2,576 research outputs found

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    A novel incentive-based demand response model for Cournot competition in electricity markets

    Get PDF
    This paper presents an analysis of competition between generators when incentive-based demand response is employed in an electricity market. Thermal and hydropower generation are considered in the model. A smooth inverse demand function is designed using a sigmoid and two linear functions for modeling the consumer preferences under incentive-based demand response program. Generators compete to sell energy bilaterally to consumers and system operator provides transmission and arbitrage services. The profit of each agent is posed as an optimization problem, then the competition result is found by solving simultaneously Karush-Kuhn-Tucker conditions for all generators. A Nash-Cournot equilibrium is found when the system operates normally and at peak demand times when DR is required. Under this model, results show that DR diminishes the energy consumption at peak periods, shifts the power requirement to off-peak times and improves the net consumer surplus due to incentives received for participating in DR program. However, the generators decrease their profit due to the reduction of traded energy and market prices

    Optimizing Energy Storage Participation in Emerging Power Markets

    Get PDF
    The growing amount of intermittent renewables in power generation creates challenges for real-time matching of supply and demand in the power grid. Emerging ancillary power markets provide new incentives to consumers (e.g., electrical vehicles, data centers, and others) to perform demand response to help stabilize the electricity grid. A promising class of potential demand response providers includes energy storage systems (ESSs). This paper evaluates the benefits of using various types of novel ESS technologies for a variety of emerging smart grid demand response programs, such as regulation services reserves (RSRs), contingency reserves, and peak shaving. We model, formulate and solve optimization problems to maximize the net profit of ESSs in providing each demand response. Our solution selects the optimal power and energy capacities of the ESS, determines the optimal reserve value to provide as well as the ESS real-time operational policy for program participation. Our results highlight that applying ultra-capacitors and flywheels in RSR has the potential to be up to 30 times more profitable than using common battery technologies such as LI and LA batteries for peak shaving.Comment: The full (longer and extended) version of the paper accepted in IGSC 201

    Optimizing energy storage participation in emerging power markets

    Full text link
    The growing amount of intermittent renewables in power generation creates challenges for real-time matching of supply and demand in the power grid. Emerging ancillary power markets provide new incentives to consumers (e.g., electrical vehicles, data centers, and others) to perform demand response to help stabilize the electricity grid. A promising class of potential demand response providers includes energy storage systems (ESSs). This paper evaluates the benefits of using various types of novel ESS technologies for a variety of emerging smart grid demand response programs, such as regulation services reserves (RSRs), contingency reserves, and peak shaving. We model, formulate and solve optimization problems to maximize the net profit of ESSs in providing each demand response. Our solution selects the optimal power and energy capacities of the ESS, determines the optimal reserve value to provide as well as the ESS real-time operational policy for program participation. Our results highlight that applying ultra-capacitors and flywheels in RSR has the potential to be up to 30 times more profitable than using common battery technologies such as LI and LA batteries for peak shaving

    Contingency Management in Power Systems and Demand Response Market for Ancillary Services in Smart Grids with High Renewable Energy Penetration.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Optimisation and Integration of Variable Renewable Energy Sources in Electricity Networks

    Get PDF
    The growing penetration of renewable energy sources (RESs) into the electricity power grid is profitable from a sustainable point of view and provides economic benefit for long-term operation. Nevertheless, balancing production and consumption is and will always be a crucial requirement for power system operation. However, the trend towards increasing RESs penetration has raised concerns about the stability, reliability and security of future electricity grids. The clearest observation in this regard is the intermittent nature of RESs. Moreover, the location of renewable generation tends to be heavily defined by meteorological and geographical conditions, which makes the generation sites distant from load centres. These facts make the analysis of electricity grid operation under both dynamic and the steady state more difficult, posing challenges in effectively integrating variable RESs into electricity networks. The thesis reports on studies that were conducted to design efficient tools and algorithms for system operators, especially transmission system operators for reliable short-term system operation that accounts for intermittency and security requirements. Initially, the impact of renewable generation on the steady state is studied in the operation stage. Then, based on the first study, more sophisticated modeling on the electricity network are investigated in the third and fourth chapters. Extending the previous studies, the fourth chapter explores the potential of using multiple microgrids to support the main grid’s security control. Finally, the questions regarding the computational efficiency and convergence analysis are addressed in chapter 5 and a DSM model in a real-time pricing environment is introduced. This model presents an alternative way of using flexibility on the demand side to compensate for the uncertainties on the generation side

    On demand: can demand response live up to expectations in managing electricity systems?

    Get PDF
    Residential demand response (meaning changes to electricity use at specific times) has been proposed as an important part of the low carbon energy system transition. Modelling studies suggest benefits may include deferral of distribution network reinforcement, reduced curtailment of wind generation, and avoided investment in reserve generation. To accurately assess the contribution of demand response such studies must be supported by realistic assumptions on consumer participation. A systematic review of international evidence on trials, surveys and programmes of residential demand response suggests that it is important that these assumptions about demand response are not overly optimistic. Customer participation in trials and existing programmes is often 10% or less of the target population, while responses of consumers in existing schemes have varied considerably for a complex set of reasons. Relatively little evidence was identified for engagement with more dynamic forms of demand response, making its wider applicability uncertain. The evidence suggests that the high levels of demand response modelled in some future energy system scenarios may be more than a little optimistic. There is good evidence on the potential of some of the least ‘smart’ options, such as static peak pricing and load control, which are well established and proven. More research and greater empirical evidence is needed to establish the potential role of more innovative and dynami

    Scenarios for the development of smart grids in the UK: synthesis report

    Get PDF
    ‘Smart grid’ is a catch-all term for the smart options that could transform the ways society produces, delivers and consumes energy, and potentially the way we conceive of these services. Delivering energy more intelligently will be fundamental to decarbonising the UK electricity system at least possible cost, while maintaining security and reliability of supply. Smarter energy delivery is expected to allow the integration of more low carbon technologies and to be much more cost effective than traditional methods, as well as contributing to economic growth by opening up new business and innovation opportunities. Innovating new options for energy system management could lead to cost savings of up to £10bn, even if low carbon technologies do not emerge. This saving will be much higher if UK renewable energy targets are achieved. Building on extensive expert feedback and input, this report describes four smart grid scenarios which consider how the UK’s electricity system might develop to 2050. The scenarios outline how political decisions, as well as those made in regulation, finance, technology, consumer and social behaviour, market design or response, might affect the decisions of other actors and limit or allow the availability of future options. The project aims to explore the degree of uncertainty around the current direction of the electricity system and the complex interactions of a whole host of factors that may lead to any one of a wide range of outcomes. Our addition to this discussion will help decision makers to understand the implications of possible actions and better plan for the future, whilst recognising that it may take any one of a number of forms
    • 

    corecore