368 research outputs found

    Adversarial Machine Learning-Based Anticipation of Threats Against Vehicle-to-Microgrid Services

    Full text link
    In this paper, we study the expanding attack surface of Adversarial Machine Learning (AML) and the potential attacks against Vehicle-to-Microgrid (V2M) services. We present an anticipatory study of a multi-stage gray-box attack that can achieve a comparable result to a white-box attack. Adversaries aim to deceive the targeted Machine Learning (ML) classifier at the network edge to misclassify the incoming energy requests from microgrids. With an inference attack, an adversary can collect real-time data from the communication between smart microgrids and a 5G gNodeB to train a surrogate (i.e., shadow) model of the targeted classifier at the edge. To anticipate the associated impact of an adversary's capability to collect real-time data instances, we study five different cases, each representing different amounts of real-time data instances collected by an adversary. Out of six ML models trained on the complete dataset, K-Nearest Neighbour (K-NN) is selected as the surrogate model, and through simulations, we demonstrate that the multi-stage gray-box attack is able to mislead the ML classifier and cause an Evasion Increase Rate (EIR) up to 73.2% using 40% less data than what a white-box attack needs to achieve a similar EIR.Comment: IEEE Global Communications Conference (Globecom), 2022, 6 pages, 2 Figures, 4 Table

    Information Theory and Cooperative Control in Networked Multi-Agent Systems with Applications to Smart Grid

    Get PDF
    This dissertation focuses on information theoretic aspects of and cooperative control techniques in networked multi-agent systems (NMAS) with communication constraints. In the first part of the dissertation, information theoretic limitations of tracking problems in networked control systems, especially leader-follower systems with communication constraints, are studied. Necessary conditions on the data rate of each communication link for tracking of the leader-follower systems are provided. By considering the forward and feedback channels as one cascade channel, we also provide a lower bound for the data rate of the cascade channel for the system to track a reference signal such that the tracking error has finite second moment. Finally, the aforementioned results are extended to the case in which the leader system and follower system have different system models. In the second part, we propose an easily scalable hierarchical decision-making and control architecture for smart grid with communication constraints in which distributed customers equipped with renewable distributed generation (RDG) interact and trade energy in the grid. We introduce the key components and their interactions in the proposed control architecture and discuss the design of distributed controllers which deal with short-term and long-term grid stability, power load balancing and energy routing. At microgrid level, under the assumption of user cooperation and inter-user communications, we propose a distributed networked control strategy to solve the demand-side management problem in microgrids. Moreover, by considering communication delays between users and microgrid central controller, we propose a distributed networked control strategy with prediction to solve the demand-side management problem with communication delays. In the third part, we consider the disturbance attenuation and stabilization problem in networked control systems. To be specific, we consider the string stability in a large group of interconnected systems over a communication network. Its potential applications could be found in formation tracking control in groups of robots, as well as uncertainty reduction and disturbance attenuation in smart grid. We propose a leader-following consensus protocol for such interconnected systems and derive the sufficient conditions, in terms of communication topology and control parameters, for string stability. Simulation results and performance in terms of disturbance propagation are also given. In the fourth part, we consider distributed tracking and consensus in networked multi-agent systems with noisy time-varying graphs and incomplete data. In particular, a distributed tracking with consensus algorithm is developed for the space-object tracking with a satellite surveillance network. We also intend to investigate the possible application of such methods in smart grid networks. Later, conditions for achieving distributed consensus are discussed and the rate of convergence is quantified for noisy time-varying graphs with incomplete data. We also provide detailed simulation results and performance comparison of the proposed distributed tracking with consensus algorithm in the case of space-object tracking problem and that of distributed local Kalman filtering with centralized fusion and centralized Kalman filter. The information theoretic limitations developed in the first part of this dissertation provide guildlines for design and analysis of tracking problems in networked control systems. The results reveal the mutual interaction and joint application of information theory and control theory in networked control systems. Second, the proposed architectures and approaches enable scalability in smart grid design and allow resource pooling among distributed energy resources (DER) so that the grid stability and optimality is maintained. The proposed distributed networked control strategy with prediction provides an approach for cooperative control at RDG-equipped customers within a self-contained microgrid with different feedback delays. Our string stability analysis in the third part of this dissertation allows a single networked control system to be extended to a large group of interconnected subsystems while system stability is still maintained. It also reveals the disturbance propagation through the network and the effect of disturbance in one subsystem on other subsystems. The proposed leader-following consensus protocol in the constrained communication among users reveals the effect of communication in stabilization of networked control systems and the interaction between communication and control over a network. Finally, the distributed tracking and consensus in networked multi-agent systems problem shows that information sharing among users improves the quality of local estimates and helps avoid conflicting and inefficient distributed decisions. It also reveals the effect of the graph topologies and incomplete node measurements on the speed of achieving distributed decision and final consensus accuracy

