3,326 research outputs found

    ๋ฌด์ง€๊ฐœ ์ง‘ํ•ฉ ๋ฌธ์ œ์—์„œ์˜ ์œ„์ƒ์ˆ˜ํ•™์  ์กฐํ•ฉ๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€,2019. 8. ๊ตญ์›….F={S1,โ€ฆ,Sm}\mathcal{F}=\{S_1,\ldots,S_m\}๋ฅผ VV์˜ ๊ณต์ง‘ํ•ฉ์ด ์•„๋‹Œ ๋ถ€๋ถ„ ์ง‘ํ•ฉ๋“ค์˜ ๋ชจ์ž„์ด๋ผ ํ•  ๋•Œ, F\mathcal{F}์˜ ๋ฌด์ง€๊ฐœ ์ง‘ํ•ฉ์ด๋ž€ ๊ณต์ง‘ํ•ฉ์ด ์•„๋‹ˆ๋ฉฐ S={si1,โ€ฆ,sik}โŠ‚VS=\{s_{i_1},\ldots,s_{i_k}\} \subset V์™€ ๊ฐ™์€ ํ˜•ํƒœ๋กœ ์ฃผ์–ด์ง€๋Š” ๊ฒƒ์œผ๋กœ ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ๊ฒƒ์„ ๋งํ•œ๋‹ค. 1โ‰คi1<โ‹ฏ<ikโ‰คm1\leq i_1<\cdots<i_k \leq m์ด๊ณ  jโ‰ jj \ne j์ด๋ฉด sijโ‰ sijโ€ฒs_{i_j} \ne s_{i_j'}๋ฅผ ๋งŒ์กฑํ•˜๋ฉฐ ๊ฐ jโˆˆ[m]j \in [m]์— ๋Œ€ํ•ด sijโˆˆSijs_{i_j} \in S_{i_j}์ด๋‹ค. ํŠนํžˆ k=mk=m์ธ ๊ฒฝ์šฐ, ์ฆ‰ ๋ชจ๋“  SiS_i๋“ค์ด ํ‘œํ˜„๋˜๋ฉด, ๋ฌด์ง€๊ฐœ ์ง‘ํ•ฉ SS๋ฅผ F\mathcal{F}์˜ ์™„์ „ ๋ฌด์ง€๊ฐœ ์ง‘ํ•ฉ์ด๋ผ๊ณ  ํ•œ๋‹ค. ์ฃผ์–ด์ง„ ์ง‘ํ•ฉ๊ณ„๊ฐ€ ํŠน์ • ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ๋ฌด์ง€๊ฐœ ์ง‘ํ•ฉ์„ ๊ฐ€์ง€๊ธฐ ์œ„ํ•œ ์ถฉ๋ถ„ ์กฐ๊ฑด์„ ์ฐพ๋Š” ๋ฌธ์ œ๋Š” ํ™€์˜ ๊ฒฐํ˜ผ ์ •๋ฆฌ์—์„œ ์‹œ์ž‘๋˜์–ด ์ตœ๊ทผ๊นŒ์ง€๋„ ์กฐํ•ฉ์ˆ˜ํ•™์—์„œ ๊ฐ€์žฅ ๋Œ€ํ‘œ์  ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜๋กœ ์—ฌ๊ฒจ์ ธ์™”๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉํ–ฅ์œผ๋กœ์˜ ๋ฌธ์ œ๋ฅผ ๋ฌด์ง€๊ฐœ ์ง‘ํ•ฉ ๋ฌธ์ œ๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋ฌด์ง€๊ฐœ ์ง‘ํ•ฉ ๋ฌธ์ œ์™€ ๊ด€๋ จํ•˜์—ฌ ์œ„์ƒ์ˆ˜ํ•™์  ํ™€์˜ ์ •๋ฆฌ์™€ ์œ„์ƒ์ˆ˜ํ•™์  ๋‹ค์ƒ‰ ํ—ฌ๋ฆฌ ์ •๋ฆฌ๋ฅผ ์†Œ๊ฐœํ•˜๊ณ , (ํ•˜์ดํผ)๊ทธ๋ž˜ํ”„์—์„œ์˜ ๋ฌด์ง€๊ฐœ ๋ฎ๊ฐœ์™€ ๋ฌด์ง€๊ฐœ ๋…๋ฆฝ ์ง‘ํ•ฉ์— ๊ด€ํ•œ ๊ฒฐ๊ณผ๋“ค์„ ๋‹ค๋ฃจ๊ณ ์ž ํ•œ๋‹ค.Let F={S1,โ€ฆ,Sm}\mathcal{F}=\{S_1,\ldots,S_m\} be a finite family of non-empty subsets on the ground set VV. A rainbow set of F\mathcal{F} is a non-empty set of the form S={si1,โ€ฆ,sik}โŠ‚VS=\{s_{i_1},\ldots,s_{i_k}\} \subset V with 1โ‰คi1<โ‹ฏ<ikโ‰คm1 \leq i_1 < \cdots < i_k \leq m such that sijโ‰ sijโ€ฒs_{i_j} \neq s_{i_{j'}} for every jโ‰ jโ€ฒj \neq j' and sijโˆˆSijs_{i_j} \in S_{i_j} for each jโˆˆ[k]j \in [k]. If k=mk = m, namely if all SiS_i is represented, then the rainbow set SS is called a full rainbow set of F\mathcal{F}. Originated from the celebrated Hall's marriage theorem, it has been one of the most fundamental questions in combinatorics and discrete mathematics to find sufficient conditions on set-systems to guarantee the existence of certain rainbow sets. We call problems in this direction the rainbow set problems. In this dissertation, we give an overview on two topological tools on rainbow set problems, Aharoni and Haxell's topological Hall theorem and Kalai and Meshulam's topological colorful Helly theorem, and present some results on and rainbow independent sets and rainbow covers in (hyper)graphs.Abstract i 1 Introduction 1 1.1 Topological Hall theorem . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Topological colorful Helly theorem . . . . . . . . . . . . . . . . . 3 1.2.1 Collapsibility and Lerayness of simplicial complexes . . . 4 1.2.2 Nerve theorem and topological Helly theorem . . . . . . . 5 1.2.3 Topological colorful Helly theorem . . . . . . . . . . . . 6 1.3 Domination numbers and non-cover complexes of hypergraphs . . 7 1.3.1 Domination numbers of hypergraphs . . . . . . . . . . . . 10 1.3.2 Non-cover complexes of hypergraphs . . . . . . . . . . . . 