841 research outputs found

    Degree-constrained Subgraph Reconfiguration is in P

    Full text link
    The degree-constrained subgraph problem asks for a subgraph of a given graph such that the degree of each vertex is within some specified bounds. We study the following reconfiguration variant of this problem: Given two solutions to a degree-constrained subgraph instance, can we transform one solution into the other by adding and removing individual edges, such that each intermediate subgraph satisfies the degree constraints and contains at least a certain minimum number of edges? This problem is a generalization of the matching reconfiguration problem, which is known to be in P. We show that even in the more general setting the reconfiguration problem is in P.Comment: Full version of the paper published at Mathematical Foundations of Computer Science (MFCS) 201

    Parameterized Complexity of Graph Constraint Logic

    Get PDF
    Graph constraint logic is a framework introduced by Hearn and Demaine, which provides several problems that are often a convenient starting point for reductions. We study the parameterized complexity of Constraint Graph Satisfiability and both bounded and unbounded versions of Nondeterministic Constraint Logic (NCL) with respect to solution length, treewidth and maximum degree of the underlying constraint graph as parameters. As a main result we show that restricted NCL remains PSPACE-complete on graphs of bounded bandwidth, strengthening Hearn and Demaine's framework. This allows us to improve upon existing results obtained by reduction from NCL. We show that reconfiguration versions of several classical graph problems (including independent set, feedback vertex set and dominating set) are PSPACE-complete on planar graphs of bounded bandwidth and that Rush Hour, generalized to k×nk\times n boards, is PSPACE-complete even when kk is at most a constant

    Reconfiguring Graph Homomorphisms on the Sphere

    Get PDF
    Given a loop-free graph HH, the reconfiguration problem for homomorphisms to HH (also called HH-colourings) asks: given two HH-colourings ff of gg of a graph GG, is it possible to transform ff into gg by a sequence of single-vertex colour changes such that every intermediate mapping is an HH-colouring? This problem is known to be polynomial-time solvable for a wide variety of graphs HH (e.g. all C4C_4-free graphs) but only a handful of hard cases are known. We prove that this problem is PSPACE-complete whenever HH is a K2,3K_{2,3}-free quadrangulation of the 22-sphere (equivalently, the plane) which is not a 44-cycle. From this result, we deduce an analogous statement for non-bipartite K2,3K_{2,3}-free quadrangulations of the projective plane. This include several interesting classes of graphs, such as odd wheels, for which the complexity was known, and 44-chromatic generalized Mycielski graphs, for which it was not. If we instead consider graphs GG and HH with loops on every vertex (i.e. reflexive graphs), then the reconfiguration problem is defined in a similar way except that a vertex can only change its colour to a neighbour of its current colour. In this setting, we use similar ideas to show that the reconfiguration problem for HH-colourings is PSPACE-complete whenever HH is a reflexive K4K_{4}-free triangulation of the 22-sphere which is not a reflexive triangle. This proof applies more generally to reflexive graphs which, roughly speaking, resemble a triangulation locally around a particular vertex. This provides the first graphs for which HH-Recolouring is known to be PSPACE-complete for reflexive instances.Comment: 22 pages, 9 figure

    The Complexity of Change

    Full text link
    Many combinatorial problems can be formulated as "Can I transform configuration 1 into configuration 2, if certain transformations only are allowed?". An example of such a question is: given two k-colourings of a graph, can I transform the first k-colouring into the second one, by recolouring one vertex at a time, and always maintaining a proper k-colouring? Another example is: given two solutions of a SAT-instance, can I transform the first solution into the second one, by changing the truth value one variable at a time, and always maintaining a solution of the SAT-instance? Other examples can be found in many classical puzzles, such as the 15-Puzzle and Rubik's Cube. In this survey we shall give an overview of some older and more recent work on this type of problem. The emphasis will be on the computational complexity of the problems: how hard is it to decide if a certain transformation is possible or not?Comment: 28 pages, 6 figure

    Complexity of Token Swapping and its Variants

    Full text link
    In the Token Swapping problem we are given a graph with a token placed on each vertex. Each token has exactly one destination vertex, and we try to move all the tokens to their destinations, using the minimum number of swaps, i.e., operations of exchanging the tokens on two adjacent vertices. As the main result of this paper, we show that Token Swapping is W[1]W[1]-hard parameterized by the length kk of a shortest sequence of swaps. In fact, we prove that, for any computable function ff, it cannot be solved in time f(k)no(k/logk)f(k)n^{o(k / \log k)} where nn is the number of vertices of the input graph, unless the ETH fails. This lower bound almost matches the trivial nO(k)n^{O(k)}-time algorithm. We also consider two generalizations of the Token Swapping, namely Colored Token Swapping (where the tokens have different colors and tokens of the same color are indistinguishable), and Subset Token Swapping (where each token has a set of possible destinations). To complement the hardness result, we prove that even the most general variant, Subset Token Swapping, is FPT in nowhere-dense graph classes. Finally, we consider the complexities of all three problems in very restricted classes of graphs: graphs of bounded treewidth and diameter, stars, cliques, and paths, trying to identify the borderlines between polynomial and NP-hard cases.Comment: 23 pages, 7 Figure

    Graph Editing to a Given Neighbourhood Degree List is Fixed-Parameter Tractable

    Get PDF
    Graph editing problems have a long history and have been widely studied, with applications in biochemistry and complex network analysis. They generally ask whether an input graph can be modified by inserting and deleting vertices and edges to a graph with the desired property. We consider the problem \textsc{Graph-Edit-to-NDL} (GEN) where the goal is to modify to a graph with a given neighbourhood degree list (NDL). The NDL lists the degrees of the neighbours of vertices in a graph, and is a stronger invariant than the degree sequence, which lists the degrees of vertices. We show \textsc{Graph-Edit-to-NDL} is NP-complete and study its parameterized complexity. In parameterized complexity, a problem is said to be fixed-parameter tractable with respect to a parameter if it has a solution whose running time is a function that is polynomial in the input size but possibly superpolynomial in the parameter. Golovach and Mertzios [ICSSR, 2016] studied editing to a graph with a given degree sequence and showed the problem is fixed-parameter tractable when parameterized by Δ+\Delta+\ell, where Δ\Delta is the maximum degree of the input graph and \ell is the number of edits. We prove \textsc{Graph-Edit-to-NDL} is fixed-parameter tractable when parameterized by Δ+\Delta+\ell. Furthermore, we consider a harder problem \textsc{Constrained-Graph-Edit-to-NDL} (CGEN) that imposes constraints on the NDLs of intermediate graphs produced in the sequence. We adapt our FPT algorithm for \textsc{Graph-Edit-to-NDL} to solve \textsc{Constrained-Graph-Edit-to-NDL}, which proves \textsc{Constrained-Graph-Edit-to-NDL} is also fixed-parameter tractable when parameterized by Δ+\Delta+\ell. Our results imply that, for graph properties that can be expressed as properties of NDLs, editing to a graph with such a property is fixed-parameter tractable when parameterized by Δ+\Delta+\ell. We show that this family of graph properties includes some well-known graph measures used in complex network analysis
    corecore