherence of the cross-and-bouquet model: As mentioned earlier,

typical results in the literature for sparse signal recovery simply do not apply to solving this new type of

equations y = Ax+e. The cross-and-bouquet type matrix [A I] is neither highly isometric nor incoherent

and the solution [x, e] sought has very uneven density (or sparsity). As a result, greedy algorithms such as
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Matching Pursuit [3], [4] consistently fail for this kind of problems, unless both x and e are unrealistically

sparse. However, this does not mean that the concepts of restricted isometry or others become irrelevant

to the new problem. On the contrary, the proof of our results precisely rely on characterizing a special

type of restricted isometry associated with this new problem, see Lemma 4.

b) Error correction: From an error correction viewpoint, the above result seems almost impossible:

One is able to correctly solve a set of linear equations with almost all the equations are randomly and

arbitrarily corrupted! This is especially surprising given the fact that in the binary domain Z2, the best

error-correction codes that are constructed based on the best expander graphs can normally correct errors

that are only a fraction of the code [5]. The relationships between our result and binary error-correction

codes remain to be uncovered. Here we have the following observations about its relations to exiting

error correction methods in the domain of real numbers:

• When n < m, the range of A is a subspace in Rm. In this case, one can directly apply the results

of Candes and Tao. However, the error vector e needs to be sparse for that approach whereas our

result suggests even dense errors (with support far beyond 50%) can be corrected by solving instead

the extended `1-minimization (2).

• The sublinear growth of the support of x in m is the best one can hope for in the regime of

dense errors. In general, we need at least ‖x‖0 independent linear equations to be able to recover

x correctly. If n ≈ m, as an arbitrary portion of the m equations can be totally corrupted by e,

one cannot ensure any fixed portion of the equations remain good for recovering x. Of course, if

the error e is sparse, then the `1-minimization (2) will be able to recover x with linear growth in

support, as ensured by the existing theory [2], [6], [7]. In this paper, we are only interested in how

the `1-minimization behaves with dense errors.

• When n ≥ m, in general the Gaussian matrix A is full rank and the method of Candes and Tao simply

does not apply any more in this situation. Our result suggests that as long as A is highly correlated,

the `1-minimization (2) can still recover the sparse signal x correctly with high probability even

if almost all the equations might be corrupted. One may also choose to pre-multiply the equation

y = Ax+e with an “approximate” orthogonal complement of A, say the orthogonal complement of

the mean vector µ, which is an (m− 1)×m matrix B. Then the equation becomes By = Be+ z

where z = BAx is a signal with small magnitude due to the almost orthogonality between B and

A. One can view z as noise and try to recover e as a sparse signal via `1-minimization. However,

in theory the breakdown point for such `1-minimization is far below 50% unless e is non-negative

in which case the breakdown point could approach 100% [8].

July 28, 2008 DRAFT
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c) Polytope geometry: The reason why one can recover sparse solutions from a system of linear

equations y = Ax with high probability relies on a fundamental (and surprising) property of high-

dimensional random polytopes: As m and n grow proportionally, if the column vectors of A are random

samples from a zero-mean Gaussian N (0, I), the convex polytope spanned by the vectors, denoted as

conv(A), is highly neighborly [7], [9]. Neighborliness of Gaussian (or other) random polytopes has been

well characterized in the literature. These properties provide the necessary and sufficient conditions when

`1-minimization (1) is able to recover the sparse solution x for the equation y = Ax. More precisely,

the `1-minimization (1) can correctly recover the sparse solution x if and only if the columns associated

with the non-zero entries of x span a face of the polytope conv(A).

In our case, the column vectors of the matrix A are a Gaussian random ensemble with non-zero

mean and small variance whereas vectors of the cross ±I are completely fixed. To characterize when

the extended `1-minimization (2) is able to recover the solution [x, e] correctly, we need to examine the

geometry of the peculiar convex polytope spanned together by the random bouquet A and the fixed cross

±I , denoted as conv(A,±I). Thus, it comes at no surprise that the proof of our main result relies on

a careful study of the geometry of this cross-and-bouquet polytope. As we will show that indeed, the

vertices associated with the non-zero entries of x and e form a face of the polytope with overwhelming

probability as the dimension m becomes large. Precisely due to this special neighborliness of the cross-

and-bouquet polytope, the extended `1-minimization (2) is able to correctly recover the desired solution,

regardless it is sparse, dense, or a mixture of both.3

D. Implications on Applications

d) Robust classification and source separation: The new result about the cross-and-bouquet model

obviously has strong implications on robust classification or separation of highly correlated classes of

signals such as faces or voices, despite severe corruption. It helps explain the surprising performance of

face recognition that we discussed earlier. It further suggests that if the resolution of the image increases

in proportion with the size of the database, the `1-minimization would tolerate even higher level of

corruption, far beyond the 60% at the resolution of [1]. Other applications where this kind of model can

be extremely useful and effective include speech recognition/imputation, audio source separation, video

segmentation, or activity recognition from motion sensors.

3Notice that the equation y = [A I]w is under-determined. The kernel of the matrix [A I] is non-trivial and so the solution to

this equation is not unique. The main result essentially guarantees that due to the geometry of the cross-and-bouquet polytope,

the solution found by the `1-minimization is the correct one even if it might not be sparse.

July 28, 2008 DRAFT
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e) Communication through an almost random channel: The result suggests that we can use the cross-

and-bouquet model to accurately send information through a highly corrupting channel. Hypothetically,

we can imagine a channel through which we can send one real number at a time, as one packet of binary

streams, and each packet has a high probability of being totally corrupted. One can use the sparse vector

x (or its support) to represent useful information, and use a set of highly correlated high-dimensional

vectors as the encoding transformation A. Obviously, the high correlation in A is to ensure that there is

sufficient redundancy built in the encoded message Ax so that the information about x will not be lost

even if many entries of Ax can be corrupted while being sent through this channel.

f) Encryption and information hiding: One can potentially use the cross-and-bouquet model for

encryption. For instance, if both the sender and receiver share the same encoding matrix A (say randomly

chosen from a Gaussian ensemble), the sender can deliberately corrupt the message Ax with arbitrary

random errors e before sending it to the receiver. The receiver only has to run a linear programming

to recover the information x, whereas any eavesdropper will not be able to make much sense out of

the highly corrupted message y = Ax + e. Of course, the long-term security of such an encryption

scheme relies on how hard it is for one to learn the encoding matrix A after gathering many instances

of corrupted message. It is not even clear whether it is easy to learn A from instances of uncorrupted

message y = Ax. Even if the dimensions of the matrix A are given, to effectively learn A from a set

of observed messages Y = [y1, y2, . . . , yk] is still a largely open problem, known in the literature as the

“dictionary-learning” problem. The best known algorithm is iterative in nature and with no theoretical

guarantee of convergence [10]. The problem with highly corrupted observations is expected to be a much

more daunting problem for any code breaker. But its hardness is still open.

II. ROADMAP OF THE PROOF

In this section, we fist give a precise statement for the main result in Section II-A. We will then lay

out the roadmap for the proof of the main result, starting with the key geometric picture behind the proof

described in Section II-B. In Section II-C, we will prove the main result by assuming that two technical

conditions in Lemma 2 hold. In the interest of space, we leave the lengthy proofs for the two technical

conditions to the Appendix, and will only discuss the main ideas behind their proofs in Section II-D.

A. Problem Statement

For the cross-and-bouquet model (3), let y = Ax0 +e0 for some signal-error pair (x0, e0) where x0 is a

non-negative sparse signal and e0 a dense vector with arbitrary signs. We are interested in the conditions

July 28, 2008 DRAFT
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under which the `1-minimization (2) can recover the correct solution.

For any n ∈ Z, [n] will denote {1, . . . , n}. Denote supp(x0) = I ⊂ [n], supp(e0) = J ⊂ [m],

sgn(e0(J)) = σ, and let k1 = |I| be the support size of the signal x0 and k2 = |J | the support size of

the error e0.

Assumption 1 (Weak Proportional Growth): We say that a sequence of signal-error problems exhibits

weak proportional growth if m → ∞, n/m → δ ∈ R+, k2/m → ρ ∈ (0, 1) and k1 = o(m). More

precisely, we assume ∃C0, η0 > 0 such that k1 ≤ C0m
1−η0 .

We will consider matrices A drawn from certain distributions. The model for A ∈ Rm×n needs to

capture the idea that it consists of small deviations about a mean, hence a “bouquet”. In this paper, we

consider the columns of A are iid samples from a Gaussian distribution:

Ai ∼iid N
(
µ,
ν2

m
Im

)
. (4)

Assumption 2 (Centrality of the Bouquet): There exists Cµ ∈ R+, m0, such that for all m > m0,

‖µ‖2 = 1 and ‖µ(m)‖∞ ≤ Cµm−1/2.

In the following, we will say the cross-and-bouquet model is `1-recoverable at (I, J, σ) if for all

(x0 ≥ 0, e0) with support (I, J) and e0 with the signs σ, we have

(x0, e0) = arg min ‖x‖1 + ‖e‖1 subject to Ax+ e = Ax0 + e0, (5)

and the minimizer is uniquely defined. From the geometry of `1-minimization, if (5) does not hold for

some pair (x0, e0), then it does not hold for any (x, e) with the same signs and support as (x0, e0)

[9]. Thus, understanding `1-recoverability at each (I, J, σ) completely characterizes which solutions to

y = Ax + e can be correctly recovered. In this language, our main result can be stated more precisely

as:

Theorem 1 (Error Correction with the Cross-and-Bouquet Model): For any δ > 0, and ρ < 1, there

exists a ν0(δ, ρ, Cµ) > 0 such that for a sequence of CAB models A(m) with n(m) = bδmc, k1(m) =

o(m), k2(m) = bρmc, ν < ν0 and errors e(m) with support J (m) of the error is chosen uniformly at

random from
([m]
k2

)
and signs σ(m) chosen uniformly at random from {±1}k2 ,

lim
m→∞

PA,J,σ

[
∀ I ∈

(
[n]
k1

)
, `1-recoverability at (I, J, σ)

]
= 1. (6)

July 28, 2008 DRAFT
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B. Problem Geometry

We prove the above theorem by first restating geometrically the necessary and sufficient conditions for

`1-recoverability, as separation of a higher-dimensional `1-ball and an affine subspace (see Figure 3). To

witness this separation, we must show the existence of a separating hyperplane, whose normal we will

denote by q.

Let A ∈ Rm×n, I ⊂ [n], J ⊂ [m] and σ ∈ {±1}|J |. AJ,I will denote the |J | × |I| submatrix of A

indexed by these quantities. Sometimes we will use AJ.• as a shorthand for AJ,[n]. Also, we will use 1I

(or 1J ) to represent a vector in Rn (or Rm) that has ones on the support I (or J) and zeros elsewhere.

To lessen confusion between the index set I and the identity matrix, we will use I to denote the latter.

Let w .= A∗J,•σ − 1I ∈ Rn and define

G =
[
AJc,I AJc,Ic

0 In−k1

]
∈ Rp×n, p = m+ n− k1 − k2. (7)

Below as necessary, we will use R1 = {1, . . . ,m−k2} ⊂ [p] to index the upper rows of G (corresponding

to A), and R2 = [p] \R1 to index the lower rows.

