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Abstract
Graph constraint logic is a framework introduced by Hearn and Demaine [6], which provides
several problems that are often a convenient starting point for reductions. We study the para-
meterized complexity of Constraint Graph Satisfiability and both bounded and unboun-
ded versions of Nondeterministic Constraint Logic (NCL) with respect to solution
length, treewidth and maximum degree of the underlying constraint graph as parameters. As
a main result we show that restricted NCL remains PSPACE-complete on graphs of bounded
bandwidth, strengthening Hearn and Demaine’s framework. This allows us to improve upon ex-
isting results obtained by reduction from NCL. We show that reconfiguration versions of several
classical graph problems (including independent set, feedback vertex set and dominating set) are
PSPACE-complete on planar graphs of bounded bandwidth and that Rush Hour, generalized to
k × n boards, is PSPACE-complete even when k is at most a constant.
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1 Introduction

Nondeterministic Constraint Logic (NCL) was introduced by Hearn and Demaine in
[6] and extended in [8] to a more general graph constraint logic framework. The framework
provides a number of problems complete for various complexity classes, that aim to provide a
convenient starting point for reductions proving the hardness of games and puzzles. We study
the Constraint Graph Satisfiability problem and Nondeterministic Constraint
Logic in a parameterized setting, considering (combinations of) solution length, treewidth
and maximum degree of the underlying constraint graph as parameters.

As part of the constraint logic framework [6], Hearn and Demaine provide a restricted
variant of Nondeterministic Constraint Logic (restricted NCL), in which the
constraint graph is planar, 3-regular, uses only weights in {1, 2} and the graph is constructed
from only two specific vertex types (AND and OR). Restricted NCL is PSPACE-complete,
and is (due to the restrictions) a particularly suitable starting point for reductions. Hearn
and Demaine’s reduction creates graphs of unbounded treewidth. We strengthen their result,
by providing a new reduction showing that restricted NCL remains PSPACE-complete,
even when restricted to graphs of bandwidth at most a given constant (which is a subclass
of graphs of treewidth at most a given constant). We show hardness by reduction from
H-Word Reconfiguration [14].

The puzzle game Rush Hour, when generalized to n × n boards, is PSPACE-complete
[4]. Hearn and Demaine provide a reduction from NCL to Rush Hour [7]. As a consequence
of this reduction and our improved hardness result for NCL, we show that Rush Hour is
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Table 1 Parameterized complexity of graph constraint logic problems.

Problem
CGS C2E C2C bC2E bC2C

Pa
ra
m
et
er
s – NP-C PSPACE-C PSPACE-C NP-C NP-C

l – W[1]-hard W[1]-hard W [1]-hard FPT
l + ∆ – FPT FPT FPT FPT

tw weakly NP-C PSPACE-C PSPACE-C weakly NP-H weakly NP-H
tw + ∆ FPT PSPACE-C PSPACE-C FPT FPT

PSPACE-complete even when played on k × n boards, where k is a constant. This is in
contrast to the result of Ravikumar [12] that Peg Solitaire, a game NP-complete on n× n

boards, is linear time solvable on k × n boards for any fixed k.
NCL is also has applications in showing the hardness of reconfiguration problems [10, 5,

2, 9]. For some reconfiguration problems, their hardness on planar graphs of low maximum
degree is known by reduction from NCL [5, 9] while their hardness on bounded bandwidth
graphs is known by reduction from H-Word Reconfiguration [14, 5, 11]. Our reduction,
which combines techniques from Hearn and Demaine’s constraint logic [8] and the reductions
from H-Word Reconfiguration in [14, 11] unifies these results: we show that a number
of reconfiguration problems (including Independent Set, Vertex Cover and Dominating Set)
are PSPACE-complete on low-degree, planar graphs of bounded bandwidth. Previously,
hardness was known only on graphs that either are planar and have low degree or have
bounded bandwidth - we show that the problems remain hard even when both of these
conditions hold simultaneously. Note that while a graph of bounded bandwidth also has
bounded degree, the graphs created in these reductions have quite large bandwidth. The
degree bounds we obtain are much tighter than what would be obtained from the bandwidth
bound alone.

Our results concerning the hardness of constraint logic problems are summarized in
Table 1. This table shows the parameterized complexity of Constraint Graph Satisfiab-
ility (CGS), unbounded configuration-to-edge (C2E) and configuration-to-configuration
(C2C) variants of Nondeterministic Constraint Logic and their respective bounded
counterparts (bC2E and bC2C) with respect to solution length (l), maximum degree (∆)
and treewidth (tw). If a traditional complexity class is listed this means that the problem
is hard for this class even when restricted to instances where the parameter is at most a
constant.

