824 research outputs found

    Resource Allocation in Survivable WDM Networks Under a Sliding Scheduled Traffic Model

    Get PDF
    In recent years there has been an increasing number of applications that require periodic use of lightpaths at predefined time intervals, such as database backup and on-line classes. A new traffic model, referred to as the scheduled traffic model, has been proposed to handle such scheduled lightpath demands. In this thesis we present two new integer linear program ( ILP) formulations for the more general sliding scheduled traffic model, where the setup and teardown times may vary within a specified range. We consider both wavelength convertible networks and networks without wavelength conversion capability. Our ILP formulations jointly optimize the problem of scheduling the demands ( in time) and allocating resources for the scheduled lightpaths. Simulation results show that our formulations are able to generate optimal solutions for practical sized networks. For larger networks, we have proposed a fast two-step heuristic to solve the demand scheduling problem and the RWA problem separately

    Real-Time Energy Price-Aware Anycast RWA for Scheduled Lightpath Demands in Optical Data Center Networks

    Get PDF
    The energy consumption of the data center networks and the power consumption associated with transporting data to the users is considerably large, and it constitutes a significant portion of their costs. Hence, development of energy efficient schemes is very crucial to address this problem. Our research considers the fixed window traffic allocation model and the anycast routing scheme to select the best option for the destination node. Proper routing schemes and appropriate combination of the replicas can take care of the issue for energy utilization and at the same time help diminish costs for the data centers. We have also considered the real-time pricing model (which considers price changes every hour) to select routes for the lightpaths. Hence, we propose an ILP to handle the energyaware routing and wavelength assignment (RWA) problem for fixed window scheduled traffic model, with an objective to minimize the overall electricity costs of a datacenter network by reducing the actual power consumption, and using low-cost resources whenever possible

    Resource Allocation for Periodic Traffic Demands in WDM Networks

    Get PDF
    Recent research has clearly established that holding-time-aware routing and wavelength assignment (RWA) schemes lead to significant improvements in resource utilization for scheduled traffic. By exploiting the knowledge of the demand holding times, this thesis proposes new traffic grooming techniques to achieve more efficient resource utilization with the goal of minimizing resources such as bandwidth, wavelength channels, transceivers, and energy consumption. This thesis also introduces a new model, the segmented sliding window model, where a demand may be decomposed into two or more components and each component can be sent separately. This technique is suitable for applications where continuous data transmission is not strictly required such as large file transfers for grid computing. Integer linear program (ILP) formulations and an efficient heuristic are put forward for resource allocation under the proposed segmented sliding window model. It is shown that the proposed model can lead to significantly higher throughput, even over existing holding-time-aware models

    Heuristic for Lowering Electricity Costs for Routing in Optical Data Center Networks

    Get PDF
    Optical data centers consume a large quantity of energy and the cost of that energy has a significant contribution to the operational cost in data centers. The amount of electricity consumption in data centers and their related costs are increasing day by day. Data centers are geographically distributed all around the continents and the growing numbers of data replicas have made it possible to find more cost effective network routing. Besides flat-rate prices, today, there are companies which offers real-time pricing. In order to address the energy consumption cost problem, we propose an energy efficient routing scheme to find least cost path to the replicas based on real-time pricing model called energy price aware routing (EPAR). Our research considers anycast data transmission model to find the suitable replica as well as the fixed window traffic allocation model for demand request to reduce the energy consumption cost of data center networks

    Energy Efficient Anycast Routing for Sliding Scheduled Lightpath Demands in Optical Grids

    Get PDF
    Optical grids have been thought as an answer to support large-scale data intensive applications. Data centers and Optical grids are largest and fastest growing consumers of electricity. Energy efficient routing schemes and traffic models can answer the problem of energy consumption. In Optical Grids, it is possible to select destination node from the set of possible destinations which is known as anycasting. We propose ILP formulations for flexible sliding scheduled traffic model, where setup and tear down times may vary within larger window frame. The problem of energy consumption is addressed by switching off ideal network components in low utilization periods. Our proposed novel formulation that exploits knowledge of demand holding times to optimally schedule demands achieved 7-13% reduction in energy consumption compared to previously best known model

    Scheduled virtual topology design under periodic traffic in transparent optical networks