Lemma 1: Suppose G has full column rank n.4 Then the model is `1-recoverable at (I, J, σ) iff

∃ q ∈ Rp : ‖q‖∞ < 1 and G∗q = w. (8)

Proof: The pair (x0, e0) to y = Ax+ e is the unique minimum `1-norm solution to this equation iff

@ (∆x,∆e) 6= 0 : A∆x = −∆e, ‖x+ ∆x‖1 + ‖e+ ∆e‖1 ≤ ‖x‖1 + ‖e‖1. (9)

That, is (x0, e0) is optimal iff there is no perturbation (∆x,∆e) that respects the constraint while not

increasing the 1-norm. Assume wlog that x = 1I and e ∈ {−1, 0, 1}m, and that ‖∆x‖∞ < 1, ‖∆e‖∞ <

1; we lose no generality in making the second assumption because the problem is convex – if there exists

any nonzero perturbation that does not increase ‖ · ‖1, we may scale it to produce an arbitrarily small

perturbation that also does not increase ‖ · ‖1. Then,

‖x+ ∆x‖1 = ‖x‖1 + 1∗I∆x+ ‖∆xIc‖1, and ‖e+ ∆e‖1 = ‖e‖1 + e∗∆e+ ‖∆eJc‖1.

Substituting into (9) and using ∆e = −A∆x yields that (x, e) is optimal iff

@ ∆x 6= 0 : ‖AJc,•∆x‖1 + ‖∆xIc‖1 ≤ 〈A∗e− 1I ,∆x〉 (10)

Condition (10) is satisfied iff

∀∆x 6= 0, ‖G∆x‖1 > 〈w,∆x〉 (11)
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B1

Rn

w

G(Hw)Hq

Rp

q

Hw

G

B�

Fig. 3. Geometry for the proof of Lemma 1: The unit ball B� is separable from Hw in Rn if and only if in the lifted space Rp,

the `1-ball B1 is separable from the image of Hw under the injective map G. Hq is the separating hyperplane with a normal

vector q. Such an Hq might not be unique in Rp, and q0 would be the normal to the special separating hyperplane that contains

G(Hw).

Let Hw ⊂ Rn be the affine subspace {x : 〈w, x〉 = 1}. The function ‖G · ‖1 defines a norm

‖ · ‖� on Rn. Geometrically, (11) is satisfied iff the unit ball B� of ‖ · ‖� is contained in the halfspace

H−w = {〈w, ·〉 < 1}, as illustrated in Figure 3. This unit ball is a convex polytope, given by the inverse

image (under the injective map G) of the intersection of R(G) and the unit `1 ball B1 in Rp:

B� = G−1[ R(G) ∩B1(Rp) ] . (12)

Now, B� ⊂ H−w iff [R(G) ∩ B1(Rp)] ⊂ G[H−w ] iff B1(Rp) ∩ G(clH+
w ) = ∅. These two closed convex

sets are nonintersecting iff there is a hyperplane5 Hq = {v ∈ Rp : 〈q, v〉 = 1} ⊂ Rp separating them

(see Figure 3 again). We lose no generality in assuming that B1 ⊂ H−q , that G[clH+
w ] ⊂ clH+

q , and that

Hq meets the relative boundary rbd G[clH+
w ] = G[Hw]. The first condition occurs iff ‖q‖∞ < 1, while

the second occurs iff G∗q = w.

The most natural candidate for a normal vector q is the minimum `2-norm solution to this equation,

q0 = (G†)∗w = (GG∗)−1Gw. (13)

When we use this particular normal q0, we are demanding that the projection of B1 onto R(G) lies in

G[H−w ]. Since the projection contains the intersection, B1 ⊂ {〈q0, ·〉 < 1} is a sufficient, but not necessary

condition. It is not surprising, then, that this condition often does not hold – empirically, ‖q0‖∞ ≥ 1

4In the model outlined above, this occurs with probability one for m sufficiently large.
5Notice Hq cannot contain 0 ∈ interior(B1), so the normalization 〈q, v〉 = 1 is appropriate.
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with fairly large probability. However, the key observation is that the set of violations {|q0(i)| ≥ 1} is

often quite small, and we can improve q0, through an iterative scheme, to a valid q with ‖q‖∞ < 1.

C. Iterative Construction of Separator

We next give a lemma that argues that if we are given an initial guess at a normal vector q0 ∈ Rp

whose hyperplane H0 = {〈q0, ·〉 = 1} separates G[Hw] from most of the vertices of B1, then we can

refine q0 to a q∞ that separates G[Hw] and all of the vertices of B1. In general, finding such a q∞

requires solving a linear programming problem. We will analyze the feasibility of this linear program

by considering an iteration that is essentially equivalent to the alternating projection method for finding

a pair of closest points between two convex sets. In this case, the two convex sets of interest are the

hypercube of radius 1− ε and the affine subspace q0 +R(G)⊥.

In the following lemma, q0 ∈ Rp is arbitrary (though q0 = G†∗w is natural). We will construct a

sequence of vectors q0, q1, . . . , qk . . . Let Tk be the “bad set” of indices at iteration k:

Tk = {j : |qk(j)| > 1}. (14)

Fix a small constant ε > 0, and define the operator θ which takes the part of a vector that sticks out

above 1− ε:

[θx]i
.=

 0, for |xi| ≤ 1− ε,

sgn(xi)(|xi| − 1 + ε), for |xi| > 1− ε.
(15)

We iteratively construct q∞ by setting

qi+1 = qi − πR(G)⊥θqi = qi − θqi + πR(G)θqi. (16)

Notice that by construction, G∗qk = G∗q0 = w for all k. So if θqi → 0, then ‖qi‖∞ < 1 eventually, and

q∞ is a valid separator.

Before proving that this iteration produces a valid separator with high probability, we first demonstrate

its behavior on a simulated example with m = 3, 000, δ = .4, ν = .1, ρ = .65, and k1 = 10. Figure

4 plots the sorted absolute values of entries of qi. Notice that the sorted coefficients clearly divide into

two parts; these correspond to the upper (R1) and lower (R2) indices. The initial separator, q0 cleanly

separates G(Hw) from most of the vertices of B1: only 39 entries protrude above 1−ε. These entries are

quickly iterated away: ‖θq‖ decreases geometrically until after 5 iterations a valid separator is obtained.

Let Γk denote the arrangement of all k-dimensional coordinate subspaces (i.e., the set of all ≤ k-sparse

vectors). A simple inductive argument gives the following lemma:
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Fig. 4. Iterative refinement producing a separating hyperplane. Here, m = 3000, δ = .4, ν = .1, ρ = .65, k1 = 10. We plot

the sorted magnitudes of the entries of qi. At left, q0 separates G(Hw) from most of the vertices of B1: only 39 violations

occur. The distinct bimodal characteristic of q0 is due to the differences between the statistics of the top (R1) and bottom (R2)

indices. Applying the iteration decreases ‖θqi‖ geometrically; after 5 iterations a valid separator is obtained.

Lemma 2: Suppose ∃ c ∈ (0, 1) such that

ξ
.= sup
x∈Γcp\{0}

‖πR(G)x‖2
‖x‖2

< 1 (17)

and

‖q0‖2 +
1

1− ξ
‖θq0‖2 ≤ (1− ε)√cp. (18)

Then limk→∞ θqk = 0.

Proof: Consider the following three statements:

‖qk‖2 ≤ ‖q0‖2 + ‖θq0‖2
k∑
i=0

ξi, (19)

#Tk ≤ cp, (20)

‖θqk‖2 ≤ ‖θq0‖2 ξk. (21)

We will show, by induction on k that these statements hold for all k, giving the desired result. Notice

that (19) and (21) are trivially true for k = 0. For (20), notice that by (18),

#T0 ≤
‖q0‖22

(1− ε)2
≤ cp.

Now, suppose the three statements hold for 0, . . . , k. Since θqk has the same signs and smaller magnitude
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than qk, ‖qk − θqk‖2 ≤ ‖qk‖2; combining this with the inductive hypothesis we have

‖qk+1‖2 = ‖qk − θqk + πR(G)θqk‖ ≤ ‖qk − θqk‖+ ‖πR(G)θqk‖ ≤ ‖qk‖+ ξk+1‖θq0‖

≤ ‖q0‖2 + ‖θq0‖2
k+1∑
i=0

ξi,

establishing (19) for k + 1. Similarly, notice that since πR(G)θqk dominates θ(qk − θqk + πR(G)θqk)

elementwise,

‖θqk+1‖ ≤ ‖πR(G)θqk‖ ≤ ξ‖θqk‖ ≤ ξk+1‖θq0‖.

and (21) holds at k + 1. Finally, to get the sparsity result (20), note that

‖qk+1‖2 ≤ ‖q0‖2 + ‖θq0‖
k+1∑
i=0

ξi ≤ ‖q0‖2 +
1

1− ξ
‖θq0‖2 ≤ (1− ε)√cp,

and so θqk+1 must be (cp)-sparse.

D. Putting All Together

According to Lemmas 1 and 2, if we can show the two conditions (17) and (18) in Lemma 2 hold

asymptotically with overwhelming probability in A as a Gaussian ensemble, that essentially proves the

main Theorem 1.

In this subsection, we lay out the main ideas for the rest of the proof, which essentially consists

of two parts, one for each of the conditions in Lemma 2: 1. We provide a more accurate bound on

the projection ratio ξ for sparse vectors in (17); 2. We show that the initial normal of the separating

hyperplane q0 = (G†)∗w satisfies the second condition (18), hence it can be fixed by the iterative scheme

given in the proof of Lemma 2. More precisely, we will establish the following facts:

1) For a small enough constant c, the projection ratio ξ for cm-sparse signals onto R(G) is bounded

below 1 by a polynomial function in ν. More precisely, ξ < 1 − Cν8 for some constant C > 0.

As a result, the coefficient 1
1−ξ in the second condition (18) is bounded by C−1ν−8.

2) As m goes to infinity, the `2-norm of the initial separating normal vector ‖q0‖2 is bounded above

by νO(m1/2), and ‖θq0‖2 is bounded above by e−α/ν
2
O(m1/2) for some constant α.

Putting these results together, the initial separating normal vector q0 satisfies:

‖q0‖2 +
1

1− ξ
‖θq0‖2 ≤ νO(m1/2) + C−1ν−8e−α/ν

2
O(m1/2). (22)

As long as the deviation of the Gaussian ensemble ν is small enough, the second condition (18) of

Lemma 2 will be satisfied since the right hand side is O(m1/2). Hence, by Lemma 2, the initial normal

July 28, 2008 DRAFT



MANUSCRIPT SUBMITTED TO IEEE TRANS. ON INFORMATION THEORY, 2008. 15

q0 will converge to a valid normal vector that separates the `1-ball B1 from the subspace G(Hw), which

essentially proves the main Theorem 1. This intuition is made rigorous in Section C of the appendix.

Whereas Lemmas 1 and 2 have simple geometric and algebraic proofs, the above results require more

detailed analysis of large Gaussian matrices. We therefore leave many of the technical details to the

appendix, and in this section outline only the main ideas and steps for their proofs. Their derivation is

based on recent (and now widely-used) results on concentration of Lipschitz functions, which state that

if x is a d-dimensional iid N(0, 1) random vector and f : Rn → R is 1-Lipschitz, then [11]

P [|f(x)− Ef(x)| ≥ t] ≤ 2 exp
(
−2t2

π2

)
. (23)

Two special cases are particularly of interest here. First, the norm concentrates according to (e.g., for

this form see [12]):

P
[
‖x‖ ≥ β

√
d
]
≤ exp

(
−2(β − 1)2d

π2

)
. (24)

We will also return to (23) in the proof of Lemma 8 of the appendix. Second, as has been widely exploited

in the compressed sensing literature (e.g., [2], [6]), the singular values of rectangular Gaussian matrices

with aspect ratio α concentrate about the values 1±
√
α predicted by the Marchenko-Pasteur law:

Fact 1 (Concentration of singular values [11]): Let A ∈ Rm×n, (m > n) be a random matrix with

entries iid N(0, 1
m). Then if m→∞ and n/m→ δ ∈ (0, 1), then for any t > 0,

P
[
σmax(A) > 1 +

√
n/m+ o(1) + t

]
≤ e−mt

2/2, (25)

P
[
σmin(A) < 1−

√
n/m+ o(1)− t

]
≤ e−mt

2/2. (26)

For technical convenience, below we always assume we are in the large error regieme, with ρ̄ .= 1−ρ <

δ. The conclusion still follows for smaller error fractions, since whenever (I, J, σ) is `1-recoverable, so

is (I, J ′, σJ ′) for any J ′ ⊂ J . Below, wherever the symbol C occurs with no subscript, it should be read

as “some constant.” When used in different sections, it need not refer to the same constant.

