3,271 research outputs found

    CogCell: Cognitive Interplay between 60GHz Picocells and 2.4/5GHz Hotspots in the 5G Era

    Full text link
    Rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e., 5G. Legacy 2G--4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G-era, 80\% of overall traffic is expected to be generated in indoors. Hence, the current approach of macro-cell mobile network, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60\,GHz mmWave picocell architecture to support high-speed indoor and hotspot communications. We envisage the 5G indoor network as a combination of-, and interplay between, 2.4/5\,GHz having robust coverage and 60\,GHz links offering high datarate. This requires an intelligent coordination and cooperation. We propose 60\,GHz picocellular network architecture, called CogCell, leveraging the ubiquitous WiFi. We propose to use 60\,GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5\,GHz in case of poor connectivity in the 60\,GHz domain. Further, to avoid the frequent re-beamforming in 60\,GHz directional links due to mobility, we propose a cognitive module -- a sensor-assisted intelligent beam switching procedure -- which reduces the communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience.Comment: 14 PAGES in IEEE Communications Magazine, Special issue on Emerging Applications, Services and Engineering for Cognitive Cellular Systems (EASE4CCS), July 201

    An Efficient Uplink Multi-Connectivity Scheme for 5G mmWave Control Plane Applications

    Full text link
    The millimeter wave (mmWave) frequencies offer the potential of orders of magnitude increases in capacity for next-generation cellular systems. However, links in mmWave networks are susceptible to blockage and may suffer from rapid variations in quality. Connectivity to multiple cells - at mmWave and/or traditional frequencies - is considered essential for robust communication. One of the challenges in supporting multi-connectivity in mmWaves is the requirement for the network to track the direction of each link in addition to its power and timing. To address this challenge, we implement a novel uplink measurement system that, with the joint help of a local coordinator operating in the legacy band, guarantees continuous monitoring of the channel propagation conditions and allows for the design of efficient control plane applications, including handover, beam tracking and initial access. We show that an uplink-based multi-connectivity approach enables less consuming, better performing, faster and more stable cell selection and scheduling decisions with respect to a traditional downlink-based standalone scheme. Moreover, we argue that the presented framework guarantees (i) efficient tracking of the user in the presence of the channel dynamics expected at mmWaves, and (ii) fast reaction to situations in which the primary propagation path is blocked or not available.Comment: Submitted for publication in IEEE Transactions on Wireless Communications (TWC

    On the Benefits of Network-Level Cooperation in Millimeter-Wave Communications

    Full text link
    Relaying techniques for millimeter-wave wireless networks represent a powerful solution for improving the transmission performance. In this work, we quantify the benefits in terms of delay and throughput for a random-access multi-user millimeter-wave wireless network, assisted by a full-duplex network cooperative relay. The relay is equipped with a queue for which we analyze the performance characteristics (e.g., arrival rate, service rate, average size, and stability condition). Moreover, we study two possible transmission schemes: fully directional and broadcast. In the former, the source nodes transmit a packet either to the relay or to the destination by using narrow beams, whereas, in the latter, the nodes transmit to both the destination and the relay in the same timeslot by using a wider beam, but with lower beamforming gain. In our analysis, we also take into account the beam alignment phase that occurs every time a transmitter node changes the destination node. We show how the beam alignment duration, as well as position and number of transmitting nodes, significantly affect the network performance. Moreover, we illustrate the optimal transmission scheme (i.e., broadcast or fully directional) for several system parameters and show that a fully directional transmission is not always beneficial, but, in some scenarios, broadcasting and relaying can improve the performance in terms of throughput and delay.Comment: arXiv admin note: text overlap with arXiv:1804.0945

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio

    Initial Access in 5G mm-Wave Cellular Networks

    Full text link
    The massive amounts of bandwidth available at millimeter-wave frequencies (roughly above 10 GHz) have the potential to greatly increase the capacity of fifth generation cellular wireless systems. However, to overcome the high isotropic pathloss experienced at these frequencies, high directionality will be required at both the base station and the mobile user equipment to establish sufficient link budget in wide area networks. This reliance on directionality has important implications for control layer procedures. Initial access in particular can be significantly delayed due to the need for the base station and the user to find the proper alignment for directional transmission and reception. This paper provides a survey of several recently proposed techniques for this purpose. A coverage and delay analysis is performed to compare various techniques including exhaustive and iterative search, and Context Information based algorithms. We show that the best strategy depends on the target SNR regime, and provide guidelines to characterize the optimal choice as a function of the system parameters.Comment: 6 pages, 3 figures, 3 tables, 15 references, submitted to IEEE COMMAG 201

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication

    Business Case and Technology Analysis for 5G Low Latency Applications

    Get PDF
    A large number of new consumer and industrial applications are likely to change the classic operator's business models and provide a wide range of new markets to enter. This article analyses the most relevant 5G use cases that require ultra-low latency, from both technical and business perspectives. Low latency services pose challenging requirements to the network, and to fulfill them operators need to invest in costly changes in their network. In this sense, it is not clear whether such investments are going to be amortized with these new business models. In light of this, specific applications and requirements are described and the potential market benefits for operators are analysed. Conclusions show that operators have clear opportunities to add value and position themselves strongly with the increasing number of services to be provided by 5G.Comment: 18 pages, 5 figure
    corecore