무지개 집합 문제에서의 위상수학적 조합론

Abstract

학위논문(박사)--서울대학교 대학원 :자연과학대학 수리과학부,2019. 8. 국웅.F={S1,,Sm}\mathcal{F}=\{S_1,\ldots,S_m\}VV의 공집합이 아닌 부분 집합들의 모임이라 할 때, F\mathcal{F}의 무지개 집합이란 공집합이 아니며 S={si1,,sik}VS=\{s_{i_1},\ldots,s_{i_k}\} \subset V와 같은 형태로 주어지는 것으로 다음 조건을 만족하는 것을 말한다. 1i1<<ikm1\leq i_1<\cdots<i_k \leq m이고 jjj \ne j이면 sijsijs_{i_j} \ne s_{i_j'}를 만족하며 각 j[m]j \in [m]에 대해 sijSijs_{i_j} \in S_{i_j}이다. 특히 k=mk=m인 경우, 즉 모든 SiS_i들이 표현되면, 무지개 집합 SSF\mathcal{F}의 완전 무지개 집합이라고 한다. 주어진 집합계가 특정 조건을 만족하는 무지개 집합을 가지기 위한 충분 조건을 찾는 문제는 홀의 결혼 정리에서 시작되어 최근까지도 조합수학에서 가장 대표적 문제 중 하나로 여겨져왔다. 이러한 방향으로의 문제를 무지개 집합 문제라고 부른다. 본 학위논문에서는 무지개 집합 문제와 관련하여 위상수학적 홀의 정리와 위상수학적 다색 헬리 정리를 소개하고, (하이퍼)그래프에서의 무지개 덮개와 무지개 독립 집합에 관한 결과들을 다루고자 한다.Let F={S1,,Sm}\mathcal{F}=\{S_1,\ldots,S_m\} be a finite family of non-empty subsets on the ground set VV. A rainbow set of F\mathcal{F} is a non-empty set of the form S={si1,,sik}VS=\{s_{i_1},\ldots,s_{i_k}\} \subset V with 1i1<<ikm1 \leq i_1 < \cdots < i_k \leq m such that sijsijs_{i_j} \neq s_{i_{j'}} for every jjj \neq j' and sijSijs_{i_j} \in S_{i_j} for each j[k]j \in [k]. If k=mk = m, namely if all SiS_i is represented, then the rainbow set SS is called a full rainbow set of F\mathcal{F}. Originated from the celebrated Hall's marriage theorem, it has been one of the most fundamental questions in combinatorics and discrete mathematics to find sufficient conditions on set-systems to guarantee the existence of certain rainbow sets. We call problems in this direction the rainbow set problems. In this dissertation, we give an overview on two topological tools on rainbow set problems, Aharoni and Haxell's topological Hall theorem and Kalai and Meshulam's topological colorful Helly theorem, and present some results on and rainbow independent sets and rainbow covers in (hyper)graphs.Abstract i 1 Introduction 1 1.1 Topological Hall theorem . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Topological colorful Helly theorem . . . . . . . . . . . . . . . . . 3 1.2.1 Collapsibility and Lerayness of simplicial complexes . . . 4 1.2.2 Nerve theorem and topological Helly theorem . . . . . . . 5 1.2.3 Topological colorful Helly theorem . . . . . . . . . . . . 6 1.3 Domination numbers and non-cover complexes of hypergraphs . . 7 1.3.1 Domination numbers of hypergraphs . . . . . . . . . . . . 10 1.3.2 Non-cover complexes of hypergraphs . . . . . . . . . . . . 10 1.4 Rainbow independent sets in graphs . . . . . . . . . . . . . . . . 12 1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Collapsibility of non-cover complexes of graphs 16 2.1 The minimal exclusion sequences . . . . . . . . . . . . . . . . . . 16 2.2 Independent domination numbers and collapsibility numbers of non-cover complexes of graphs . . . . . . . . . . . . . . . . . . . 21 3 Domination numbers and non-cover complexes of hypergraphs 24 3.1 Proof of Theorem 1.3.4 . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Edge-annihilation . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Non-cover complexes for hypergraphs . . . . . . . . . . . 27 3.2 Lerayness of non-cover complexes . . . . . . . . . . . . . . . . . 30 3.2.1 Total domination numbers . . . . . . . . . . . . . . . . . 30 3.2.2 Independent domination numbers . . . . . . . . . . . . . 33 3.2.3 Edgewise-domination numbers . . . . . . . . . . . . . . . 34 3.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.1 Independent domination numbers of hypergraphs . . . . . 35 3.3.2 Independence complexes of hypergraphs . . . . . . . . . . 36 3.3.3 General position complexes . . . . . . . . . . . . . . . . . 37 3.3.4 Rainbow covers of hypergraphs . . . . . . . . . . . . . . 39 3.3.5 Collapsibility of non-cover complexes of hypergraphs . . . 40 4 Rainbow independent sets 42 4.1 Graphs avoiding certain induced subgraphs . . . . . . . . . . . . 42 4.1.1 Claw-free graphs . . . . . . . . . . . . . . . . . . . . . . 42 4.1.2 {C4,C5,...,Cs}\{C_4,C_5, . . . ,C_s\}-free graphs . . . . . . . . . . . . . . . . . 44 4.1.3 Chordal graphs . . . . . . . . . . . . . . . . . . . . . . . 49 4.1.4 KrK_r-free graphs and KrK^{−}_r-free graphs . . . . . . . . . . . . . 50 4.2 kk-colourable graphs . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3 Graphs with bounded degrees . . . . . . . . . . . . . . . . . . . . 55 4.3.1 The case m<nm < n . . . . . . . . . . . . . . . . . . . . . . . 56 4.4 A topological approach . . . . . . . . . . . . . . . . . . . . . . . 64 4.5 Concluding remark . . . . . . . . . . . . . . . . . . . . . . . . . 67 Abstract (in Korean) 69 Acknowledgement (in Korean) 70Docto

    Similar works