1) Projection of Sparse Vectors: In this subsection, we upper-bound norm of the projection of any

sparse vector onto R(G). Notice that since the lower coordinates of

G
.=

 M1 M2

0 I

 =

 Z1 + µJc1∗k1
Z2 + µJc1∗δm−k1

0 I


contain an identity matrix, when the variance ν2/m of the perturbations Z1, Z2 is small, we expect that

sparse vectors with support on R2 will be very close to R(G). The following lemma verifies that this

is the case, but argues that the projection residual is at least Ω(ν8). The technical conditions appear
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complicated, but simply assert that: 1. c is sufficiently small. 2. ν is sufficiently small. 3. we are in the

large-error regieme: ρ̄ is sufficiently small.

Lemma 3 (Projection of Sparse Vectors): Suppose that

c < min
(

ρ̄

64(1 + 2Cµ)2
,
ρ̄

1024

)
, ρ̄H(c/ρ̄) + δH(c/δ) < ρ̄/512, (27)

ρ̄ < min
(
δ, 1

2 −
1
Cµ

)
, ν < min

(
1

24
√
ρ̄
, (2δ)−1/4

)
(28)

Then the projection of a sparse vector onto the range of G is bounded as

sup
y∈Γcm\{0}

‖πR(G)y‖2
‖y‖2

< 1− ν8

16

(
√
δ −
√
ρ̄)(
√
ρ̄

4 − 6
√
c)

1 + 4ν2
(√

δ +
√
ρ̄
)2


4

. (29)

on the complement of a bad event with probability � e−Cm.

Proof: The projection of an observation y = [ y1
y2 ] ∈ Γcm onto R(G) solves

min
x
‖[ y1
y2 ]−Gx‖22 = min

w1,w2

∥∥[ y1
y2 ]−G

[ w1
y2+w2

]∥∥2

2
= min

w1,w2
‖y1 −M1w1 −M2(y2 + w2)‖22 + w∗2w2.

Since in general M1 has full rank k1, we can find the unique optimal w1 by minimizing the first term:

w1 = (M∗1M1)−1M∗1 y1 − (M∗1M1)−1M∗1M2(y2 + w2)

and subsequently, the optimal w2 satisfies:

−M∗2 y1+M∗2M1w1+M∗2M2(y2+w2)+w2 = 0⇒
(
I +M∗2πM⊥1 M2

)
w2 = M∗2πM⊥1 y1−M∗2πM⊥1 M2y2,

where πM⊥1 denotes the projection matrix onto the orthogonal complement of R(M1).

Write M∗2πM⊥1 = USV ∗ with U ∈ Rδm−k1×ρ̄m−k1 and V ∈ Rρ̄m×ρ̄m−k1 orthogonal matrices, and the

diagonal of S ∈ Rρ̄m−k1×ρ̄m−k1 containing the nonzero singular values of M∗2πM⊥1 . Then if w2 is the

solution to the above equation

‖ y − πR(G)y ‖2 ≥ ‖w2‖2 =
∥∥∥(S2 + I)−1SV ∗[ I −M2 ] [ y1

y2 ]
∥∥∥

2

=
∥∥∥(S2 + I)−1S [V ∗ −SU∗ ] [ y1

y2 ]
∥∥∥

2
. (30)

Above is the norm of the product of a diagonal matrix (S2 + I)−1S, a wide matrix [V ∗ −SU∗ ], and

a sparse vector y. We will bound it by lower bounding the elements of the diagonal matrix, and then

lower bounding the “restricted minimum singular value”

γcm( [V ∗ −SU∗] ) .= inf
y∈Γcm\{0}

‖[V ∗ −SU∗]y ‖/‖y‖.
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First, however, we drop the top row of (S2 + I)−1S[V ∗ −SU∗]. This allows us to uniformly lower

bound the diagonal of (S2 +I)−1S. While σ1 can be quite large due to the inhomogeneous term (µJc1∗),

and hence σ1
σ2

1+1 can be quite small, for the remaining singular values σi
σ2
i+1 is at least on the order of ν.

To this end, let S̃ ∈ Rρ̄m−k1−1×ρ̄m−k1−1 be the diagonal matrix obtained by dropping the row

and column of S corresponding to the largest singular value; Ṽ and Ũ are obtained by dropping the

corresponding columns. From (30),

‖w2‖2 ≥
∥∥∥(S̃2 + I)−1S̃[Ṽ ∗ −S̃Ũ∗] [ y1

y2 ]
∥∥∥

2
≥

σmin(M∗2πM⊥1 )
1 + σ2

2(M∗2πM⊥1 )
γcm([Ṽ ∗ −S̃Ũ∗]) ‖y‖2, (31)

where σmin(M∗2πM⊥1 ) is the smallest nonzero singular value and σ2(M∗2πM⊥1 ) is the second largest

singular value.

a) Bounding the second largest singular value σ2(M∗2πM⊥1 ): Write µ̂ .= πM⊥1 µJc , and notice that

σ2(M∗2πM⊥1 ) = inf
u6=0

sup
v 6=0

‖M∗2πM⊥1 πu⊥v‖2
‖v‖2

= inf
u6=0

σ1(M∗2πM⊥1 πu⊥)

≤ σ1(M∗2πM⊥1 πµ̂⊥) = σ1(Z∗2π(µJc ,Z1)⊥).

Choose any orthonormal basis for the subspace Σ = (R(Z1) +R(µJc))
⊥. Since Σ is probabilistically

independent of Z2, the representation of the projection Z∗2π(µJc ,Z1)⊥ with respect to the chosen basis

is simply distributed as a δm − k1 × ρ̄m − k1 − 1 random matrix Ẑ2 with entries N(0, ν2/m). Since
√
m

ν
√
δm−k1

Ẑ2 is distributed as N(0, 1
δm−k1

), by Fact 1,

P

[
σ1

( √
m

ν
√
δm−k1

Ẑ2

)
≥ 1 +

√
ρ̄m−k1−1
δm−k1

+ t

]
≤ exp

(
−(t+ o(1))2(δm− k1)/2

)
, (32)

and so P
[
σ1(Ẑ2) ≥ 2ν(

√
δ +
√
ρ̄)
]
� e−Cm. On the complement of this bad event, σ2

2(M∗2πM⊥1 ) ≤

4ν2(
√
δ +
√
ρ̄)2.

b) Bounding the smallest nonzero singular value σmin(M∗2πM⊥1 ) = infx∈M⊥1
‖M∗2 x‖2
‖x‖2 : Choose any

orthonormal basis for M⊥1 . Since M1 is independent of M2, with respect to this basis, we can write

M∗2πM⊥1 = Ẑ2 + 1µ̂∗, where Ẑ2 ∈ Rδm−k1×ρ̄m−k1 is an iid N(0, ν2/m) random matrix and µ̂ is the

expression of πM⊥1 µJc in this basis.

σmin(M∗2πM⊥1 ) = σmin

(
π1⊥Ẑ2 + 1(m−11∗Ẑ2 + µ̂∗)

)
≥ σmin(π1⊥Ẑ2),

where in the final step we have used the orthogonality of R(π1⊥Ẑ2) and the rank-one perturbation

1(m−11∗Ẑ2 + µ̂∗) to drop the perturbation. Finally, with respect to any orthonormal basis for 1⊥, π1⊥Ẑ2

is distributed as a δm−k1− 1× ρ̄m−k1 random matrix Z ′2 with entries iid N(0, ν2/m). Again by Fact

1, σmin( 1
ν
√
δ
Z ′2)→ 1−

√
ρ̄
δ , and similarly by measure concentration,

P
[
σmin(Z ′2) <

ν

2
(
√
δ −
√
ρ̄)
]
� e−Cm. (33)
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On the complement of this bad event, σmin(M∗2πM⊥1 ) ≥ ν
2 (
√
δ −
√
ρ̄).

The reader may notice that the above bounds essentially agree with the Marchenko-Pasteur law for

the submatrix Z2. This should be expected, since dropping the largest singular value eliminates most of

the influence of µJc , while projecting onto a subspace R(M⊥1 ) of (very small) codimension k1 = o(m)

does not essentially change the conditioning of Z∗2 .

Finally, as will be stated more precisely in Lemma 4 and eventually proved in Appendix A, we will

show that with probability at least 1 − e−Cm(1+o(1)), the restricted singular value γcm in (31) is lower

bounded as

γcm([Ṽ ∗ −S̃Ũ∗]) ≥ ν
√
ρ̄

4
− 6ν

√
c.

Combining the three results, we have that for all y ∈ Γcm,

‖y − πGy‖2
‖y‖2

≥ ν(
√
δ −
√
ρ̄)/2

1 + 4ν2(
√
ρ̄+
√
δ)2

(
ν
√
ρ̄

4
− 6ν

√
c

)
. (34)

Notice that ‖πGy‖‖y‖ =

√
1−

(
‖y−πGy‖
‖y‖

)2
≤ 1−

(
‖y−πGy‖
‖y‖

)4
, (where we have used that 1−x4 >

√
1− x2

for x < 1/
√

2). Combined with (34), this implies the desired result (29).

We here give a more precise statement about the restricted isometry property about [Ṽ ∗ −S̃Ũ∗] used

in the proof of the above lemma. For an arbitrary matrix M , define γk(M) as

γk(M) = inf
‖y‖0≤k

‖My‖2
‖y‖2

. (35)

We are interested in knowing γcm([Ṽ ∗ −S̃Ũ∗]), where Ũ , S̃, and Ṽ come from a (compact) singular

value decomposition6 of P .= M∗2πM⊥1 , after dropping the largest singular value. That is, if v1 and u1

are the (right- and left-) first singular vectors of P , Ũ S̃Ṽ ∗ is a compact singular value decomposition of

πu⊥1 Pπv⊥1 .

Lemma 4 (Restricted Isometry): Consider the matrix P
.= M∗2πM⊥1 ∈ Rδm−k1×ρ̄m, and let u1, v1 be

its first singular vectors. Let Ũ S̃Ṽ ∗ denote a compact singular value decomposition of πu⊥1 Pπv⊥1 . If the

conditions (27) and (28) hold, then for all m sufficiently large,

γcm([Ṽ ∗ −S̃Ũ∗]) ≥
ν
√
ρ̄

4
− 6ν

√
c (36)

on the complement of a bad event with probability e−Cm(1+o(1)).

6With probability one, the matrices U and V are unique upto multiplication of their columns by a common set of signs. The

quantity of interest, γ, does not depend on the choice of representative signs.
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We postpone the rather technical proof of this lemma to Appendix A, but notice again that the lower

bound given in the lemma agrees with (and in fact is looser than) the Marchenko-Pasteur law for a ρ̄m×cm

Gaussian N(0, ν2/m) matrix (i.e., the concentration result of Fact 1). In fact, the proof essentially follows

by arguing that the parts of this matrix are probabilistically independent, transforming to an equivalent

pair of Gaussian matrices, and applying Fact 1. The somewhat technical conditions (27) introduced here

are necessary because γcm involves a minimization over a very large set: all subsets of cm columns.

