118 research outputs found

    Uncertainty Estimation of Deep Neural Networks

    Get PDF
    Normal neural networks trained with gradient descent and back-propagation have received great success in various applications. On one hand, point estimation of the network weights is prone to over-fitting problems and lacks important uncertainty information associated with the estimation. On the other hand, exact Bayesian neural network methods are intractable and non-applicable for real-world applications. To date, approximate methods have been actively under development for Bayesian neural networks, including but not limited to: stochastic variational methods, Monte Carlo dropouts, and expectation propagation. Though these methods are applicable for current large networks, there are limits to these approaches with either underestimation or over-estimation of uncertainty. Extended Kalman filters (EKFs) and unscented Kalman filters (UKFs), which are widely used in data assimilation community, adopt a different perspective of inferring the parameters. Nevertheless, EKFs are incapable of dealing with highly non-linearity, while UKFs are inapplicable for large network architectures. Ensemble Kalman filters (EnKFs) serve as great methodology in atmosphere and oceanology disciplines targeting extremely high-dimensional, non-Gaussian, and nonlinear state-space models. So far, there is little work that applies EnKFs to estimate the parameters of deep neural networks. By considering neural network as a nonlinear function, we augment the network prediction with parameters as new states and adapt the state-space model to update the parameters. In the first work, we describe the ensemble Kalman filter, two proposed training schemes for training both fully-connected and Long Short-term Memory (LSTM) networks, and experiment iv with 10 UCI datasets and a natural language dataset for different regression tasks. To further evaluate the effectiveness of the proposed training scheme, we trained a deep LSTM network with the proposed algorithm, and applied it on five realworld sub-event detection tasks. With a formalization of the sub-event detection task, we develop an outlier detection framework and take advantage of the Bayesian Long Short-term Memory (LSTM) network to capture the important and interesting moments within an event. In the last work, we propose a framework for student knowledge estimation using Bayesian network. By constructing student models with Bayesian network, we can infer the new state of knowledge on each concept given a student. With a novel parameter estimate algorithm, the model can also indicate misconception on each question. Furthermore, we develop a predictive validation metric with expected data likelihood of the student model to evaluate the design of questions

    "Rotterdam econometrics": publications of the econometric institute 1956-2005

    Get PDF
    This paper contains a list of all publications over the period 1956-2005, as reported in the Rotterdam Econometric Institute Reprint series during 1957-2005.

    "Rotterdam econometrics": publications of the econometric institute 1956-2005

    Get PDF
    This paper contains a list of all publications over the period 1956-2005, as reported in the Rotterdam Econometric Institute Reprint series during 1957-2005

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order

    Complexity, Emergent Systems and Complex Biological Systems:\ud Complex Systems Theory and Biodynamics. [Edited book by I.C. Baianu, with listed contributors (2011)]

    Get PDF
    An overview is presented of System dynamics, the study of the behaviour of complex systems, Dynamical system in mathematics Dynamic programming in computer science and control theory, Complex systems biology, Neurodynamics and Psychodynamics.\u

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    corecore