1,570 research outputs found

    Network automation: challenges, enablers, and benefits

    Get PDF
    Communication infrastructures are evolving towards an ad-hoc service provisioning scenario where programmability and flexibility are fundamental concepts. Network automation is expected to play a vital role in streamlining all aspects of the service provisioning process (i.e., deployment, maintenance, and tear down). However, to fully realize this autonomous operation vision, closed-loop automation procedures need to be developed.This tutorial will present the main motivations and challenges behind designing and operating closed-loop autonomous decision-making processes, including a brief overview of current standardization initiatives. The tutorial will then address several use cases showcasing how network automation can alleviate the complexity of the service provisioning processes and the benefits brought in by the introduction of network automation

    Towards edge robotics: the progress from cloud-based robotic systems to intelligent and context-aware robotic services

    Get PDF
    Current robotic systems handle a different range of applications such as video surveillance, delivery of goods, cleaning, material handling, assembly, painting, or pick and place services. These systems have been embraced not only by the general population but also by the vertical industries to help them in performing daily activities. Traditionally, the robotic systems have been deployed in standalone robots that were exclusively dedicated to performing a specific task such as cleaning the floor in indoor environments. In recent years, cloud providers started to offer their infrastructures to robotic systems for offloading some of the robot’s functions. This ultimate form of the distributed robotic system was first introduced 10 years ago as cloud robotics and nowadays a lot of robotic solutions are appearing in this form. As a result, standalone robots became software-enhanced objects with increased reconfigurability as well as decreased complexity and cost. Moreover, by offloading the heavy processing from the robot to the cloud, it is easier to share services and information from various robots or agents to achieve better cooperation and coordination. Cloud robotics is suitable for human-scale responsive and delay-tolerant robotic functionalities (e.g., monitoring, predictive maintenance). However, there is a whole set of real-time robotic applications (e.g., remote control, motion planning, autonomous navigation) that can not be executed with cloud robotics solutions, mainly because cloud facilities traditionally reside far away from the robots. While the cloud providers can ensure certain performance in their infrastructure, very little can be ensured in the network between the robots and the cloud, especially in the last hop where wireless radio access networks are involved. Over the last years advances in edge computing, fog computing, 5G NR, network slicing, Network Function Virtualization (NFV), and network orchestration are stimulating the interest of the industrial sector to satisfy the stringent and real-time requirements of their applications. Robotic systems are a key piece in the industrial digital transformation and their benefits are very well studied in the literature. However, designing and implementing a robotic system that integrates all the emerging technologies and meets the connectivity requirements (e.g., latency, reliability) is an ambitious task. This thesis studies the integration of modern Information andCommunication Technologies (ICTs) in robotic systems and proposes some robotic enhancements that tackle the real-time constraints of robotic services. To evaluate the performance of the proposed enhancements, this thesis departs from the design and prototype implementation of an edge native robotic system that embodies the concepts of edge computing, fog computing, orchestration, and virtualization. The proposed edge robotics system serves to represent two exemplary robotic applications. In particular, autonomous navigation of mobile robots and remote-control of robot manipulator where the end-to-end robotic system is distributed between the robots and the edge server. The open-source prototype implementation of the designed edge native robotic system resulted in the creation of two real-world testbeds that are used in this thesis as a baseline scenario for the evaluation of new innovative solutions in robotic systems. After detailing the design and prototype implementation of the end-to-end edge native robotic system, this thesis proposes several enhancements that can be offered to robotic systems by adapting the concept of edge computing via the Multi-Access Edge Computing (MEC) framework. First, it proposes exemplary network context-aware enhancements in which the real-time information about robot connectivity and location can be used to dynamically adapt the end-to-end system behavior to the actual status of the communication (e.g., radio channel). Three different exemplary context-aware enhancements are proposed that aim to optimize the end-to-end edge native robotic system. Later, the thesis studies the capability of the edge native robotic system to offer potential savings by means of computation offloading for robot manipulators in different deployment configurations. Further, the impact of different wireless channels (e.g., 5G, 4G andWi-Fi) to support the data exchange between a robot manipulator and its remote controller are assessed. In the following part of the thesis, the focus is set on how orchestration solutions can support mobile robot systems to make high quality decisions. The application of OKpi as an orchestration algorithm and DLT-based federation are studied to meet the KPIs that autonomously controlledmobile robots have in order to provide uninterrupted connectivity over the radio access network. The elaborated solutions present high compatibility with the designed edge robotics system where the robot driving range is extended without any interruption of the end-to-end edge robotics service. While the DLT-based federation extends the robot driving range by deploying access point extension on top of external domain infrastructure, OKpi selects the most suitable access point and computing resource in the cloud-to-thing continuum in order to fulfill the latency requirements of autonomously controlled mobile robots. To conclude the thesis the focus is set on how robotic systems can improve their performance by leveraging Artificial Intelligence (AI) and Machine Learning (ML) algorithms to generate smart decisions. To do so, the edge native robotic system is presented as a true embodiment of a Cyber-Physical System (CPS) in Industry 4.0, showing the mission of AI in such concept. It presents the key enabling technologies of the edge robotic system such as edge, fog, and 5G, where the physical processes are integrated with computing and network domains. The role of AI in each technology domain is identified by analyzing a set of AI agents at the application and infrastructure level. In the last part of the thesis, the movement prediction is selected to study the feasibility of applying a forecast-based recovery mechanism for real-time remote control of robotic manipulators (FoReCo) that uses ML to infer lost commands caused by interference in the wireless channel. The obtained results are showcasing the its potential in simulation and real-world experimentation.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Karl Holger.- Secretario: Joerg Widmer.- Vocal: Claudio Cicconett

    Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

    Get PDF
    While monolithic satellite missions still pose significant advantages in terms of accuracy and operations, novel distributed architectures are promising improved flexibility, responsiveness, and adaptability to structural and functional changes. Large satellite swarms, opportunistic satellite networks or heterogeneous constellations hybridizing small-spacecraft nodes with highperformance satellites are becoming feasible and advantageous alternatives requiring the adoption of new operation paradigms that enhance their autonomy. While autonomy is a notion that is gaining acceptance in monolithic satellite missions, it can also be deemed an integral characteristic in Distributed Satellite Systems (DSS). In this context, this paper focuses on the motivations for system-level autonomy in DSS and justifies its need as an enabler of system qualities. Autonomy is also presented as a necessary feature to bring new distributed Earth observation functions (which require coordination and collaboration mechanisms) and to allow for novel structural functions (e.g., opportunistic coalitions, exchange of resources, or in-orbit data services). Mission Planning and Scheduling (MPS) frameworks are then presented as a key component to implement autonomous operations in satellite missions. An exhaustive knowledge classification explores the design aspects of MPS for DSS, and conceptually groups them into: components and organizational paradigms; problem modeling and representation; optimization techniques and metaheuristics; execution and runtime characteristics and the notions of tasks, resources, and constraints. This paper concludes by proposing future strands of work devoted to study the trade-offs of autonomy in large-scale, highly dynamic and heterogeneous networks through frameworks that consider some of the limitations of small spacecraft technologies.Postprint (author's final draft

    Public Libraries and the Internet 2006

    Get PDF
    Examines the capability of public libraries to provide and sustain public access Internet services and resources that meet community needs, including serving as the first choice for content, resources, services, and technology infrastructure

    DAGC: Data-Volume-Aware Adaptive Sparsification Gradient Compression for Distributed Machine Learning in Mobile Computing

    Full text link
    Distributed machine learning (DML) in mobile environments faces significant communication bottlenecks. Gradient compression has emerged as an effective solution to this issue, offering substantial benefits in environments with limited bandwidth and metered data. Yet, they encounter severe performance drop in non-IID environments due to a one-size-fits-all compression approach, which does not account for the varying data volumes across workers. Assigning varying compression ratios to workers with distinct data distributions and volumes is thus a promising solution. This study introduces an analysis of distributed SGD with non-uniform compression, which reveals that the convergence rate (indicative of the iterations needed to achieve a certain accuracy) is influenced by compression ratios applied to workers with differing volumes. Accordingly, we frame relative compression ratio assignment as an nn-variables chi-square nonlinear optimization problem, constrained by a fixed and limited communication budget. We propose DAGC-R, which assigns the worker handling larger data volumes the conservative compression. Recognizing the computational limitations of mobile devices, we DAGC-A, which are computationally less demanding and enhances the robustness of the absolute gradient compressor in non-IID scenarios. Our experiments confirm that both the DAGC-A and DAGC-R can achieve better performance when dealing with highly imbalanced data volume distribution and restricted communication

    Global Mobility of Talent from a Perspective of New Industrial Policy: Open Migration Chains and Diaspora Networks

    Get PDF
    economic development, diaspora networks, search networks, serendipity
    • …
    corecore