More delicate balancing is needed to ensure that a union bound over this set remains small.

2) Initial Separating Hyperplane: In this section, we analyze the initial separator q0, obtained as the

minimum 2-norm solution to the equation G∗q = w. We upper bound both ‖q0‖2 and ‖θq0‖2, where θ

is the operator that retains the portion of a vector that protrudes above 1 − ε in absolute value. These

bounds provide the second half of the conditions needed in Lemma 2 to show that q0 can be refined by

alternating projections to give a true separator. In the following lemma, the exact numerical constants

involved in the bounds are less important than the fact that, with respect to decreasing ν, ‖q0‖ = O(ν)

and ‖θq0‖ = O(e−C/ν
2
).

Lemma 5: Suppose ν < 1. There exist constants α1, α2 such that the initial separator q0 satisfies

‖q0‖2 ≤ α1 ν m
1/2 + o(m1/2) (37)

‖θq0‖2 ≤ α2 e
− ρ̄

128ν2 m1/2 + o(m1/2). (38)

on the complement of a bad event of probability ≤ e−Cm1−η0/2(1+o(1)).

Proof: Recall that w = Z∗J,•σ − 1I + 〈µJ , σ〉1 ∈ Rδm, and q0 = G†∗w. Notice that

G†∗ = G(G∗G)−1 =

Z1 Z2

0 I

 (G∗G)−1 +

µJc1∗
0

 (G∗G)−1 (39)

where Z1 = ZJc,I and Z2 = ZJc,Ic . Expanding its product with w gives

q0 =

Z1 Z2

0 I

 (G∗G)−1Z∗J,• σ +

 Z1 Z2

0 I

(−(G∗G)−11I + 〈µJ , σ〉 (G∗G)−11
)

+

 µJc

0

(1∗(G∗G)−1Z∗J,• σ − 1∗(G∗G)−11I + 〈µJ , σ〉 1∗(G∗G)−11
)
. (40)

In this section, we concentrate our efforts on the first term above. A more detailed analysis of (G∗G)−1,

which we postpone to Lemma 7 of the appendix, shows that the remaining terms are all negligible,

contributing o(m1/2) to ‖q0‖. This is essentially due to the presence of a large common term µJc in the
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columns of G: the most significant term in G∗G is µ∗JcµJc11∗, and (G∗G)−1 shrinks the ones vector.

More precisely, Lemma 7 shows that with probability at least 1− e−Cm1−η0/2(1+o(1)),∥∥ q0 −
[
Z1 Z2
0 I

]
(G∗G)−1Z∗J,• σ

∥∥ ≤ Cm1/2−η0/4.

This remaining term can be further simplified by splitting out several of the inhomogeneous parts of

(G∗G)−1. Define Q = Z∗Jc,•ZJc,• + [ 0 0
0 I ] =

[
Z∗1Z1 Z∗1Z2

Z∗2Z1 Z∗2Z2+I

]
∈ Rn×n. Similarly, let y = Z∗Jc,•µJc ∈ Rn.

In terms of these variables, G∗G = Q+ y1∗ + 1y∗ + α11∗. Applying the matrix inversion lemma,

(G∗G)−1 = Q−1 −Q−1/2MΞM∗Q−1/2, (41)

where M =
[

Q−1/21
‖Q−1/21‖2

Q−1/2y
‖Q−1/2y‖2

]
∈ Rn×2, and Ξ is an appropriate 2 × 2 matrix. Since ϑ

.=

Z∗J,• σ ∈ Rn is iid N(0, ν2ρ) independent of G, with overwhelming probability it is almost orthogonal

to the rank-2 perturbation Γ .= Q−1/2MΞM∗Q−1/2: P
[
‖πΓϑ‖ ≥ m1/2−η0/4

]
� e−Cm

1−η0/2
. Since

furthermore ‖Γ‖ ≤ ‖(G∗G)−1‖+ ‖Q−1‖ ≤ CG + 4
ν2ρ̄ is bounded by a constant,∥∥[ Z1 Z2

0 I

]
Γϑ
∥∥ ≤

(
1 + 2ν2(

√
ρ̄+
√
δ)2
)(

CG +
4
ν2ρ̄

)
m1/2−η0/4

and the remaining part of q0 is[
Z1 Z2
0 I

]
Q−1ϑ =

[
Z1
0

] [
Q−1

]
I,• ϑ +

[
Z2
I

] [
Q−1

]
Ic,I

ϑI +
[
Z2
I

] [
Q−1

]
Ic,Ic

ϑIc .

The first two terms involve projections of ϑ onto k1-dimensional subspaces, and hence are of lower

order. That is, for Σ .= null([Q−1]I,•)⊥, we have P
[
‖πΣϑ‖2 ≥ m1/2−η0/4

]
� e−Cm

1−η0/2
. Since ‖Z1‖

and ‖Q−1‖ are bounded by constants with overwhelming probability, with probability at least 1 −

e−Cm
1−η0/2(1+o(1)),

∥∥∥[ Z1
0

] [
Q−1

]
I,• ϑ

∥∥∥ ≤ C ′m1/2−η0/4. Identical reasoning shows that on the comple-

ment of a bad event of probability � e−Cm1−η0/2
,
∥∥∥[ Z2

I

] [
Q−1

]
Ic,I

ϑI

∥∥∥ ≤ C ′′m1/2−η0/4.

This leaves
[
Z2
I

] [
Q−1

]
Ic,Ic

ϑIc . Expressing Q as
[
U V ∗
V W

]
and applying the Schur complement formula

gives [Q−1]Ic,Ic = W−1 +W−1V (U−1−V ∗W−1V )−1V ∗W−1, where W = Z∗2Z2 +I, V = Z∗2Z1, and

U = Z∗1Z1. Because W � I, ‖W−1‖ ≤ 1. With probability at least 1− e−Cm(1+o(1)), ‖U‖ = ‖Z1‖2 ≤

2ν2ρ̄, σmin(U) ≥ ν2ρ̄
2 , and ‖V ‖ ≤ ‖Z1‖‖Z2‖ ≤ 2 ν2 (

√
ρ̄δ + ρ̄) and so∥∥W−1V (U−1 − V ∗W−1V )−1V ∗W−1

∥∥ ≤ ‖W−1‖2‖V ‖2

σmin(U−1)− ‖V ‖2‖W−1‖
≤ 8ν6(1 +

√
ρ̄δ)2

1− 8ν6(1 +
√
ρ̄δ)2

is bounded by a constant. Let Σ′ denote the k1-dimensional range of this matrix. With probability

≥ 1− e−Cm1−η0/2(1+o(1)), ‖πΣ′ϑ‖ ≤ m1/2−η0/4, and so∥∥[ Z2
I

]
W−1V (U−1 − V ∗W−1V )−1V ∗W−1ϑ

∥∥ ≤ C ′′′m1/2+η0/4,
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leaving only q̂0
.=
[
Z2
I

]
(Z∗2Z2+I)−1ϑIc . With probability at least 1−e−Cm(1+o(1)), ‖ϑIc‖ ≤

√
2 ν
√
ρδ m1/2,

and so

‖q̂0‖2 ≤
∥∥[ Z2

I

]∥∥ ‖ϑIc‖ ≤ √
1 + ‖Z2‖22 ‖ϑIc‖ ≤ ν

√
2 δ ρ

(
1 + 2ν2

(√
δ +
√
ρ̄
)2
)
m1/2 (42)

establishing the first part of the lemma.

For the second part, will bound the upper (R1) and lower (R2) parts of q̂0 elementwise with a pair of

iid Gaussian vectors, and then argue that the Lipschitz function ‖θ ·‖ is concentrated about its (very small)

expectation. For the upper block, write Z2 = QR, where Q ∈ Rρ̄m×ρ̄m is an orthogonal matrix, and R ∈

Rρ̄m×δm−k1 is an upper-triangular matrix with non-negative elements on the diagonal. With probability

one (as long as rank(Z2) = ρ̄m), Q and R are uniquely determined by Z2. Moreover, Q is a uniform

random orthogonal matrix, probabilistically independent of R.7 Since q̂0(R1) = QR (R∗R+I)−1ϑIc is

the product of a uniform random orthogonal matrix and an independent vector R(R∗R+I)−1ϑIc ,
q̂0(R1)
‖q̂0(R1)‖

is uniformly distributed on Sρ̄m−1. With probability ≥ 1 − e−Cm(1+o(1)), ‖q0(R1)‖ ≤ ‖Z2‖‖ϑIc‖ ≤

2 ν2(δ +
√
δ)m1/2. Introduce an independent random variable λ1 distributed as the norm of a (ρ̄m)-

dimensional iid N(0, σ2) vector with σ =
4 ν2(δ+

√
δ)√

ρ̄
(i.e., an appropriately scaled χρ̄m rv), and define

φ1
.= λ1

q̂0(R1)
‖q̂0(R1)‖

. (43)

Since φ1 is the product of a uniform random unit vector and an appropriate χ random variable, its

distribution is iid N(0, σ2). With probability 1 − e−Cm(1+o(1)), ‖φ1‖ ≥ σ
√
ρ̄m ≥ ‖q̂0(R1)‖, so φ1

dominates q̂0(R1) elementwise and ‖θφ1‖ ≥ ‖θq̂0(R1)‖. Applying Lemma 8, with probability 1 −

e−Cm(1+o(1)),

‖θφ1‖2 ≤ 4 exp
(
− 1

16σ2

)√
ρ̄m = 4

√
ρ̄ exp

(
− ρ̄

256 ν4(δ +
√
δ)2

)
m1/2 (44)

For the lower (R2) coordinates, write Z∗2 =
[
Q1 Q2

] R1

0

 .= QR where R1 ∈ Rρ̄m×ρ̄m is

an upper triangular matrix with nonnegative diagonal elements, Q1 is an orthogonal matrix, and Q2 is

a random orthobasis for R(Q1)⊥ (so that Q ∈ Rn−k1×n−k1 is an orthogonal matrix). Again from the

rotational invariance of the Gaussian distribution, Q is a uniform random orthogonal matrix, independent

of R, and

q̂0(R2) = (Z∗2Z2 + I)−1ϑIc = Q(RR∗ + I)−1Q∗ϑIc
.= Q(RR∗ + I)−1γ, (45)

7This follows from the rotational invariance of the Gaussian distribution: left multiplication by an independent orthogonal

matrix sampled according to the invariant measure yields an independent pair Q′R = Z′2 ≡d Z2.
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Fig. 5. Error correction in weak proportional growth. We fix δ = .5, ν2 = .4, and plot the fraction of successful recoveries as

a function of the error density ρ, for each m = 100, 200, 400, 800. At left, k1 is fixed at 1; at right, k1 = 5. In both cases, as

m increases, the fraction of errors that can be corrected approaches 1.

where γ .= Q∗ϑIc is an iid N(0, ν2ρ) random vector, independent of Q. Hence, q̂0(R2) is the product

of a uniform random orthogonal matrix Q, and a probabilistically independent vector (RR∗ + I)−1γ,

and its orientation q̂0(R2)
‖q̂0(R2)‖ is a uniform random vector on Sn−k1−1. As above, introduce an independent

random variable λ2 distributed as the norm of an (n − k1)-dimensional iid N(0, 4ν2ρ) random vector,

and define

φ2 = λ2
q̂0(R2)
‖q̂0(R2)‖

. (46)

The product of an independent unit vector and (appropriately scaled) χn−k1 scalar, φ2 is distributed

as an iid N(0, 4ν2ρ) vector. With probability at least 1 − e−Cm(1+o(1)), ‖φ2‖ ≥
√

2ν
√
ρ
√
n− k1, and

‖q̂0(R2)‖ ≤ ‖ϑIc‖ ≤
√

2ν
√
ρ
√
n− k1. Therefore, φ2 dominates q̂0(R2) elementwise, and ‖θφ2‖ ≥

‖θq̂0(R2)‖. By Lemma 8,

‖θφ2‖2 ≤ 4
√
δ exp

(
− 1

64ν2ρ

)
m1/2. (47)

Combining the bounds on ‖θφ1‖ and ‖θφ2‖ gives the second part of the lemma.