In this extended abstract, we discuss only the main result (concerning unbounded C2E
and C2C NCL on bounded bandwidth graph) and its applications. For a discussion of the
other results in Table 1 and for some omitted proofs, we refer to the full version of this paper
[13].

2 Preliminaries

2.1 Constraint Logic

I Definition 1 (Constraint Graph). A constraint graph is a graph with edge weights and
vertex weights. A legal configuration for a constraint graph is an assignment of an orientation
to each edge such that for each vertex, the total weight of the edges pointing into that vertex
is at least that vertex’ weight (its minimum inflow).
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Figure 1 The two vertex types from which a restricted constraint graph is constructed: (a) OR
vertex and (b) AND vertex. Following the convention set in [6], as a mnemonic weight 2 edges are
drawn blue (dark grey) and thick, while weight 1 edges are drawn red (light grey) and thinner.

A fundamental decision problem regarding constraint graphs is that of their satisfiability:

Constraint Graph Satisfiablility
Instance: A constraint graph G.
Question: Does G have a legal configuration?

Constraint Graph Satisfiability (CGS) is NP-complete [8].
An important problem regarding constraint graph configurations is whether they can be

reconfigured into each other:

Nondeterministic Constraint Logic (C2C)
Instance: A constraint graph G and two legal configurations C1, C2 for G.
Question: Is there a sequence of legal configurations from C1 to C2, where every configuration
is obtained from the previous configuration by changing the orientation of one edge?

This problem is called the configuration-to-configuration (C2C) variant of Nondetermin-
istic Constraint Logic . It is PSPACE-complete [8]. The configuration-to-edge variant
(C2E) is also PSPACE-complete [8]:

Nondeterministic Constraint Logic (C2E)
Instance: A constraint graph G, a target edge e from G and an initial legal configuration C1
for G.
Question: Is there a sequence of legal configurations, starting with C1, where every con-
figuration is obtained from the previous by changing the orientation of one edge, so that
eventually e is reversed?

For the C2C and C2E problems, bC2C and bC2E denote their bounded variants which
ask whether there exists a reconfiguration sequence in which each edge is reversed at most
once. These problems are NP-complete [8].

Hearn and Demaine [8] consider a restricted subset of constraint graphs, which are planar
and constructed using only two specific types of vertices: AND and OR vertices (Figure 1).

The OR vertex has minimum inflow 2 and three incident weight 2 edges. Its inflow
constraint is thus satisfied if and only if at least one of its incident edges is directed inwards
(resembling an OR logic gate). The AND vertex has minimum inflow 2, two incident weight 1
edges and one incident weight 2 edge. Its constraint is thus satisfied if and only if both weight
1 edges are directed inwards or the weight 2 edge is directed inwards (resembling an AND
logic gate). Both C2C and C2E NCL remain PSPACE-complete under these restrictions.
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A

(a) Constrained blue-edge terminator

A

(b) Free red-edge terminator

Figure 2 Gadgets for terminating loose edges. The constrained blue-edge terminator (a) forces
the blue edge A to point into the gadget, while the free red-edge terminator (b) allows the red edge
A to point out of the gadget.

2.2 Constraint Logic Gadgets
Some constructions in this paper use existing gadgets (such as crossover) for NCL reductions
due to Hearn and Demaine [8]. For the purpose of being self-contained, we reproduce these
gadgets here and state (without proof) their functionality.

Edge Terminators. The constrained blue-edge (Figure 2a) terminator allows us to have
a loose blue edge that is forced to point outwards, effectively removing the edge from the
graph while still meeting the requirement that the graph is built from only AND and OR
vertices. The free red-edge terminator (Figure 2b) allows us to have a loose red edge whose
orientation can be freely chosen, effectively decreasing the minimum inflow of the vertex to
which it is incident by one.

Red-blue Conversion. It is useful to be able to convert a blue edge to a red edge, i.e. we
require a gadget which has a blue edge that can (be reconfigured to) point outwards if and
only if its red edge is pointing inwards and vice-versa. Hearn and Demaine [8] provide a
construction that allows red-blue conversion in pairs, but also note a simpler construction is
possible: an AND vertex, with one of its red edges attached to a free red-edge terminator
(Figure 2b) can serve as a red-blue conversion gadget.

