11 research outputs found

    MinIE: minimizing facts in open information extraction

    Full text link

    Knowledge-Enriched Visual Storytelling

    Full text link
    Stories are diverse and highly personalized, resulting in a large possible output space for story generation. Existing end-to-end approaches produce monotonous stories because they are limited to the vocabulary and knowledge in a single training dataset. This paper introduces KG-Story, a three-stage framework that allows the story generation model to take advantage of external Knowledge Graphs to produce interesting stories. KG-Story distills a set of representative words from the input prompts, enriches the word set by using external knowledge graphs, and finally generates stories based on the enriched word set. This distill-enrich-generate framework allows the use of external resources not only for the enrichment phase, but also for the distillation and generation phases. In this paper, we show the superiority of KG-Story for visual storytelling, where the input prompt is a sequence of five photos and the output is a short story. Per the human ranking evaluation, stories generated by KG-Story are on average ranked better than that of the state-of-the-art systems. Our code and output stories are available at https://github.com/zychen423/KE-VIST.Comment: AAAI 202

    A Survey on Open Information Extraction

    Get PDF
    We provide a detailed overview of the various approaches that were proposed to date to solve the task of Open Information Extraction. We present the major challenges that such systems face, show the evolution of the suggested approaches over time and depict the specific issues they address. In addition, we provide a critique of the commonly applied evaluation procedures for assessing the performance of Open IE systems and highlight some directions for future work.Comment: 27th International Conference on Computational Linguistics (COLING 2018

    Commonsense Properties from Query Logs and Question Answering Forums

    No full text
    Commonsense knowledge about object properties, human behavior and general concepts is crucial for robust AI applications. However, automatic acquisition of this knowledge is challenging because of sparseness and bias in online sources. This paper presents Quasimodo, a methodology and tool suite for distilling commonsense properties from non-standard web sources. We devise novel ways of tapping into search-engine query logs and QA forums, and combining the resulting candidate assertions with statistical cues from encyclopedias, books and image tags in a corroboration step. Unlike prior work on commonsense knowledge bases, Quasimodo focuses on salient properties that are typically associated with certain objects or concepts. Extensive evaluations, including extrinsic use-case studies, show that Quasimodo provides better coverage than state-of-the-art baselines with comparable quality

    Integrating Cultural Knowledge into Artificially Intelligent Systems: Human Experiments and Computational Implementations

    Get PDF
    With the advancement of Artificial Intelligence, it seems as if every aspect of our lives is impacted by AI in one way or the other. As AI is used for everything from driving vehicles to criminal justice, it becomes crucial that it overcome any biases that might hinder its fair application. We are constantly trying to make AI be more like humans. But most AI systems so far fail to address one of the main aspects of humanity: our culture and the differences between cultures. We cannot truly consider AI to have understood human reasoning without understanding culture. So it is important for cultural information to be embedded into AI systems in some way, as well as for the AI systems to understand the differences across these cultures. The main way I have chosen to do this are using two cultural markers: motifs and rituals. This is because they are both so inherently part of any culture. Motifs are things that are repeated often and are grounded in well-known stories, and tend to be very specific to individual cultures. Rituals are something that are part of every culture in some way, and while there are some that are constant across all cultures, some are very specific to individual ones. This makes them great to compare and to contrast. The first two parts of this dissertation talk about a couple of cognitive psychology studies I conducted. The first is to see how people understood motifs. Is is true that in-culture people identify motifs better than out-culture people? We see that my study shows this to indeed be the case. The second study attempts to test if motifs are recognizable in texts, regardless of whether or not people might understand their meaning. Our results confirm our hypothesis that motifs are recognizable. The third part of my work discusses the survey and data collection effort around rituals. I collected data about rituals from people from various national groups, and observed the differences in their responses. The main results from this was twofold: first, that cultural differences across groups are quantifiable, and that they are prevalent and observable with proper effort; and second, to collect and curate a substantial culturally sensitive dataset that can have a wide variety of use across various AI systems. The fourth part of the dissertation focuses on a system I built, called the motif association miner, which provides information about motifs present in input text, like associations, sources of motifs, connotations, etc. This information will be highly useful as this will enable future systems to use my output as input for their systems, and have a better understanding of motifs, especially as this shows an approach of bringing out meaning of motifs specific to certain culture to wider usage. As the final contribution, this thesis details my efforts to use the curated ritual data to improve existing Question Answering system, and show that this method helps systems perform better in situations which vary by culture. This data and approach, which will be made publicly available, will enable others in the field to take advantage of the information contained within to try and combat some bias in their systems
    corecore