III. SIMULATIONS AND EXPERIMENTS

In this section, we perform simulations verifying the basic phenomenon of Theorem 1, and investigating

the effect of various model parameters on the error correction capability of the `1-minimization.
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Fig. 6. Effect of varying n and ν. At left, we fix m = 400, ν = .3, and consider varying n = 100, 200, . . . , 500. For each

of these model settings, we plot the fraction of correct recoveries as a function of the fraction of errors. Notice that the error

correction capacity decreases only slightly as n increases. At right, we fix m = 400, n = 200, and vary ν from .1 to .9.

Again, we plot the fraction of correct recoveries for each error fraction. As expected from Theorem 1, as ν decreases, the error

correction capacity of `1 increases.

a) Error correction capacity: We first verify the ability of `1-minimization to correct increasingly

large fractions of random errors in the weak proportional growth setting. We generate problem instances

with δ = 1/2, ν2 = .4, for varying m = 100, 200, 400, 800. For each problem size, and for each error

fraction ρ = 0.05, 0.1, . . . , 0.95, we generate 100 random problems, and plot the fraction of correct

recoveries in Figure 5. At left, we set k1 = 1, while at right, k1 = 5. In both cases, as m increases, the

fraction of errors that can be corrected also increases.

b) Varying model parameters.: We next investigate the effect of varying δ (Figure 6 left) and ν (Fig-

ure 6 right). We first fix m = 400, ν = .3, and consider different bouquet sizes n = 100, 200, 300, 400, 500.

Figure 6 left plots the fraction of correct trials for varying error densities ρ, for each of these bouquet

sizes. For this fixed m, the error correction capability decreases only slightly as n increases.

We next fix m = 400, n = 200, and consider the effect of varying ν. Figure 6 plots the result for

ν = .1, .3, .5, .7, .9. Notice that as ν decreases (i.e., the bouquet becomes tighter), the error correction

capacity increases: for any fixed fraction of successful trials, the fraction of error that can be corrected

increases by approximately 15% as ν decreases from .9 to .5.

c) Phase transition in total proportional growth: Theorem 1 does not provide any explicit informa-

tion about the behavior of `1-minimization when the signal support k1 in proportion to m: k1/m→ ρ1 ∈
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Fig. 7. Phase transition in total proportional growth. When the signal support grows in proportion to the dimension (k1/m→

ρ1 ∈ (0, 1)), we observe an asymptotically sharp phase transition in the probability of correct recovery, similar to that investigated

in [7]. Left: ρ = 0.05. Right: ρ = 0.1.

(0, 1). Based on intuition from the study of more homogeneous polytopes (especially the work of Donoho

and Tanner on the Gaussian ensemble [7]), we might expect that when k1 also exhibits proportional

growth, an asymptotically sharp phase transition between guaranteed recovery and guaranteed failure

will occur at some critical error fraction ρ∗ ∈ (0, 1). Simulations suggest that this is the case, as shown

in Figure 7.

IV. DISCUSSIONS AND FUTURE WORK

d) Compressed sensing for signals with varying sparsity: In the conventional setting for recovering

a sparse signal, one often implicitly assumes that each entry of the signal has an equal probability of

being nonzero. As a result, one typically requires that the incoherence (or coherence) of the dictionary

is somewhat uniform. In this paper, we saw quite a different example. If we view both x and e as the

signal that we want to recover, then the sparsity or density of the combined signal is quite uneven –

x is very sparse but e can be very dense. Nevertheless, our result shows that if the incoherence of the

dictionary is adaptive to the distribution of the density – more coherent for the sparse part and less for

the dense part, then `1-minimization will be able to recover such uneven signals even if bounds based

on the even sparsity assumption suggest otherwise. Thus, if one has some prior knowledge about which

part of the signal is likely to be more sparse or more dense, one can achieve much better performance

with `1-minimization by using a dictionary with corresponding incoherence. More generally, for any
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given distribution of sparsity, one may ask the question whether there exists an optimal dictionary with

corresponding incoherence such that `1-minimization has the highest chance of success.

e) Stability with respect to noise: Although in our model, we do not explicitly consider any noise

(say y = Ax+e+z where z is Gaussian noise), it is known that `1-minimization is stable to small noise

[13]. This is also what we have observed empirically in our simulations or in the experiments with the

face images: `1-minimization for the cross-and-bouquet model is surprisingly stable to measurement or

numerical noise. In fact, as the method is able to deal with dense errors regardless of their magnitude,

large noisy entries in z will be treated like errors and be absorbed into e. So the estimate of x is likely to

be affected only by noises with small magnitude. However, a more precise characterization of the effect

of noise (say Gaussian) on the estimate of the sparse signal x and the error e remains an open problem.

f) Neighborliness of polytopes: From our study, we see that in order to precisely characterize the

performance of `1-minimization, one needs to analyze the geometry of the type of polytopes associated

with the special dictionaries in question. In practice, we often use `1-minimization for purposes other than

signal reconstruction or error correction. For instance, using machine learning techniques, we can learn

from exemplars a dictionary that is optimal for certain tasks such as data classification. The polytope

associated with such a dictionary can be very different from what we have normally studied in signal

processing or coding theory, so will be the performance of `1-minimization for finding the desired

representation, either sparse or not. Thus, we should expect that in coming years, many new classes

of polytopes with interesting properties may arise from other applications and practical problems.
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APPENDIX

TECHNICAL LEMMAS AND RESULTS

A. Restricted Isometry for Sparse Vectors

In this appendix, we prove Lemma 4 of Section II-D, which states that as long as c is sufficiently small,

i.e., c < min
(

ρ̄
64 (1+2Cµ)2 ,

ρ̄
1024

)
and ρ̄H(c/ρ̄) + δH(c/δ) < ρ̄/512, with overwhelming probability

γcm

(
[Ṽ ∗ − S̃Ũ∗]

)
≥ ν

√
ρ̄

4
− 6ν

√
c.

Proof: Recall that Ũ S̃Ṽ ∗ is a compact singular value decomposition of πu⊥1 Pπv⊥1 , where P =

M∗2πM⊥1 and u1, v1 are its leading singular vectors. Notice that the conditional distribution of P given

M1 is Gaussian: P = Z∗2πM⊥1 +1µ∗JcπM⊥1
.= Z∗2πM⊥1 +1µ̂∗. We will argue that the second term dominates.

a) 1µ̂∗ determines the leading singular vectors: Since the columns of M1 are k1 small perturbations

of µJc , the distance ‖µ̂‖ = ‖πM⊥1 µJc‖ of µJc to R(M1) should be small. However, we will argue that

‖πM⊥1 µJc‖ is at least Ω(k−1/2
1 ). Choose an orthonormal basis whose first element is µJc

‖µJc‖ . With respect

to this basis, M1 can be expressed as
[

0
Z̃2

]
+ e1(z̃∗1 + ‖µJc‖1∗)

.=
[

0
Z̃2

]
+ e1v

∗, where z̃1 and Z̃2 are iid

N(0, ν2/m). Then
∥∥∥πM1

µJc
‖µJc‖

∥∥∥2

2
is

e∗1

([
0
Z̃2

]
+ e1v

∗
)(

vv∗ + Z̃∗2 Z̃2

)−1
([ 0 Z̃∗2 ] + ve∗1) e1 =

v∗(Z̃∗2 Z̃2)−1v

1 + v∗(Z̃∗2 Z̃2)−1v
.

Applying Fact 1 to the ρ̄m−1×k1 N(0, ν2/m) matrix Z̃2, one can easily show that P
[ ∥∥∥(Z̃∗2 Z̃2)−1

∥∥∥ > 2
ν2ρ̄

]
�

e−Cm. The norm of the k1-dimensional N(0, ν2/m) vector z̃1 also concentrates8: P
[
‖z̃1‖ >

√
k1

]
�

e−C
′mk1 . On the complement of these bad events, ‖v‖ ≤ ‖z̃1‖ + ‖µJc1‖ = (1 + ‖µJc‖)

√
k1 ≤ 2

√
k1,

and v∗(Z̃∗2 Z̃2)−1v ≤ 8
ν2ρ̄k1. Moreover,∥∥∥∥ µJc

‖µJc‖
− πM1

µJc

‖µJc‖

∥∥∥∥2

2

=
1

1 + v∗(Z̃∗2 Z̃2)−1v
≥ 1

1 + 8
ν2ρ̄k1

. (48)

Lemma 6 below shows if ρ̄ < 1
2 −

1
Cµ

, with probability ≥ 1− e−Cm(1+o(1)) in the random support of the

error e, ‖µJc‖ ≥ ρ̄
2Cµ

.9 Together with (48), this implies that ‖µ̂‖ = ‖µJc − πM1µJc‖2 ≥
ρ̄

4C2
µ

√
1

1+ 8
ν2ρ̄

k1
.

Since ‖1‖2 =
√
δm− k1, on this good event ‖1µ̂∗‖2 ≥ C1m

η0/2 for some constant C1 and m sufficiently

large. From Fact 1, ‖Z2‖ is bounded by some constant C2 with probability at least 1 − e−Cm(1+o(1)).

8For a d-dimensional iid N(0, σ2) vector x, P [‖x‖ ≥ βσ
√
d] ≤ e−(β−1)2d/2 [11]. To obtain the result above, set β =

√
m/ν.

9This follows because demanding that ‖µ‖2 = 1 and ‖µ‖∞ ≤ Cµm
−1/2 forces µ to spread over its coordinates; the

probability that a randomly chosen support misses almost all of the energy of µ is overwhelmingly small.
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Treating Z∗2πM⊥1 as a nuisance perturbation of 1µ̂∗ and applying Wedin’s perturbation bound for principal

subspaces [14] then gives

‖πu⊥1 − π1⊥‖ ≤ 4 sin ∠(u1, 1) ≤ 4
‖Z∗2πM⊥1 ‖
‖1µ̂∗‖

≤ 4C2

C1mη0/2
.

and similarly ‖πv⊥1 − πµ̂⊥‖ ≤
4C2

C1 mη0/2 .