    Location Awareness in Multi-Agent Control of Distributed Energy Resources

    Get PDF
    The integration of Distributed Energy Resource (DER) technologies such as heat pumps, electric vehicles and small-scale generation into the electricity grid at the household level is limited by technical constraints. This work argues that location is an important aspect for the control and integration of DER and that network topology can inferred without the use of a centralised network model. It addresses DER integration challenges by presenting a novel approach that uses a decentralised multi-agent system where equipment controllers learn and use their location within the low-voltage section of the power system. Models of electrical networks exhibiting technical constraints were developed. Through theoretical analysis and real network data collection, various sources of location data were identified and new geographical and electrical techniques were developed for deriving network topology using Global Positioning System (GPS) and 24-hour voltage logs. The multi-agent system paradigm and societal structures were examined as an approach to a multi-stakeholder domain and congregations were used as an aid to decentralisation in a non-hierarchical, non-market-based approach. Through formal description of the agent attitude INTEND2, the novel technique of Intention Transfer was applied to an agent congregation to provide an opt-in, collaborative system. Test facilities for multi-agent systems were developed and culminated in a new embedded controller test platform that integrated a real-time dynamic electrical network simulator to provide a full-feedback system integrated with control hardware. Finally, a multi-agent control system was developed and implemented that used location data in providing demand-side response to a voltage excursion, with the goals of improving power quality, reducing generator disconnections, and deferring network reinforcement. The resulting communicating and self-organising energy agent community, as demonstrated on a unique hardware-in-the-loop platform, provides an application model and test facility to inspire agent-based, location-aware smart grid applications across the power systems domain

    Advanced Communication and Control Methods for Future Smartgrids

    Get PDF
    Proliferation of distributed generation and the increased ability to monitor different parts of the electrical grid offer unprecedented opportunities for consumers and grid operators. Energy can be generated near the consumption points, which decreases transmission burdens and novel control schemes can be utilized to operate the grid closer to its limits. In other words, the same infrastructure can be used at higher capacities thanks to increased efficiency. Also, new players are integrated into this grid such as smart meters with local control capabilities, electric vehicles that can act as mobile storage devices, and smart inverters that can provide auxiliary support. To achieve stable and safe operation, it is necessary to observe and coordinate all of these components in the smartgrid

    Constrained coordinated distributed control of smart grid with asynchronous information exchange

    Get PDF
    Smart grid constrained optimal control is a complex issue due to the constant growth of grid complexity and the large volume of data available as input to smart device control. In this context, traditional centralized control paradigms may suffer in terms of the timeliness of optimization results due to the volume of data to be processed and the delayed asynchronous nature of the data transmission. To address these limits of centralized control, this paper presents a coordinated, distributed algorithm based on distributed, local controllers and a central coordinator for exchanging summarized global state information. The proposed model for exchanging global state information is resistant to fluctuations caused by the inherent interdependence between local controllers, and is robust to delays in information exchange. In addition, the algorithm features iterative refinement of local state estimations that is able to improve local controller ability to operate within network constraints. Application of the proposed coordinated, distributed algorithm through simulation shows its effectiveness in optimizing a global goal within a complex distribution system operating under constraints, while ensuring network operation stability under varying levels of information exchange delay, and with a range of network sizes

    Self-organising multi-agent control for distribution networks with distributed energy resources

    Get PDF
    Recent years have seen an increase in the connection of dispersed distributed energy resources (DERs) and advanced control and operational components to the distribution network. These DERs can come in various forms, including distributed generation (DG), electric vehicles (EV), energy storage, etc. The conditions of these DERs can be varying and unpredictably intermittent. The integration of these distributed components adds more complexity and uncertainty to the operation of future power networks, such as voltage, frequency, and active/reactive power control. The stochastic and distributed nature of DGs and the difficulty in predicting EV charging patterns presents problems to the control and management of the distribution network. This adds more challenges to the planning and operation of such systems. Traditional methods for dealing with network problems such as voltage and power control could therefore be inadequate. In addition, conventional optimisation techniques will be difficult to apply successfully and will be accompanied with a large computational load. There is therefore a need for new control techniques that break the problem into smaller subsets and one that uses a multi-agent system (MAS) to implement distributed solutions. These groups of agents would coordinate amongst themselves, to regulate local resources and voltage levels in a distributed and adaptive manner considering varying conditions of the network. This thesis investigates the use of self-organising systems, presenting suitable approaches and identifying the challenges of implementing such techniques. It presents the development of fully functioning self-organising multi-agent control algorithms that can perform as effectively as full optimization techniques. It also demonstrates these new control algorithms on models of large and complex networks with DERs. Simulation results validate the autonomy of the system to control the voltage independently using only local DERs and proves the robustness and adaptability of the system by maintaining stable voltage control in response to network conditions over time.Recent years have seen an increase in the connection of dispersed distributed energy resources (DERs) and advanced control and operational components to the distribution network. These DERs can come in various forms, including distributed generation (DG), electric vehicles (EV), energy storage, etc. The conditions of these DERs can be varying and unpredictably intermittent. The integration of these distributed components adds more complexity and uncertainty to the operation of future power networks, such as voltage, frequency, and active/reactive power control. The stochastic and distributed nature of DGs and the difficulty in predicting EV charging patterns presents problems to the control and management of the distribution network. This adds more challenges to the planning and operation of such systems. Traditional methods for dealing with network problems such as voltage and power control could therefore be inadequate. In addition, conventional optimisation techniques will be difficult to apply successfully and will be accompanied with a large computational load. There is therefore a need for new control techniques that break the problem into smaller subsets and one that uses a multi-agent system (MAS) to implement distributed solutions. These groups of agents would coordinate amongst themselves, to regulate local resources and voltage levels in a distributed and adaptive manner considering varying conditions of the network. This thesis investigates the use of self-organising systems, presenting suitable approaches and identifying the challenges of implementing such techniques. It presents the development of fully functioning self-organising multi-agent control algorithms that can perform as effectively as full optimization techniques. It also demonstrates these new control algorithms on models of large and complex networks with DERs. Simulation results validate the autonomy of the system to control the voltage independently using only local DERs and proves the robustness and adaptability of the system by maintaining stable voltage control in response to network conditions over time
    • …
    corecore