We also use the crossover gadget due to Hearn and Demaine [8]. We do not reproduce
this gadget here, as it is sufficient to know that given a constraint graph we can eliminate
any crossings using the crossover gadget, which can be constructed using only AND and OR
vertices. For details of the crossover gadget, we refer to [13, 8].

2.3 H-Word Reconfiguration
To show hardness of NCL on bounded bandwidth graphs, we reduce from the H-Word
Reconfiguration problem, introduced in [14].

I Definition 2 (H-word). Let H = (Σ, E) where Σ is an alphabet and E ⊆ Σ×Σ a relation.
An H-word is a word over Σ such that every pair of consecutive characters (a, b) is an element
of E.

IPEC’15
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H-Word Reconfiguration
Instance: Two H-words Ws, Wg of equal length
Question: Is there a sequence of H-words W1, . . . , Wn, so that every pair of consecutive
words Wi, Wi+1 can be obtained from each other by changing one character to another and
W1 = Ws, Wn = Wg?

I Theorem 3 (Wrochna [14]). There exists an H such that H-Word Reconfiguration
is PSPACE-complete.

2.4 Bandwidth and Cutwidth
The main result concerns graphs of bounded bandwidth. The proof of Theorem 11 uses the
notion of cutwidth.

I Definition 4 (Bandwidth [1]). Let G = (V, E) be a graph and define a one-to-one corres-
pondence f : V → {1, . . . , |V |}. The bandwidth of a graph is the minimum over all such
correspondences of max(u,v)∈E |f(u)− f(v)|.

I Definition 5 (Cutwidth [1]). Let G = (V, E) be a graph and define a one-to-one corres-
pondence f : V → {1, . . . , |V |}. The cutwidth of a graph is the minimum over all such
correspondences of maxw∈V |{(u, v) ∈ E|f(u) ≤ f(w) < f(v)}|.

3 Hardness of Nondeterministic Constraint Logic on Bounded
Bandwidth Graphs

In this section we prove the main result, namely that restricted Nondeterministic Con-
straint Logic remains PSPACE-complete even when restricted to graphs of bounded
bandwidth (which is a subclass of graphs of bounded treewidth).

To show PSPACE-completeness, we reduce from H-Word Reconfiguration. The
bandwidth of the constraint graph created in the reduction will depend only on the size of H.
Since H-Word Reconfiguration is PSPACE-complete for a fixed (finite) H, we obtain a
constant bound on the bandwidth.

I Theorem 6. There exists a constant c, such that C2C Nondeterministic Constraint
Logic is PSPACE-complete on planar constraint graphs of bandwidth at most c that consist
of only AND and OR vertices.

Proof. Let H = (Σ, E) be so that H-Word Reconfiguration is PSPACE-complete. We
provide a reduction from H-Word Reconfiguration to (unrestricted) NCL and then
show how to adapt this reduction to work for restricted NCL. Let Ws, Wg be an instance
of H-Word Reconfiguration and let n denote the length of Ws. In the following, all
vertices are given minimum inflow 2.

We create a matrix of vertices Xi,j for i ∈ {1, . . . , n}, j ∈ Σ, the character vertices. The
orientation of edges incident to Xi,j will correspond to whether the character at position i in
the word is character j. For every row i of this matrix we create a universal vertex Ui and
for every j ∈ Σ we create a blue (weight 2) edge connecting Ui and Xi,j .

In each row i ∈ 1, . . . , n− 1 and for all pairs (A, B) 6∈ E, we create a relation vertex
∆i,A,B. We create a red (weight 1) edge connected to Xi,A and pass it through a red-blue
conversion gadget and connect the blue edge leaving the conversion gadget to ∆i,A,B. We
mirror this construction, creating a red edge connected to Xi+1,B , converting it to blue, and
connecting it to ∆i,A,B .
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Ui

Xi,A Xi,B Xi,C Xi,D

Xi+1,A Xi+1,B Xi+1,C Xi+1,D

Ui+1

∆i,A,B

Figure 3 Slice of two rows from the matrix of vertices (over an alphabet of Σ = {A, B, C, D}),
and the construction for enforcing non-adjacency of A and B.

Finally, we connect one additional blue edge to ∆i,A,B and connect it to a constrained
blue-edge terminator. This edge serves no purpose (its inflow can never count towards ∆i,A,B)
but to make ∆i,A,B an OR vertex as claimed.