‖π⊥u1
Pπ⊥v1

− π1⊥Pπµ̂⊥‖ ≤ ‖πu⊥1 − π1⊥‖‖Pπv⊥1 ‖+ ‖π1⊥P‖‖πv⊥1 − πµ̂⊥‖

Now, ‖π1⊥P‖ ≤ ‖Z2‖ ≤ C2, and ‖Pπv⊥1 ‖ = σ2(P ) ≤
√

2ν(
√
ρ̄ +
√
δ) simultaneously with probability

≥ 1 − e−Cm(1+o(1)) (the second bound was established in part (a) of the proof of Lemma 3). Hence,

∃C3 such that P
[
‖πu⊥1 Pπv⊥1 − π1⊥Pπµ̂⊥‖2 > C3m

−η0/2
]
� e−Cm. For an arbitrary matrix W , write

f(W ) = γcm([πR(W ∗) −W ∗]). We are interested in f(πu⊥1 Pπv⊥1 ).10 Using the fact that singular values

of submatrices are Lipschitz and applying Wedin’s sin Θ theorem [14] to πR(W ∗), it is not difficult to

show that if rank(W + ∆) = rank(W ),

| f(W + ∆)− f(W ) | ≤
(

1 +
2

σmin(W )− ‖∆‖

)
‖∆‖, (49)

where σmin(W ) is the smallest nonzero singular value. Applying this bound with W = πu⊥1 Pπv⊥1 ,

∆ .= πu⊥1 Pπv⊥1 − π1⊥Pπµ̂⊥ , and noticing that σmin(πu⊥1 Pπv⊥1 ) is bounded below by a positive constant

with overwhelming probability, we have that
∣∣ f (πu⊥1 Pπv⊥1 )− f (π1⊥Pπµ̂⊥

) ∣∣ < ν
√
ρ̄

16 with probability

at least 1− e−Cm(1+o(1)). We henceforth restrict our attention to f(π1⊥Pπµ̂⊥).

b) Analysis via Gaussian measure concentration: Let Σ denote the subspace (R(Z1) +R(µJc))⊥,

and let V0 be some orthonormal basis for this subspace, chosen independently of Z2. From the above

reasoning, we can restrict our attention to π1⊥Pπµ̂⊥ = π1⊥Z2πΣ. Let π1⊥Z2πΣ = U ′S′V ′∗ be a compact

singular value decomposition of this matrix. Then,

γcm

([
V ′∗ −S′U ′∗

])
= γcm

(
V ′∗

[
I πΣZ

∗
2π1⊥

] )
= γcm

(
V ∗0

[
I πΣZ

∗
2π1⊥

] )
.

Where the final step follows because γcm is invariant under left multiplication of its argument by an

orthogonal matrix. Now, V ∗0 πΣZ
∗
2 = V ∗0 Z

∗
2 is simply distributed as a ρ̄m − k1 − 1 × δm − k1 iid

N(0, ν2/m) random matrix. Finally, introduce an additional uniformly distributed random orthogonal

matrix Q ∈ Rρ̄m−k1−1×ρ̄m−k1−1, chosen independently of Z2, and define Ψ .= QV ∗0 πΣZ
∗
2 . This is again an

iid N(0, ν2/m) matrix. From the rotational invariance of the Gaussian distribution it is easy to show that Ψ

and Q are independent random variables. Hence, γcm
([

V ′∗ −S′U ′∗
])

= γcm

( [
QV ∗0 Ψπ1⊥

] )
.

10Since left multiplication by an orthogonal matrix does not change γcm, f(πu⊥1
Pπv⊥1

) = γcm([Ṽ ∗ − S̃Ũ∗]).
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Here, QV ∗0 is the transpose of random orthobasis for the subspace Σ; it can be realized by orthogo-

nalizing the projection of a Gaussian matrix onto Σ. To this end, introduce an iid N(0, ν2/m) matrix

Φ ∈ Rρ̄m−k1−1×ρ̄m independent of Σ and Ψ. Then, γcm
( [

QV ∗0 Ψπ1⊥

] )
is equal in distribution to

γcm

([
(ΦπΣΦ∗)−1/2 ΦπΣ Ψπ1⊥

])
. This “transfer to Gaussianity” makes it easier to provide bounds

on γcm. Let Λ .= (ΦπΣΦ∗)−1/2. Now,

γcm = min
#L1∪L2=cm

σmin

([
[ΛΦπΣ]•,L1 [Ψπ1⊥ ]•,L2

])
≥

min
#L1=#L2=cm

min
{
σmin([ΛΦπΣ]•,L1), σmin(πΣ′⊥ [Ψπ1⊥ ]•,L2)

}
− max

#L1=#L2=cm

∥∥∥πΣ′ [Ψπ1⊥ ]•,L2

∥∥∥
where Σ′ denotes the subspace R([ΛΦπΣ]•,L1).

c) Bounding σmin[ΛΦπΣ]•,L: Applying Fact 1 to ΦπΣ gives that P [ ‖ΦπΣ‖2 ≥ 3ν
√
ρ̄ ] � e−ρ̄m/2.

On the complement of this bad event, σmin(Λ) ≥ 1
3ν
√
ρ̄

. Write

[ΦπΣ]•,L = Φ•,L − [ΦπΣ⊥ ]•,L = Φ•,L(I− [πΣ⊥ ]L,L)− Φ•,Lc [πΣ]Lc,L

=⇒ σmin([ΦπΣ]•,L) ≥ σmin(Φ•,L)(1− ‖[πΣ⊥ ]L,L‖)− ‖πΦ•,LΦ•,Lcπ[πΣ]Lc,L‖.

Straightforward application of Fact 1 shows that P
[
σmin(Φ•,L) ≤ ν

√
ρ̄

2 − ν
√
c
]
� e−ρ̄m/8, while for

any11 ε1 > 0, P
[
‖πΦ•,LΦ•,Lcπ[πΣ]Lc,L‖ ≥ 2ν

√
c+ ν

√
ρ̄ε1

]
� e−ρ̄ε1m/2. Finally, consider the matrix

Υ .=
[
Z1 ν

√
ρ̄ µJc
‖µJc‖

]
∈ Rρ̄m×k1+1. We are interested in ‖[πΣ⊥ ]L,L‖ =

∥∥∥ΥL,•(Υ∗Υ)−1Υ∗•,L
∥∥∥ ≤

‖ΥL,•‖2
σ2
min(Υ) . It is not difficult to show12 that with probability at least 1 − e−

ρ̄m

8
(1+o(1)), σmin(Υ) ≥ ν

√
ρ̄

2 .

Meanwhile for any ε2 > 0, P
[
‖Z1L,•‖ ≥ ν

√
c+ ν

√
ρ̄ε2

]
� e−ρ̄ε2m/2. On the complement of this bad

event (and invoking Lemma 6)

‖ΥL,•‖ ≤ ‖Z1L,•‖+
∥∥∥∥ν√ρ̄µJc(L)

‖µJc‖

∥∥∥∥ ≤ ν
√
c+ ν

√
ρ̄ε2 + ν

√
ρ̄
Cµ
√
c√

ρ̄/2Cµ
= ν

(√
ρ̄ε2 +

√
c
(
1 + 2C2

µ

))
.

By the assumptions of the lemma,
√
c (1 + 2C2

µ) ≤
√
ρ̄/8, and ‖[πΣ⊥ ]L,L‖ ≤ ‖ΥL,•‖2

σ2
min(Υ) ≤ 4(

√
ε2 + 1/8)2.

Setting ε1 = ε2 = 1
64

σmin

(
[ΦπΣ]•,L

)
≥
(
ν
√
ρ̄

2
− ν
√
c

)(
1− 1

4

)
−
(

2 ν
√
c+

ν
√
ρ̄

8

)
=

ν
√
ρ̄

4
− 11ν

√
c

4
, (50)

and σmin
(

[ΛΦπΣ]•,L
)
≥ 1

12−
11
12

√
c
ρ̄ >

1
24 on the complement of a bad event of probability e−

ρ̄m

128
(1+o(1)).

The number of subsets L of size cm is eρ̄mH(c/ρ̄)(1+o(1)). The probability any L is bad is bounded by

11Since Φ•,Lc is independent of Φ•,L and Σ, the norm of πΦ•,LΦ•,Lcπ[πΣ]Lc,L is simply distributed as the norm of a cm×cm

iid N(0, ν2/m) matrix. By Fact 1, P
h
‖πΦ•,LΦ•,Lcπ[πΣ]Lc,L‖ ≥ 2ν

√
c+ tν

√
c
i
≤ e−(t−o(1))2cm/2. Set t =

q
ρ̄ε1
c

.

12Write σmin(Υ) ≥ σmin
“h

πµ⊥
Jc
Z1 ν

√
ρ̄ µJc
‖µJc‖

i”
− ‖πµJcZ1‖ ≥ min(σmin(πµ⊥

Jc
Z1), ν

√
ρ̄) − ‖πµJcZ1‖, apply

Fact 1 to the singular value and standard tail bounds to the k1 dimensional N(0, ν2/m) vector µ∗JcZ1.
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e
ρ̄m
“
H(c/ρ̄)− 1

128

”
(1+o(1)), which falls off exponentially when H(c/ρ̄) < 1/128. This is guaranteed for

c/ρ̄ < 1/1024.

d) Bounding σmin (πΣ′⊥ [Ψπ1⊥ ]•,L): Choose any orthonormal basis for the [(ρ̄ − c)m − k1 − 1]-

dimensional subspace Σ′⊥, where Σ′ denotes the cm-dimensional range of [ΛΦπΣ]•,L1 . The expression

of the columns of πΣ′⊥Ψ with respect to this basis is a (ρ̄ − c)m − k1 − 1 × δm − k1 matrix Ψ̃ with

entries N(0, ν2/m). Split Ψ̃π1⊥ as

[Ψ̃π1⊥ ]•,L = Ψ̃•,L −
1
m

Ψ̃•,Lc11∗ − 1
m

Ψ̃•,L11∗.

Using the independence of 1
mΨ̃•,Lc1 and Ψ̃•,L and applying Fact 1, it is not difficult to show13 that

P

[
σmin

(
Ψ̃•,L −

1
m

Ψ̃•,Lc11∗
)
≤ ν
√
ρ̄− c
2

− ν
√
c

]
≤ e−

(ρ̄−c)m
8

(1+o(1)). (51)

The final term involves 1√
m

Ψ̃•,L1, an iid N(0, cν2/m) vector of dimension (ρ̄− c)m− k1 − 1,

P

[ ∥∥∥∥ 1√
m

Ψ̃•,L1
∥∥∥∥ ≥ 2ν

√
c(ρ̄− c)

]
� e−

(ρ̄−c)m
2

(1+o(1)). (52)

Combining these results, we have that on the complement of a bad event of probability � e−(ρ̄−c)m/8,

σmin([Ψ̃π1⊥ ]•,L) ≥ σmin

(
Ψ̃•,L −

1
m

Ψ̃•,Lc11∗
)
−
∥∥∥∥ 1
m

Ψ̃•,L11∗
∥∥∥∥ ≥ ν

√
ρ̄− c
2

− ν
√
c− 2νc

√
ρ̄− c

≥
√

1023
1024

ν
√
ρ̄

2
− 3ν

√
c by the assumptions of the lemma. (53)

There are � eρ̄mH(c/ρ̄) subsets L1 of size cm and � eδmH(c/δ) subsets L2 of size cm, where H

denotes the (base-e) binary entropy function. The total number of choices of L1, L2 is asymptotic to

e

“
ρ̄H
“
c

ρ̄

”
+δH( cδ )

”
m, and the probability that any pair is bad is bounded by

exp
((
ρ̄H(c/ρ̄) + δH(c/δ)− ρ̄−c

8

)
m (1 + o(1))

)
.

Under the assumptions of the lemma, the exponent is negative. Since for ν < 1
24
√
ρ̄

, this bound is smaller

than the bound for ΛΦπΣ, this bound controls the overall behavior.