10 1.4 Rainbow independent sets in graphs . . . . . . . . . . . . . . . . 12 1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Collapsibility of non-cover complexes of graphs 16 2.1 The minimal exclusion sequences . . . . . . . . . . . . . . . . . . 16 2.2 Independent domination numbers and collapsibility numbers of non-cover complexes of graphs . . . . . . . . . . . . . . . . . . . 21 3 Domination numbers and non-cover complexes of hypergraphs 24 3.1 Proof of Theorem 1.3.4 . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Edge-annihilation . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Non-cover complexes for hypergraphs . . . . . . . . . . . 27 3.2 Lerayness of non-cover complexes . . . . . . . . . . . . . . . . . 30 3.2.1 Total domination numbers . . . . . . . . . . . . . . . . . 30 3.2.2 Independent domination numbers . . . . . . . . . . . . . 33 3.2.3 Edgewise-domination numbers . . . . . . . . . . . . . . . 34 3.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.1 Independent domination numbers of hypergraphs . . . . . 35 3.3.2 Independence complexes of hypergraphs . . . . . . . . . . 36 3.3.3 General position complexes . . . . . . . . . . . . . . . . . 37 3.3.4 Rainbow covers of hypergraphs . . . . . . . . . . . . . . 39 3.3.5 Collapsibility of non-cover complexes of hypergraphs . . . 40 4 Rainbow independent sets 42 4.1 Graphs avoiding certain induced subgraphs . . . . . . . . . . . . 42 4.1.1 Claw-free graphs . . . . . . . . . . . . . . . . . . . . . . 42 4.1.2 {C4,C5,...,Cs}\{C_4,C_5, . . . ,C_s\}-free graphs . . . . . . . . . . . . . . . . . 44 4.1.3 Chordal graphs . . . . . . . . . . . . . . . . . . . . . . . 49 4.1.4 KrK_r-free graphs and Krโˆ’K^{โˆ’}_r-free graphs . . . . . . . . . . . . . 50 4.2 kk-colourable graphs . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3 Graphs with bounded degrees . . . . . . . . . . . . . . . . . . . . 55 4.3.1 The case m<nm < n . . . . . . . . . . . . . . . . . . . . . . . 56 4.4 A topological approach . . . . . . . . . . . . . . . . . . . . . . . 64 4.5 Concluding remark . . . . . . . . . . . . . . . . . . . . . . . . . 67 Abstract (in Korean) 69 Acknowledgement (in Korean) 70Docto

    Toric algebra of hypergraphs

    Full text link
    The edges of any hypergraph parametrize a monomial algebra called the edge subring of the hypergraph. We study presentation ideals of these edge subrings, and describe their generators in terms of balanced walks on hypergraphs. Our results generalize those for the defining ideals of edge subrings of graphs, which are well-known in the commutative algebra community, and popular in the algebraic statistics community. One of the motivations for studying toric ideals of hypergraphs comes from algebraic statistics, where generators of the toric ideal give a basis for random walks on fibers of the statistical model specified by the hypergraph. Further, understanding the structure of the generators gives insight into the model geometry.Comment: Section 3 is new: it explains connections to log-linear models in algebraic statistics and to combinatorial discrepancy. Section 6 (open problems) has been moderately revise
    • โ€ฆ
    corecore