A single instance of this construction is shown in Figure 3, which depicts a slice of two
rows from the matrix of vertices. Having created an instance of this construction for (A, B),
we might need to create an instance for (A, C). Rather than attaching another red edge
to Xi,A, we instead split the existing red edge leaving Xi,A by connecting it to a red-blue
conversion gadget, and attaching the resulting blue edge to an AND vertex. The edges
leaving the AND vertex may be oriented outward if and only if the red edge leaving Xi,A is
oriented into the AND vertex, effectively splitting it. We then convert the two red edges of
the AND vertex to blue and attach them to ∆i,A,B and ∆i,A,C as before. To create further
copies of this construction we can repeat the splitting process, so that Xi,A eventually has
two incident red edges, one connecting to gadgets in row i− 1 and one connecting to row
i + 1 (the excess red edges in rows 1 and n may instead be connected to a free red edge
terminator).

We define a character j to be in the word at position i if the edge (Ui, Xi,j) is oriented
towards Ui.

I Claim. In any legal configuration, at least one character is in the word at each position.

Proof. Ui has minimum inflow 2, so at least one of its incident edges (Ui, Xi,j) must be
oriented towards it and hence j is in the word at position i. J

I Claim. In any legal configuration, if (A, B) 6∈ E then A can be in the word at position i

only if B is not in the word at position i + 1.

Proof. If A is in the word at position i, then Xi,A is not receiving inflow from Ui, so both of
the red edges incident to Xi,A most point in towards Xi,A. On the path from Xi,A through
∆i,A,B to Xi+1,B we will first pass through a red-blue conversion gadget. Since the red edge
is oriented out of the conversion gadget (and towards Xi,A), the blue edge must be oriented

IPEC’15



288 Parameterized Complexity of Graph Constraint Logic

into the conversion gadget. We may then encounter several AND vertices (that are used for
the “splitting” of red edges incident to Xi,A), note that since the blue edge is oriented towards
the conversion gadget and away from the AND vertex, both red edges must be oriented into
the AND vertex. This means that when we encounter another red-blue conversion gadget
its blue edge must be oriented into the AND vertex and in turn the red edge incident to
the conversion gadget has to be oriented into the conversion gadget. Ultimately, when we
arrive at the vertex ∆i,A,B we find that one of its edges must be oriented out of it (to point
into the previously described AND vertices and help satisfy the minimum inflow of Xi,A).
Suppose by contradiction that B is in the word at position i + 1. By a similar argument,
we find that the second edge incident to ∆i,A,B also has to be oriented out of it. This is
impossible, since the third blue edge incident to ∆i,A,B is also oriented out of it (since that
edge is attached to a constrained blue-edge terminator gadget) and thus its minimum inflow
constraint is violated. Therefore B can not be in the word at position i + 1. J

Note that this claim implies that if for each position we pick some character that is in
the position at that word, we end up with a valid H-Word. We say that a configuration for
the constraint graph encodes a word W if each of that word’s characters is in the word at
the appropriate position.

I Claim. If a legal configuration for the constraint graph encoding Ws may be reconfigured
into a legal configuration encoding only Wg (i.e. the configuration encodes no other word),
then Ws may be reconfigured into Wg.

Proof. Suppose we have a reconfiguration sequence of legal configurations C1, . . . , Cm so
that C1 encodes Ws and Cm encodes only Wg. We define a reconfiguration sequence of words
W1, . . . , Wm which has the property that Ci encodes Wi. Let W1 = Ws, we recursively define
Wi, 1 < i ≤ m as follows: Since Ci+1 differs from Ci in the orientation of only one edge, the
set of words encoded by Ci+1 differs only from the set of words encoded by Ci by making one
character at a position allowed (in the word) or disallowed (was in the word in Ci but not
in the word in Ci+1). If a character at a position becomes allowed in Ci+1, let Wi+1 = Wi

(since Ci encodes Wi, Ci+1 also encodes Wi). If a character at a position becomes disallowed
(i.e. is no longer in the word), we obtain Wi+1 from Wi by changing the character at that
position to some allowed character (of which there is at least one). Following these steps,
since the final configuration encodes only Wg, we obtain a reconfiguration sequence from Ws

to Wg as claimed. J

Note that we may have multiple choices for Wi because Ci can encode more than one
word. It suffices to simply pick one of the words it encodes, while ensuring it differs in at
most one character from the previous and next.