13Independent translations do not substantially affect Fact 1: for an m × n iid N(0, 1/m) matrix M and an independent

translation x, σmin(M + x1∗) ≥ σmin(πx⊥M), which obeys the same concentration result, now applied to an (m − 1) × n

matrix. Appropriate rescaling of the (ρ̄− c)m− k1 − 1× cm N(0, ν2/m) matrix Ψ̃•,L yields the desired expression.
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e) Bounding the cross-coherence
∥∥∥πΣ′′ [Ψπ1⊥ ]•,L2

∥∥∥: Begin by fixing L1 and L2. Let Σ′′ denote the

subspace R([ΛΦπΣ]•,L1). Notice that Σ′′ and Ψ are probabilistically independent. Now,∥∥∥πΣ′′ [Ψπ1⊥ ]•,L2

∥∥∥ ≤ ‖πΣ′′Ψ•,L2‖+
∥∥∥∥ 1√

m
πΣ′′Ψ1

∥∥∥∥√c.
Now, ‖πΣ′′Ψ•,L2‖ is distributed as the norm of a cm×cm iid N(0, ν2/m) matrix, and so for any ε1 > 0,

P
[
‖πΣ′′Ψ•,L2‖ ≥ 2ν

√
c + ε1ν

√
ρ̄
]
� e−ε

2
1ρ̄m/2. (54)

Similarly, the vector 1√
m
πΣ′′Ψ1 is has the same norm as a cm-dimensional iid N(0, ν2/m) vector, so

P

[∥∥∥∥ 1√
m
πΣ′′Ψ1

∥∥∥∥ ≥ ν√c+ ε2ν
√
ρ̄

]
� e−ε2

2ρ̄m/2. (55)

On the complements of these two bad events,
∥∥∥πΣ′′ [Ψπ1⊥ ]•,L2

∥∥∥ ≤ (ε1 + ε2) ν
√
ρ̄ + 3 ν

√
c. Set ε1 =

ε2 = 1/16. The probability the union of the two bad events is then asymptotic to e−ρ̄m/512. As in the

previous lemma, we close with a union bound over choices of L1, L2. The number of such choices is

asymptotic to e

“
ρ̄H
“
c

ρ̄

”
+δH( cδ )

”
m, and the probability that there exists some bad pair is bounded by a

function asymptotic to

exp
((

ρ̄H

(
c

ρ̄

)
+ δH

( c
δ

)
− ρ̄/512

)
m

)
(56)

Under the hypotheses of the lemma, the coefficient of this exponent is negative.

f) Pulling the bounds together: Pulling these three bounds together, with probability at least 1 −

e−Cm(1+o(1)),

γcm
(
[ (ΦπΣΦ∗)−1/2ΦπΣ Ψπ1⊥ ]

)
≥
√

1023
1024

ν
√
ρ̄

2
− 3ν

√
c− ν

√
ρ̄

8
− 3ν

√
c ≥ 5

16
ν
√
ρ̄− 6ν

√
c. (57)

Since
∣∣γcm ([ Ṽ ∗ −S̃Ũ∗ ])− γcm

(
[ (ΦπΣΦ∗)−1/2ΦπΣ Ψπ1⊥ ]

)∣∣ ≤ ν
√
ρ̄

16 , the desired bound follows.

Lemma 6: Suppose ρ̄ < 1/2 − 1/C2
µ. With probability at least 1 − e−Cm(1+o(1)) over random error

supports J ∈
(

[m]
ρm

)
, the “clean part” of the mean, µJc satisfies ‖µJc‖ ≥

√
ρ̄

2Cµ
.

Proof: For β > 1, define Lβ
.= { i : µ2

i > m−1/β } ⊂ [m]. Then since µ2
i ≤ C2

µ/m for all i, and∑
i µ

2
i = 1,

C2
µ

m
#Lβ +

1
βm

(m−#Lβ) ≥ 1,

and so γβ
.= #Lβ

m ≥ β−1
βC2

µ−1 . We will show that for any constant τ > 1, P
[
#Jc ∩ Lβ < ρ̄ γβm

τ

]
� e−Cm,

so that with overwhelming probability

‖µJc‖22 ≥ ‖µJc∩Lβ‖22 ≥
ρ̄ γβm

τ

1
mβ

≥
ρ̄ γβ
β τ

. (58)
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Choosing β = τ = 2 gives the bound claimed above. To verify that the intersection of Jc and Lβ not

too small, notice that

P

[
#Jc ∩ Lβ ≤

ρ̄ γβm

τ

]
≤

∑ ρ̄ γβm

τ

k=0

(γβm
k

)((1−γβ)m
m−k

)(
m
ρ̄m

) ≤
m
( γβm
ρ̄γβ

τ
m

)(
(1−γβ)m
ρ̄m

)
(
m
ρ̄m

)
Where we have used that ρ̄γβ/τ < 1/2 for the upper bound

(γβm
k

)
≤
( γβm
ρ̄γβ

τ
m

)
, and m− k ≤ ρ̄m ≤ 1−γβ

2

for the bound
((1−γβ)m

m−k
)
≤
(

(1−γβ)m
ρ̄m

)
, and finally, crudely upper bounded the number of terms in the

summation by m. The logarithm of the numerator is

γβmH(ρ̄/τ) + (1− γβ)mH(ρ̄) + o(m)

while the logarithm of the denominator is simply mH(ρ̄)+o(m). For τ > 1, the denominator dominates,

and the logarithm of the complete bound is −γβm(H(ρ̄)−H(ρ̄/τ) + o(m).

B. Technical Lemmas for Initial Separating Hyperplane

This section contains several results used above in controlling the initial separator q0. We will first

justify the assertion that
[
Z1 Z2
0 I

]
(G∗G)−1Z∗J,• σ contributes O(m1/2) to ‖q0‖. We close with a measure

concentration result for ‖θ · ‖, also used in the proof of Lemma 5.

Lemma 7 (Lower order terms for q0): Suppose that ρ̄ < min
(
δ, 1

2 −
1
Cµ

)
. Then ∃ ν0 > 0 such that

if ν < ν0, there exist constants (wrt m) CG and Cq such that

‖(G∗G)−1‖ ≤ CG and
∥∥q0 −

[
Z1 Z2
0 I

]
(G∗G)−1Z∗J,•σ

∥∥ ≤ Cqm
1/2−η0/4 (59)

simultaneously on the complement of a bad event of probability ≤ e−Cm1−η0/2(1+o(1)).

Proof: We first show that 1∗(G∗G)−11, ‖(G∗G)−11‖, and ‖(G∗G)−1‖ are simultaneously bounded

by constants w.p. ≥ 1− e−Cm(1+o(1)). Write Q =
[
Z∗1Z1 Z∗1Z2

Z∗2Z1 Z∗2Z2+I

]
∈ Rn×n, and y = Z∗Jc,•µJc ∈ Rn. The

Grammian can be expressed as G∗G = Q+ y1∗ + 1y∗ + α11∗, where α = µ∗JcµJc , and

(G∗G)−1 = Q−1 −Q−1
[

1 y
] 1∗Q−11 1∗Q−1y + 1

1∗Q−1y + 1 y∗Q−1y − α

−1  1∗

y∗

Q−1. (60)

Let b .= 1∗Q−11, c .= 1∗Q−1y, d .= y∗Q−1y, and explicitly invert the above 2× 2 matrix:

(G∗G)−11 = Q−11−Q−1
[

1 y
]
 d− α −c− 1

−c− 1 b


b(d− α)− (c+ 1)2

 b

c


=

c+ 1
b (α− d) + (c+ 1)2

Q−11 − 1
α− d+ (c+ 1)2/b

Q−1y
.= λ1Q

−11 + λ2Q
−1y.
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Similarly, 1∗(G∗G)−11 = −b
b(d−α)−(c+1)2 ≤ 1

α−d .

We bound the quadratic terms b, c, and d. Applying Fact 1 to the δm × ρ̄m iid N(0, ν2/m) matrix

ZJc,• = [Z1 Z2] gives that ‖ZJc,•‖2 ≤
√

2ν
(√

δ +
√
ρ̄
)

on the complement of an event of probability

� e−Cm. On the complement of that bad event,

b = 1∗Q−11 ≥ ‖1‖
2
2

‖Q‖
≥ δm

1 + ‖ZJc,•‖2
≥ δm

1 + 2 ν2 (
√
δ +
√
ρ̄)2

.= Cbm (61)

For c = 1∗Q−1y, notice that y = Z∗Jc,• µJc is iid N(0, ν2α/m) random vector. We would like to assert

that this vector is almost orthogonal to Q−11. To do so, first split out the part of ZJc,• that is not

probabilistically independent of y: write

Q = Z∗Jc,•πµ⊥JcZJc,• + [ 0 0
0 I ] +

1
α
yy∗

.= L+
1
α
y y∗,

and
Q−1 = L−1 − L−1y

1
α+ y∗L−1y

y∗L−1.

Then, |1∗Q−1y| =
∣∣∣1∗L−1y

(
α

α+y∗L−1y

)∣∣∣ ≤ |1∗L−1y|. Now, ‖L−11‖2 ≤
√
δm

σmin(L) . It is not difficult to

show14 that for any block matrix M =
[
A B
0 I

]
with ‖A‖‖B‖ < 1− σ2

min(A),

σ2
min(M) ≥ σ2

min(A)− ‖A‖
2 ‖B‖2

1− σ2
min(A)

.

The relevant singular value is

σmin(L) = σ2
min

 πµ⊥JcZ1 πµ⊥JcZ2

0 I

 ≥ σ2
min(πµ⊥JcZ1) −

‖πµ⊥JcZ1‖‖πµ⊥JcZ2‖
1− ‖πµ⊥JcZ1‖2

On the complement of an event of probability � e−Cm,

σ2
min(πµ⊥JcZ1) ≥ ν2ρ̄

2
‖πµ⊥JcZ1‖2 ≤ ‖Z1‖2 ≤ 2ν2ρ̄ ‖πµ⊥JcZ2‖2 ≤ ‖Z2‖2 ≤

√
2ν2

(√
δ +
√
ρ̄
)
.

The first comes by identifying πµ⊥JcZ1 with a ρ̄m− 1× k1 Gaussian matrix and applying Fact 1, while

the second and third follow directly from Fact 1. Plugging in, σmin(L) ≥ ν2ρ̄
2 −

8ν4(
√
δ+
√
ρ̄)

1−8ν4(
√
δ+
√
ρ̄)
≥ ν2ρ̄

4 for

ν sufficiently small.15 Returning to the quantity of interest, ‖L−11‖2 ≤ 4
√
δ

ν2ρ̄ m
1/2. Meanwhile, since y is

independent of L,
〈

L−11
‖L−11‖2 , y

〉
is simply an N(0, ν2α/m) random variable, and so for any ε > 0

P
[∣∣1∗L−1y

∣∣ > εm1/2
]
≤ P

[
‖L−11‖ > 4

√
δ

ν2ρ̄
m1/2

]
+ P

[∣∣∣∣〈 L−11
‖L−11‖2

, y

〉∣∣∣∣ > ε
ν2ρ̄

4
√
δ

]
� e−Cεm

14Write σ2
min(M) ≥ min

‖x1‖22+‖x2‖22=1
(‖Ax1‖2 − ‖Bx2‖2)2 + ‖x2‖22

≥ min
λ∈[0,1]

σ2
min(A) + (1− σ2

min(A))(1− λ)− 2‖A‖‖B‖
√

1− λ.

15For example, ν < min

„
1
8

q
ρ̄√
δ+
√
ρ̄
, 1

2

“√
δ +
√
ρ̄
”1/4

«
suffices.
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where Cε > 0 is a constant (wrt m) depending on ε. So, with overwhelming probability, c = 1∗Q−1y

has magnitude bounded by εm1/2.