    Get PDF
    This paper investigates offline planning and scheduling in transparent optical networks for a given periodic traffic demand. The main objective is to minimize the number of transceivers needed which make up for the main network cost. We call this problem ldquoScheduled Virtual Topology Designrdquo and consider two variants: non-reconfigurable and reconfigurable equipment. We formulate both problems as exact MILPs (Mixed Integer Linear Programs). Due to their high complexity, we propose a more scalable tabu search heuristic approach, in conjunction with smaller MILP formulations for the associated subproblems. The main motivation of our research efforts is to assess the benefits of using reconfigurable equipment, realized as a reduction in the number of required transceivers. Our results show that the achieved reductions are not very significant, except for cases with large network loads and high traffic variability.The work described in this paper was carried out with the support of the BONE-project ("Building the Future Optical Network in Europe”), a Network of Excellence funded by the European Commission through the 7th ICTFramework Programme, support of the MEC Spanish project TEC2007- 67966-01/TCM CONPARTE-1 and developed in the framework of "Programa de Ayudas a Grupos de Excelencia de la Región de Murcia, de la Fundación Séneca (Plan Regional de Ciencia y Tecnología 2007/2010).

    Attack Aware RWA for Sliding Window Scheduled Traffic Model

    Get PDF
    In Transparent optical networks (TONs), the data signals remain in the optical domain for the entire transmission path. The capability of handling high data rates and features like transparency makes TONs susceptible to several physical layer attacks. Hence, designing TONs with a capability of handling such high power jamming attacks is an important network security problem. In this work, we propose an integer linear program (ILP) formulation to control the propagation of these physical layer attacks in TONs, for the demands which need periodic bandwidth usage at certain predefined timings. There are two different approaches for handling these scheduled traffic demands, fixed window and sliding window. Our research deals with the sliding window scheduled traffic model, which is more flexible when compared with fixed window, as the start and end timings of the demand are unknown and they slide within a larger window setting. Hence, we present an ILP to handle the routing and wavelength assignment (RWA) problem for sliding window scheduled traffic model, with an objective to minimize the attack radius for all the commodities

    An Optimal Formulation for Handling SLD in Impairment Aware WDM Optical Networks

    Get PDF
    The effect of physical layer impairments in route and wavelength assignment in Wavelength Division Multiplexed optical networks has become an important research area. When the quality of an optical signal degrades to an unacceptable level, a regenerator must be used to recover the quality of the signal. Most research has focused on reducing the number of regenerators when handling static and ad-hoc lightpath demands in such networks. In networks handling scheduled lightpath demands (SLD), each request for communication has a known duration and start time. Handling SLD in impairment aware networks has not been investigated in depth yet. We propose to study the development of an optimal formulation for SLD, using a minimum number of regenerators. We will compare our optimal formulation with another formulation which has been proposed recently

    Disaster Resilient Optical Core Networks

    Get PDF
    During the past few years, the number of catastrophic disasters has increased and its impact sometimes incapacitates the infrastructures within a region. The communication network infrastructure is one of the affected systems during these events. Thus, building a resilient network backbone is essential due to the big role of networks during disaster recovery operations. In this thesis, the research efforts in building a disaster-resilient network are reviewed and open issues related to building disaster-resilient networks are discussed. Large size disasters not necessarily impact the communication networks, but instead it can stimulate events that cause network performance degradation. In this regard, two open challenges that arise after disasters are considered one is the short-term capacity exhaustion and the second is the power outage. First, the post-disaster traffic floods phenomena is considered. The impact of the traffic floods on the optical core network performance is studied. Five mitigation approaches are proposed to serve these floods and minimise the incurred blocking. The proposed approaches explore different technologies such as excess or overprovisioned capacity exploitation, traffic filtering, protection paths rerouting, rerouting all traffic and finally using the degrees of freedom offered by differentiated services. The mitigation approaches succeeded in reducing the disaster induced traffic blocking. Second, advance reservation provisioning in an energy-efficient approach is developed. Four scenarios are considered to minimise power consumption. The scenarios exploit the flexibility provided by the sliding-window advance reservation requests. This flexibility is studied through scheduling and rescheduling scenarios. The proposed scenarios succeeded in minimising the consumed power. Third, the sliding-window flexibility is exploited for the objective of minimising network blocking during post-disaster traffic floods. The scheduling and rescheduling scenarios are extended to overcome the capacity exhaustion and improve the network blocking. The proposed schemes minimised the incurred blocking during traffic floods by exploiting sliding window. Fourth, building blackout resilient networks is proposed. The network performance during power outages is evaluated. A remedy approach is suggested for maximising network lifetime during blackouts. The approach attempts to reduce the required backup power supply while minimising network outages due to limited energy production. The results show that the mitigation approach succeeds in keeping the network alive during a blackout while minimising the required backup power
    corecore