I Claim. Given a H-word W of length n, there exists a legal configuration for the constraint
graph encoding only W .

Proof. Pick the orientation of edge (Ui, Xi,j) to be towards Ui if the character in W at
position i is j, and towards Xi,j otherwise. Clearly this constraint graph encodes only W .
This configuration can be extended to a legal configuration for the remaining (relation)
vertices by noticing the following: if there is a relation vertex ∆i,A,B then either A is not
in the word at position i or B is not in the word at position j. Suppose w.l.g. that B is
not in the word, then Xi+1,B is receiving inflow from Ui+1 and hence its incident red edges
may be pointing outwards, which (after passing through the red-blue conversion gadgets and
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splitting AND vertices as described before) allows us to satisfy the inflow requirement of
∆i,A,B . J

I Claim. If two H-Words W1, W2 differ by only one character, then a constraint graph G

encoding only W1 can be reconfigured into one encoding only W2.

Proof. Suppose that W1 and W2 differ by changing the character at position i from A to B.
We may first reconfigure G from encoding only W1 to encoding both W1 and W2, and then
reconfigure it to encode only W2. This temporarily increases the inflow Ui receives from 2
(receiving inflow only from Xi,A) to 4 (receiving inflow from both Xi,A and Xi,B) back to 2
(receiving inflow from only Xi,A). It may be required to reorient some edges to satisfy the
inflows of the relation vertices, but this is always possible because neither A nor B conflicts
with any preceding or succeeding characters. J

Note that this claim implies that if Ws can be reconfigured into Wg, then a constraint
graph encoding only Ws can be reconfigured into one encoding only Wg. This completes the
reduction.

All that remains to show is that this graph can be adapted so that it only uses AND and
OR vertices and becomes planar, and that the resulting graph has bounded bandwidth. The
only vertices that are not already AND or OR vertices are the universal vertices Ui. Note
that taking a single OR vertex (that has 3 incident edges at least one of which has to be
oriented inwards) we can attach another OR vertex to one of its edges to obtain a structure
that has 4 external edges, at least one of which has to be oriented inwards. Repeating this
procedure n times we obtain a tree of OR vertices with n + 3 external edges, at least one of
which has to be oriented inwards, which can replace the universal vertex.

To make the graph planar, we can use Hearn and Demaine’s crossover gadget [8, 13].
While this may increase the graph’s bandwidth, the following argument that it remains
bounded by a constant:

We create a number of bags B1, . . . Bn−1 that are subsets of vertices, with the property
that the size of each bag depends only on H (which is fixed) and that edges connect only
vertices that are both in the same bag, or a vertex in bag Bi with a vertex in bag Bi+1. This is
achieved by taking in bag i the vertices {Xi,j : j ∈ Σ}, {∆i,A,B (A, B) 6∈ E}, {Xi+1,j : j ∈ Σ},
the vertices in gadgets between them (i.e. the red-blue conversion gadgets and AND vertices
used in the splitting process) and the construction replacing the universal vertices Ui and
Ui+1. This shows the bandwidth of the graph is bounded by a constant c, since we can order
the vertices so that a vertex in Bi precedes a vertex in Bi+1 (and pick an arbitrary order for
the vertices in the same bag).

We have thus shown how to reduce H-Word Reconfiguration to NCL, shown how to
adapt our reduction to use only AND and OR vertices and make the resulting graph planar
and that the resulting graph has bounded bandwidth and have thus shown Theorem 6. J

Theorem 6 also holds for C2E Nondeterministic Constraint Logic:

I Theorem 7. There is a constant c, such that C2E Nondeterministic Constraint
Logic is PSPACE-complete, even on planar constraint graphs of treewidth (bandwidth) at
most c that use only AND and OR vertices.

Proof. H-Word Reconfiguration remains PSPACE-complete, even when instead of
requiring that one H-word is reconfigured in to another, we ask whether it is possible to
reconfigure a given H-word so that a given character appears at a specific position (without
requiring anything regarding the remaining characters in the word). This can be seen by
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examining the proof in [14], noting that we may modify the Turing machine to, upon reaching
an accepting state, move the head to the start of the tape and write a specific symbol there.
The proof of Theorem 6 can then easily be adapted to work for C2E NCL (since a character
appearing at a specific position corresponds to reversing a specific edge). J

We note that Theorems 6 and 7 may be further strengthened by requiring that all OR
vertices in the graph are protected, i.e., in any legal configuration at least one of its incident
edges is directed outwards. Hearn and Demaine [8] show how to construct an OR vertex
using only AND vertices and protected OR vertices.

