1,328 research outputs found

    Delay Minimization for Federated Learning Over Wireless Communication Networks

    Full text link
    In this paper, the problem of delay minimization for federated learning (FL) over wireless communication networks is investigated. In the considered model, each user exploits limited local computational resources to train a local FL model with its collected data and, then, sends the trained FL model parameters to a base station (BS) which aggregates the local FL models and broadcasts the aggregated FL model back to all the users. Since FL involves learning model exchanges between the users and the BS, both computation and communication latencies are determined by the required learning accuracy level, which affects the convergence rate of the FL algorithm. This joint learning and communication problem is formulated as a delay minimization problem, where it is proved that the objective function is a convex function of the learning accuracy. Then, a bisection search algorithm is proposed to obtain the optimal solution. Simulation results show that the proposed algorithm can reduce delay by up to 27.3% compared to conventional FL methods.Comment: arXiv admin note: substantial text overlap with arXiv:1911.0241

    Joint Optimization of Energy Consumption and Completion Time in Federated Learning

    Full text link
    Federated Learning (FL) is an intriguing distributed machine learning approach due to its privacy-preserving characteristics. To balance the trade-off between energy and execution latency, and thus accommodate different demands and application scenarios, we formulate an optimization problem to minimize a weighted sum of total energy consumption and completion time through two weight parameters. The optimization variables include bandwidth, transmission power and CPU frequency of each device in the FL system, where all devices are linked to a base station and train a global model collaboratively. Through decomposing the non-convex optimization problem into two subproblems, we devise a resource allocation algorithm to determine the bandwidth allocation, transmission power, and CPU frequency for each participating device. We further present the convergence analysis and computational complexity of the proposed algorithm. Numerical results show that our proposed algorithm not only has better performance at different weight parameters (i.e., different demands) but also outperforms the state of the art.Comment: This paper appears in the Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS) 2022. Please feel free to contact us for questions or remark

    Energy Efficient Federated Learning Over Wireless Communication Networks

    Full text link
    In this paper, the problem of energy efficient transmission and computation resource allocation for federated learning (FL) over wireless communication networks is investigated. In the considered model, each user exploits limited local computational resources to train a local FL model with its collected data and, then, sends the trained FL model to a base station (BS) which aggregates the local FL model and broadcasts it back to all of the users. Since FL involves an exchange of a learning model between users and the BS, both computation and communication latencies are determined by the learning accuracy level. Meanwhile, due to the limited energy budget of the wireless users, both local computation energy and transmission energy must be considered during the FL process. This joint learning and communication problem is formulated as an optimization problem whose goal is to minimize the total energy consumption of the system under a latency constraint. To solve this problem, an iterative algorithm is proposed where, at every step, closed-form solutions for time allocation, bandwidth allocation, power control, computation frequency, and learning accuracy are derived. Since the iterative algorithm requires an initial feasible solution, we construct the completion time minimization problem and a bisection-based algorithm is proposed to obtain the optimal solution, which is a feasible solution to the original energy minimization problem. Numerical results show that the proposed algorithms can reduce up to 59.5% energy consumption compared to the conventional FL method.Comment: In IEEE TW

    Time Minimization in Hierarchical Federated Learning

    Full text link
    Federated Learning is a modern decentralized machine learning technique where user equipments perform machine learning tasks locally and then upload the model parameters to a central server. In this paper, we consider a 3-layer hierarchical federated learning system which involves model parameter exchanges between the cloud and edge servers, and the edge servers and user equipment. In a hierarchical federated learning model, delay in communication and computation of model parameters has a great impact on achieving a predefined global model accuracy. Therefore, we formulate a joint learning and communication optimization problem to minimize total model parameter communication and computation delay, by optimizing local iteration counts and edge iteration counts. To solve the problem, an iterative algorithm is proposed. After that, a time-minimized UE-to-edge association algorithm is presented where the maximum latency of the system is reduced. Simulation results show that the global model converges faster under optimal edge server and local iteration counts. The hierarchical federated learning latency is minimized with the proposed UE-to-edge association strategy.Comment: This paper appears in the Proceedings of 2022 ACM/IEEE Symposium on Edge Computing (SEC). Please feel free to contact us for questions or remark

    A Joint Learning and Communications Framework for Federated Learning over Wireless Networks

    Full text link
    In this paper, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In particular, in the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that will generate a global FL model and send it back to the users. Since all training parameters are transmitted over wireless links, the quality of the training will be affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS must select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To address this problem, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can reduce the FL loss function value by up to 10% and 16%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation and 2) a standard FL algorithm with random user selection and resource allocation.Comment: This paper has been accepted by IEEE Transactions on Wireless Communication

    Mobile Edge Computing

    Get PDF
    This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks. The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management. The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists
    corecore