The final quadratic term is d = y∗Q−1y = y∗L−1y y∗L−1y
α+y∗L−1y ≤ y∗L−1y. Rather than simply inde-

pendently bounding ‖y‖ and ‖L−1‖, we obtain finer control by exploiting the fact that for most vectors

L is well-conditioned, due to the presence of the identity matrix in
[
Z1 Z2
0 I

]
. Consider the subspace

Σ = {x : xI = 0} ⊂ Rn. Since for all x ∈ Σ, ‖Lx‖2 ≥ ‖x‖2,
∥∥L−1

∣∣
LΣ

∥∥ ≤ 1, and

y∗L−1y = y∗
(
L−1

∣∣
LΣ
πLΣ y + L−1π(LΣ)⊥y

)
≤ ‖y‖22

∥∥L−1
∣∣
LΣ

∥∥
2

+ ‖L−1‖2‖y‖2
∥∥π(LΣ)⊥y

∥∥
2
≤ 2ν2αδ +

4
√

2αδ
νρ̄

∥∥π(LΣ)⊥y
∥∥

2
.

The final term, ‖π(LΣ)⊥y‖ is the projection of the N(0, ν2α/m) vector y onto an independent k1-

dimensional subspace; for any ε′ > 0, P
[∥∥π(LΣ)⊥y

∥∥ ≥ ε′ν√α] � e−ε
′2m/2. For appropriate choice of

ε, with overwhelming probability, d ≤ y∗L−1y ≤ 4ν2αδ.

We now have everything we need to demonstrate the first two claims of the lemma. Due to the centrality

assumption, the energy of µ is well-spread: α ≥ ρ̄
4C2

µ
w.p. ≥ 1 − e−Cm(1+o(1)) (Lemma 6). So, with

probability at least 1− e−Cm(1+o(1)),

1∗(G∗G)−11 ≤ 1
α− d

≤ 1
α (1− 4ν2δ)

≤
4C2

µ

ρ̄ (1− 4ν2δ)
.= C1. (62)

For the coefficient λ1 in (G∗G)−11, for any ε > 0

|λ1| ≤
| c+ 1 |
b (α− d)

≤ εm1/2 + 1
δm

1+8ν2α(1− 4ν2δ)
(63)

with overwhelming probability. Hence for any ε′′ > 0, |λ1| ≤ ε′′m−1/2 for m sufficiently large, on the

complement of a bad event of probability � e−Cm. Similarly, |λ2| ≤ 1
α−d ≤

4C2
µ

ρ̄ (1−4ν2δ) . An identical

argument to the one given for ‖L−1‖ above shows that ‖Q−1‖ ≤ 4
ν2ρ̄ w.p. ≥ 1− e−Cm(1+o(1)), and so

‖(G∗G)−11‖2 ≤ |λ1|‖Q−1‖‖1‖+ |λ2|‖Q−1‖‖y‖ ≤ 4 ε′′
√
δ

ν2ρ̄
+

16
√

2δCµ
ρ̄ (1− 4ν2δ)

.= C2.

We next bound ‖(G∗G)−1‖, establishing the second part of the lemma. Introduce matrices M =[
Q−1/21
‖Q−1/21‖2

Q−1/2y
‖Q−1/2y‖2

]
and

Ξ =
[√

1∗Q−11 0

0
√
y∗Q−1y

] [
1∗Q−11 1∗Q−1y+1

1∗Q−1y+1 y∗Q−1y−α

]−1
[√

1∗Q−11 0

0
√
y∗Q−1y

]
.

In terms of these matrices, (G∗G)−1 = Q−1 − Q−1/2MΞM∗Q−1/2. Now,

Ξ =

 1∗Q−11 (α− y∗Q−1y) −
√

1∗Q−11
√
y∗Q−1y

(
1∗Q−1y + 1

)
−
√

1∗Q−11
√
y∗Q−1y

(
1∗Q−1y + 1

)
(y∗Q−1y)(1∗Q−11)


1∗Q−11 (α− y∗Q−1y)− (1∗Q−1y + 1)2 .
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Applying the quadratic product bounds derived above, w.p. ≥ 1 − e−Cεm(1+o(1)), the denominator is at

least
Cb(1− 4ν2δ)ρ̄

4Cµ
m− (εm1/2 + 1)2 ≥ Cdenomm eventually

for any constant Cdenom < Cb(1−4ν2δ)ρ̄
4Cµ

and corresponding choice of ε. Since each of the terms in the

numerator is bounded by Cm for some constant C, each of the terms in the 2× 2 matrix Ξ is bounded

by some constant, and ‖Ξ‖ ≤ CΞ w.p. ≥ 1− e−Cm(1+o(1)) for appropriate constant CΞ. Hence,

‖(G∗G)−1‖ ≤ ‖Q−1‖+ ‖Q−1‖ ‖M‖2 ‖Ξ‖ ≤ 4
ν2ρ̄

+
4
ν2ρ̄

2CΞ
.= CG,

a constant, establishing the first assertion of the lemma.

For the second assertion, recall that

q0 =
[
Z1 Z2
0 I

]
(G∗G)−1Z∗J,• σ +

[
Z1 Z2
0 I

] (
−(G∗G)−11I + 〈µJ , σ〉 (G∗G)−11

)
+ [ µJc0 ]

(
−1∗(G∗G)−11I + 〈µJ , σ〉 1∗(G∗G)−11

)
+ [ µJc0 ] 1∗(G∗G)−1Z∗J,• σ (64)

Before proceeding, we bound |〈µJ , σ〉|. Consider the Martingale (Xi)
ρm
i=0 given by X0 = 0, Xi =∑i

j=1 µJ(j)σ(j). We are interested in Xρm = 〈µJ , σ〉. Since |Xi − Xi−1| ≤ µJ(j), by Hoeffding’s

inequality [15],

P [ |Xρm| ≥ t ] ≤ 2 exp

(
− t2

2
∑ρm

j=1 µ
2
J(j)

)
≤ 2 e−

t2

2 , (65)

and so with probability ≥ 1− e−Cm1−η0/2
, |〈µJ , σ〉| ≤ m1/2−η0/4.

The second term of (64),
∥∥∥[ Z1 Z2

0 I

] (
−(G∗G)−11I + 〈µJ , σ〉 (G∗G)−11

)∥∥∥ is bounded above by(
1 + 2ν2(

√
δ +
√
ρ̄)2
)(

CG
√
C0m

1/2−η0/2 +m1/2−η0/4C2

)
≤ C4m

1/2−η0/4

w.p. ≥ 1− e−Cm1−η0/2(1+o(1)), for appropriate C4. Similarly, for the third term of (64)∥∥∥[ µJc0 ]
(
−1∗(G∗G)−11I + 〈µJ , σ〉 1∗(G∗G)−11

)∥∥∥ ≤ C1 + C1m
1/2−η0/4

For the final term of (64), notice that ϑ .= Z∗J,•σ is distributed as an iid N(0, ν2ρ) vector, independent

of G, and so

P

[∣∣∣∣〈 (G∗G)−11
‖(G∗G)−11‖

, ϑ

〉∣∣∣∣ ≥ m1/2−η0/4

]
� e−Cm1−η0/2

. (66)

On the complement of this bad event,∥∥µJc1∗(G∗G)−1ϑ
∥∥ ≤ ‖(G∗G)−11‖ ·

∣∣∣∣〈 (G∗G)−11
‖(G∗G)−11‖

, ϑ

〉∣∣∣∣ ≤ C2m
1/2−η0/4. (67)
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Lemma 8 (Concentration for Gaussian tops): Fix σ ≤ 1, ε ≤ 1/2. Let x be a d-dimensional random

vector with entries iid N(0, σ2), and let θ be the operator that takes the part of x that is greater than

1− ε:

θ : Rd → Rd s.t. [θx]i =

 sgn(xi)(|xi| − 1 + ε) |xi| > 1− ε

0 else
(68)

Then

P
[
‖θx‖2 ≥ 4e−

1
16σ2 d1/2

]
� e−Cσd, (69)

where Cσ is a constant depending only on σ.

Proof: Let y ∈ Rd be iid N(0, 1), then ‖θx‖2 is equal in distribution to ‖θσy‖2. Now, E‖θσy‖22 =

d · E(θxi)2 = d
σ

√
2
π

∫∞
1−ε t

2e−t
2/2σ2

dt. Integrating by parts16 yields

d−1E‖θσy‖22 =
(1− ε)σ√

π/2
e−

(1−ε)2

2σ2 + 2σ2Q
(

1−ε
σ

)
≤ σ

√
2
π

1 + σ2

1− ε
e−

(1−ε)2

2σ2 ≤ 4σe−
1

8σ2 ,

and E[ ‖θσy‖2 ] ≤ 2 e−
1

16σ2 d1/2. Meanwhile, E
√∑d

i=1 |θσyi|2 =
√
d E

√Pd
i=1 |θσyi|2

d . It is not diffi-

cult to show17 that E
√Pd

i=1 |θσyi|2
d → C ′σ for some constant C ′σ > 0 depending only on σ and so

E‖θσy‖2 ≥ C ′σ d
1/2. Since f(·) = ‖θσ · ‖2 is 1-Lipschitz for σ ≤ 1, P [ ‖θσy‖2 ≥ 2 E‖θσy‖2 ] ≤

exp
(
−8(E‖θσy‖2)2/π2

)
[11]. Plugging in the upper and lower bounds on E|θσy‖2 yields the result.

C. Details of the proof of Theorem 1

Proof: For a given I ∈
([n]
k1

)
. By Lemma 2, (I, J, σ) is `1-recoverable if ∃β ∈ (0, 1) such that

‖q0‖2 +
1

1− ξβp
‖θq0‖2 ≤ (1− ε)

√
βp = (1− ε)

√
β(ρ̄+ δ)m1/2 − o(m1/2).

Choose c .= β(ρ̄+ δ) small enough that c < min
(

ρ̄
64(1+2Cµ)2 ,

ρ̄
1024

)
and ρ̄H(c/ρ̄) + δH(c/δ) < ρ̄/512.

Then by Lemma 3, for m sufficiently large, and with probability at least 1− e−Cm1−η0/2(1+o(1)), as long

as ν < min
(

1
24
√
ρ̄
, (2δ)−1/4, 1

2(
√
δ+
√
ρ̄)

)
,

1
1− ξβp

=
1

1− ξcm
≤ 16

ν8

(
32√
δρ̄− ρ̄

)4

.

while

‖q0‖2 ≤ α1νm
1/2 + o(m1/2) ‖θq0‖2 ≤ α2 e

−ρ̄/128ν2
m1/2 + o(m1/2),

16And noting that Q(z) ≤ 1

z
√

2π
e−z

2/2.
17Apply the strong law of large numbers to d−1P |θσyi|2 and Slutsky’s theorem to argue that E

p
d−1

P
|θσyi|2 →p

E|θσyi|2.
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and so

‖q0‖2 +
1

1− ξ
‖θq0‖2 ≤ α1νm

1/2 +
C

ν8
e−ρ̄/128ν2

m1/2 + o(m1/2) ≤ (1− ε)
√
cm1/2 − o(m1/2)

for ν sufficiently small and m sufficiently large. Hence, under these conditions probability that (I, J, σ)

is not `1-recoverable is bounded by e−Cm
1−η0/2(1+o(1)). The number of subsets I is

(
δm
k1

)
≤ (δm)k1 ≤

eC0m1−η0 log(δm), and so the probability that ∃ I such that (I, J, σ) is not `1-recoverable is bounded by

eC0m1−η0 log(δm) e−Cm
1−η0/2(1+o(1)) → 0 as m→∞.
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