4 Applications

As a result of our hardness proof for NCL, we (nearly) automatically obtain tighter bounds
for other problems that reduce from NCL in their hardness proofs. If the reduction showing
PSPACE-hardness for a problem is bandwidth-preserving in the sense that the bandwidth of
the resulting graph only depends on the bandwidth of the original constraint graph, then that
problem remains PSPACE-hard even when limited to instances of bounded bandwidth. Since
reductions from NCL usually work by locally replacing AND and OR vertices in the graph
with gadgets that simulate their functionality, such reductions are often bandwidth-preserving.

Independent Set Reconfiguration (IS-R)
Instance: Graph G = (V, E), independent sets Ss, Sg ⊆ V of G, integer threshold k.
Question: Is there a sequence of independent sets S1, . . . , Sn, so that for all i, Si+1 is
obtained from Si by the addition or removal of one vertex, |Si| ≥ k and S1 = Ss, Sn = Sg?

This is the token addition-and-removal (TAR) version of IS-R. It is also possible to define
a token jumping (TJ) variant (in which we obtain one independent set from the next by
removing and immediately replacing a vertex) and a token sliding variant (in which when we
remove a vertex, we must replace it with an incident vertex, i.e. "sliding" the token/vertex
along an edge).

I Theorem 8. TAR, TJ and TS versions of Independent Set Reconfiguration are
PSPACE-complete on planar, maximum degree 3 graphs of bounded bandwidth.

Proof. Hearn and Demaine [7] provide a reduction from IS-R to TJ and TS versions of IS-R.
The gadgets used in their reduction are reproduced in Figure 4. Since the reduction works by
replacing every vertex with a construction of at most 6 other vertices, the bandwidth of the
graph created in the reduction is at most 6 times the bandwidth of the original constraint
graph. The theorem thus follows immediately from our hardness result and Hearn and
Demaine’s reduction [7] and the fact that the TAR version is equivalent to TJ [10]. J

Similarly to Independent Set Reconfiguration, we can define reconfiguration versions
of Vertex Cover (VC-R), Feedback Vertex Set (FVS-R), Induced Forest (IF-R),
Odd Cycle Transversal (OCT-R) and Induced Bipartite Subgraph (IBS-R). Note
that for IS-R, IF-R, IBS-R the size of the vertex subset is never allowed to drop below
the threshold, while for VC-R, FVS-R and OCT-R the size is never allowed to exceed
the threshold. These problems are PSPACE-complete on bounded bandwidth graphs by
reduction from H-Word Reconfiguration [11]. We strengthen this result, noting that
our proof follows the same reasoning as in [11]:
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(a) OR vertex (b) AND vertex

Figure 4 Gadgets used in the reduction from IS-R to NCL. Dashed vertices represent vertices
that are part not of the gadget itself, but of other gadgets. The dark gray vertices represent an
example independent set.

I Theorem 9. TAR, TJ and TS versions of Independent Set (IS-R), Vertex Cover
(VC-R), Feedback Vertex Set (FVS-R), Induced Forest (IF-R), Odd Cycle Trans-
versal (OCT-R) and Induced Bipartite Subgraph (IBS-R) are PSPACE-complete on
planar graphs of bounded bandwidth and low maximum degree.

Proof. By Theorem 8, IS-R is PSPACE-complete on planar graphs of bounded bandwidth
and maximum degree 3. Since an independent set is the complement of a vertex cover, the
theorem holds for VC-R on maximum degree 3 graphs.

By replacing every edge in the graph by a triangle, we can reduce VC-R to FVS-R (since
picking at least one vertex of every edge is equivalent to picking at least one vertex of every
triangle), thus showing the theorem for FVS-R on maximum degree 6 graphs. We note that
in such a graph a feedback vertex set is also an odd cycle transversal, thus also showing the
theorem for OCT-R on maximum degree 6 graphs.

Finally, the theorem holds for IF-R and IBS-R on maximum degree 6 graphs by considering
complements of solutions for FVS-R and OCT-R. J

Another related reconfiguration problem is that of Dominating Set Reconfiguration
(DS-R). In [5], the authors show that DS-R is PSPACE-complete on planar graphs of
maximum degree six by reduction from NCL and PSPACE-complete on graphs of bounded
bandwidth by a reduction from VC-R. The following theorem that unifies these results follows
immediately from our improved result concerning VC-R:

I Theorem 10. The TAR version of Dominating Set Reconfiguration is PSPACE-
complete, even on planar, maximum degree six graphs of bounded bandwidth.

