18,242 research outputs found

    Discrete Dirac Operators, Critical Embeddings and Ihara-Selberg Functions

    Full text link
    The aim of the paper is to formulate a discrete analogue of the claim made by Alvarez-Gaume et al., realizing the partition function of the free fermion on a closed Riemann surface of genus g as a linear combination of 2^{2g} Pfaffians of Dirac operators. Let G=(V,E) be a finite graph embedded in a closed Riemann surface X of genus g, x_e the collection of independent variables associated with each edge e of G (collected in one vector variable x) and S the set of all 2^{2g} Spin-structures on X. We introduce 2^{2g} rotations rot_s and (2|E| times 2|E|) matrices D(s)(x), s in S, of the transitions between the oriented edges of G determined by rotations rot_s. We show that the generating function for the even subsets of edges of G, i.e., the Ising partition function, is a linear combination of the square roots of 2^{2g} Ihara-Selberg functions I(D(s)(x)) also called Feynman functions. By a result of Foata--Zeilberger holds I(D(s)(x))= det(I-D'(s)(x)), where D'(s)(x) is obtained from D(s)(x) by replacing some entries by 0. Thus each Feynman function is computable in polynomial time. We suggest that in the case of critical embedding of a bipartite graph G, the Feynman functions provide suitable discrete analogues for the Pfaffians of discrete Dirac operators

    Computing k-Modal Embeddings of Planar Digraphs

    Get PDF
    Given a planar digraph G and a positive even integer k, an embedding of G in the plane is k-modal, if every vertex of G is incident to at most k pairs of consecutive edges with opposite orientations, i.e., the incoming and the outgoing edges at each vertex are grouped by the embedding into at most k sets of consecutive edges with the same orientation. In this paper, we study the k-Modality problem, which asks for the existence of a k-modal embedding of a planar digraph. This combinatorial problem is at the very core of a variety of constrained embedding questions for planar digraphs and flat clustered networks. First, since the 2-Modality problem can be easily solved in linear time, we consider the general k-Modality problem for any value of k>2 and show that the problem is NP-complete for planar digraphs of maximum degree Delta <= k+3. We relate its computational complexity to that of two notions of planarity for flat clustered networks: Planar Intersection-Link and Planar NodeTrix representations. This allows us to answer in the strongest possible way an open question by Di Giacomo [https://doi.org/10.1007/978-3-319-73915-1_37], concerning the complexity of constructing planar NodeTrix representations of flat clustered networks with small clusters, and to address a research question by Angelini et al. [https://doi.org/10.7155/jgaa.00437], concerning intersection-link representations based on geometric objects that determine complex arrangements. On the positive side, we provide a simple FPT algorithm for partial 2-trees of arbitrary degree, whose running time is exponential in k and linear in the input size. Second, motivated by the recently-introduced planar L-drawings of planar digraphs [https://doi.org/10.1007/978-3-319-73915-1_36], which require the computation of a 4-modal embedding, we focus our attention on k=4. On the algorithmic side, we show a complexity dichotomy for the 4-Modality problem with respect to Delta, by providing a linear-time algorithm for planar digraphs with Delta <= 6. This algorithmic result is based on decomposing the input digraph into its blocks via BC-trees and each of these blocks into its triconnected components via SPQR-trees. In particular, we are able to show that the constraints imposed on the embedding by the rigid triconnected components can be tackled by means of a small set of reduction rules and discover that the algorithmic core of the problem lies in special instances of NAESAT, which we prove to be always NAE-satisfiable - a result of independent interest that improves on Porschen et al. [https://doi.org/10.1007/978-3-540-24605-3_14]. Finally, on the combinatorial side, we consider outerplanar digraphs and show that any such a digraph always admits a k-modal embedding with k=4 and that this value of k is best possible for the digraphs in this family

    Solving Jigsaw Puzzles By the Graph Connection Laplacian

    Full text link
    We propose a novel mathematical framework to address the problem of automatically solving large jigsaw puzzles. This problem assumes a large image, which is cut into equal square pieces that are arbitrarily rotated and shuffled, and asks to recover the original image given the transformed pieces. The main contribution of this work is a method for recovering the rotations of the pieces when both shuffles and rotations are unknown. A major challenge of this procedure is estimating the graph connection Laplacian without the knowledge of shuffles. We guarantee some robustness of the latter estimate to measurement errors. A careful combination of our proposed method for estimating rotations with any existing method for estimating shuffles results in a practical solution for the jigsaw puzzle problem. Numerical experiments demonstrate the competitive accuracy of this solution, its robustness to corruption and its computational advantage for large puzzles

    Counting Triangulations and other Crossing-Free Structures Approximately

    Full text link
    We consider the problem of counting straight-edge triangulations of a given set PP of nn points in the plane. Until very recently it was not known whether the exact number of triangulations of PP can be computed asymptotically faster than by enumerating all triangulations. We now know that the number of triangulations of PP can be computed in O∗(2n)O^{*}(2^{n}) time, which is less than the lower bound of Ω(2.43n)\Omega(2.43^{n}) on the number of triangulations of any point set. In this paper we address the question of whether one can approximately count triangulations in sub-exponential time. We present an algorithm with sub-exponential running time and sub-exponential approximation ratio, that is, denoting by Λ\Lambda the output of our algorithm, and by cnc^{n} the exact number of triangulations of PP, for some positive constant cc, we prove that cn≤Λ≤cn⋅2o(n)c^{n}\leq\Lambda\leq c^{n}\cdot 2^{o(n)}. This is the first algorithm that in sub-exponential time computes a (1+o(1))(1+o(1))-approximation of the base of the number of triangulations, more precisely, c≤Λ1n≤(1+o(1))cc\leq\Lambda^{\frac{1}{n}}\leq(1 + o(1))c. Our algorithm can be adapted to approximately count other crossing-free structures on PP, keeping the quality of approximation and running time intact. In this paper we show how to do this for matchings and spanning trees.Comment: 19 pages, 2 figures. A preliminary version appeared at CCCG 201
    • …
    corecore