442 research outputs found

    Elements of Cellular Blind Interference Alignment --- Aligned Frequency Reuse, Wireless Index Coding and Interference Diversity

    Full text link
    We explore degrees of freedom (DoF) characterizations of partially connected wireless networks, especially cellular networks, with no channel state information at the transmitters. Specifically, we introduce three fundamental elements --- aligned frequency reuse, wireless index coding and interference diversity --- through a series of examples, focusing first on infinite regular arrays, then on finite clusters with arbitrary connectivity and message sets, and finally on heterogeneous settings with asymmetric multiple antenna configurations. Aligned frequency reuse refers to the optimality of orthogonal resource allocations in many cases, but according to unconventional reuse patterns that are guided by interference alignment principles. Wireless index coding highlights both the intimate connection between the index coding problem and cellular blind interference alignment, as well as the added complexity inherent to wireless settings. Interference diversity refers to the observation that in a wireless network each receiver experiences a different set of interferers, and depending on the actions of its own set of interferers, the interference-free signal space at each receiver fluctuates differently from other receivers, creating opportunities for robust applications of blind interference alignment principles

    Cognitive Wyner Networks with Clustered Decoding

    Full text link
    We study an interference network where equally-numbered transmitters and receivers lie on two parallel lines, each transmitter opposite its intended receiver. We consider two short-range interference models: the "asymmetric network," where the signal sent by each transmitter is interfered only by the signal sent by its left neighbor (if present), and a "symmetric network," where it is interfered by both its left and its right neighbors. Each transmitter is cognizant of its own message, the messages of the tβ„“t_\ell transmitters to its left, and the messages of the trt_r transmitters to its right. Each receiver decodes its message based on the signals received at its own antenna, at the rβ„“r_\ell receive antennas to its left, and the rrr_r receive antennas to its right. For such networks we provide upper and lower bounds on the multiplexing gain, i.e., on the high-SNR asymptotic logarithmic growth of the sum-rate capacity. In some cases our bounds meet, e.g., for the asymmetric network. Our results exhibit an equivalence between the transmitter side-information parameters tβ„“,trt_\ell, t_r and the receiver side-information parameters rβ„“,rrr_\ell, r_r in the sense that increasing/decreasing tβ„“t_\ell or trt_r by a positive integer Ξ΄\delta has the same effect on the multiplexing gain as increasing/decreasing rβ„“r_\ell or rrr_r by Ξ΄\delta. Moreover---even in asymmetric networks---there is an equivalence between the left side-information parameters tβ„“,rβ„“t_\ell, r_\ell and the right side-information parameters tr,rrt_r, r_r.Comment: Second revision submitted to IEEE Transactions on Information Theor

    Approximate Sum-Capacity of K-user Cognitive Interference Channels with Cumulative Message Sharing

    Full text link
    This paper considers the K user cognitive interference channel with one primary and K-1 secondary/cognitive transmitters with a cumulative message sharing structure, i.e cognitive transmitter i∈[2:K]i\in [2:K] knows non-causally all messages of the users with index less than i. We propose a computable outer bound valid for any memoryless channel. We first evaluate the sum-rate outer bound for the high- SNR linear deterministic approximation of the Gaussian noise channel. This is shown to be capacity for the 3-user channel with arbitrary channel gains and the sum-capacity for the symmetric K-user channel. Interestingly. for the K user channel having only the K th cognitive know all the other messages is sufficient to achieve capacity i.e cognition at transmitter 2 to K-1 is not needed. Next the sum capacity of the symmetric Gaussian noise channel is characterized to within a constant additive and multiplicative gap. The proposed achievable scheme for the additive gap is based on Dirty paper coding and can be thought of as a MIMO-broadcast scheme where only one encoding order is possible due to the message sharing structure. As opposed to other multiuser interference channel models, a single scheme suffices for both the weak and strong interference regimes. With this scheme the generalized degrees of freedom (gDOF) is shown to be a function of K, in contrast to the non cognitive case and the broadcast channel case. Interestingly, it is show that as the number of users grows to infinity the gDoF of the K-user cognitive interference channel with cumulative message sharing tends to the gDoF of a broadcast channel with a K-antenna transmitter and K single-antenna receivers. The analytical additive additive and multiplicative gaps are a function of the number of users. Numerical evaluations of inner and outer bounds show that the actual gap is less than the analytical one.Comment: Journa

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    Β© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe
    • …
    corecore