The puzzle game Rush Hour, in which the player moves cars horizontally and vertically
with the goal to free a specific car from the board, is PSPACE-complete [4] when played on
an n× n board. Another consequence of our result is that Rush Hour is PSPACE-complete
even on rectangular boards where one of the dimensions of the board is constant:

I Theorem 11. There exists a constant k, so that Rush Hour is PSPACE-complete when
played on boards of size k × n.

Proof. Hearn and Demaine [7] provide a reduction from restricted NCL, showing how to
construct AND and OR vertices as gadgets in Rush Hour and how to connect them together
using straight line and turn gadgets. Given a planar constraint graph, it can be drawn in the
grid (with vertices on points of the grid and edges running along the lines of the grid), after
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which vertices can be replaced by their appropriate gadgets and edges with the necessary
line and turn gadgets. However, starting with a graph of bounded bandwidth does not
immediately give a suitable drawing in a grid of which one of the dimensions is bounded
(from which the theorem would follow, since all of the gadgets have constant size).

Given a restricted NCL graph of bounded bandwidth, we note that this graph also has
bounded cutwidth [1]. Given such a graph with n vertices and cutwidth at most c, it is
possible to arrange it in a (c + 1) × 3n grid, so that vertices of the graph are mapped to
vertices of the grid, the edges of the graph run along edges of the grid, and no two edges or
vertices get mapped to the same edge or vertex in the grid. This is achieved by placing all of
the vertices of the graph in a single column (noting that 3 rows are required for each vertex
since it has 3 incident edges) and (due to the graph having cutwidth c) the edges can be
placed in the remaining c columns (placing each edge in a distinct column). However, even
when starting with a planar NCL graph, the resulting embedding may have crossings. These
can be eliminated using the crossover gadget, noting that since the crossover gadget has
constant size, the resulting graph can still be drawn in a O(c)×O(n) grid. We can now use
the existing gadgets from [7] to finish the reduction, showing Rush Hour PSPACE-complete
on boards of which one of the dimensions is bounded by a constant. J

Note that this result is likely to carry over to show other board games PSPACE-complete
on n× k boards, such as Sokoban or Plank Puzzles, which also reduce from NCL in their
hardness proofs [8].

This result is in contrast to [12], where it is shown that Peg Solitaire, when played on
k × n boards, is linear time solvable for any fixed k. An important distinction here is that
the length of a solution in a Peg Solitaire game is bounded by the number of pegs (since every
move removes one peg from play) whereas Rush Hour games are unbounded: any length
move sequence is possible, though obviously after an exponential number of moves, positions
would be repeated.

5 Conclusions

We have studied the parameterized complexity of constraint logic problems with regards
to (combinations of) solution length, maximum degree and treewidth as parameters. As a
main result, we showed that restricted Nondeterministic Constraint Logic remains
PSPACE-complete on graphs of bounded bandwidth, strengthening Hearn and Demaine’s
framework [8].

By combining Wrochna’s proof [14] and Hearn and Demaine’s [8] constraint logic tech-
niques, we have managed to get the best of both worlds: for several reconfiguration problems,
we showed hardness for graphs that are not only planar and have low maximum degree,
but that also have bounded bandwidth. This not only strengthens Wrochna’s results, but
also makes it easier to prove hardness for reconfiguration on bounded bandwidth graphs by
merging H-Word Reconfiguration into the more convenient NCL framework.

Note that the constant c in Theorem 6 has not been calculated precisely, but an informal
analysis of Wrochna’s proof [14] and our reduction suggests it is very large (growing with the
12th power of the original instance size). This raises two open questions: one is to determine
a tighter bound on the value of c, and the other is to determine whether efficient algorithms
exist for solving reconfiguration problems when the graph’s bandwidth is bounded by more
practical values. Some progress in this direction has already been made [3].

We have studied the parameterized complexity of CGS and NCL. Hearn and Demaine
[8] have defined several other problems related to constraint graphs, including two player
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and multiple player constraint graph games, complete for classes such as EXPTIME and
NEXPTIME. Studying these problems in a parameterized setting gives rise to several
interesting open problems.
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