31,608 research outputs found

    Mechanical and Corrosion Properties of Cold Working Brass

    Get PDF
    The key issue for manufacturing industries is the high surface quality of metal products the reasons for deforming engineering metal and alloys are to change their properties. The main object of present work is to investigate the effect of cold rolling on brass and understanding the relationship between surface roughness with cold reduction in cross- sectional are samples this study was concentrated on the corrosion behavior of cold working brass. The results show that the degree of deformation increase surface roughness of brass alloy. The weight loss increase with increasing time of immersion degree of deformation. Keywords: brass alloy, cold rolling, surface roughness, corrosion , weight-loss

    The effect of temperature changes on to quasi-static tensile and flexural performance of glass fibre reinforced PA66 composites

    Get PDF
    A significant method of reducing CO2 emissions in road vehicles is to reduce the vehicle mass. One means in which this can be achieved is to adopt lightweight materials such as thermoplastic composites. Thermoplastics offer advantages in term of weight when compared to conventional steel and aluminium casting. In this study thermal mechanical testing has been conducted on two types of commercial polyamide 66 (PA66) with 35 wt.% short glass fibre reinforcement. One of the materials was impact modified with an elastomer to increase material toughness. Experimental results showed both the reinforced PA66 materials to be temperature dependent. All test results demonstrated the trade-off in the mechanical properties of the two materials especially the impact modified. PA66 with 35 wt.% short glass fibre exhibits the best tensile strength, flexural strength and modulus for each temperature tested. Whereas the impact modified PA66 with 35 wt.% short glass fibre exhibits the higher strain and toughness for each temperature tested

    Learning to Reconstruct Texture-less Deformable Surfaces from a Single View

    Get PDF
    Recent years have seen the development of mature solutions for reconstructing deformable surfaces from a single image, provided that they are relatively well-textured. By contrast, recovering the 3D shape of texture-less surfaces remains an open problem, and essentially relates to Shape-from-Shading. In this paper, we introduce a data-driven approach to this problem. We introduce a general framework that can predict diverse 3D representations, such as meshes, normals, and depth maps. Our experiments show that meshes are ill-suited to handle texture-less 3D reconstruction in our context. Furthermore, we demonstrate that our approach generalizes well to unseen objects, and that it yields higher-quality reconstructions than a state-of-the-art SfS technique, particularly in terms of normal estimates. Our reconstructions accurately model the fine details of the surfaces, such as the creases of a T-Shirt worn by a person.Comment: Accepted to 3DV 201

    Direct numerical simulations of the flow around wings with spanwise waviness at a very low Reynolds number

    Get PDF
    Inspired by the pectoral flippers of the humpback whale, the use of spanwise waviness in the leading edge has been considered in the literature as a possible way of improving the aerodynamic performance of wings. In this paper, we present an investigation based on direct numerical simulations of the flow around infinite wavy wings with a NACA0012 profile, at a Reynolds number Re=1000Re=1000. The simulations were carried out using the Spectral/hp Element Method, with a coordinate system transformation employed to treat the waviness of the wing. Several combinations of wavelength and amplitude were considered, showing that for this value of Re the waviness leads to a reduction in the lift-to-drag ratio (L/D), associated with a suppression of the fluctuating lift coefficient. These changes are associated with a regime where the flow remains attached behind the peaks of the leading edge while there are distinct regions of flow separation behind the troughs, and a physical mechanism explaining this behaviour is proposed

    The motion of a deforming capsule through a corner

    Get PDF
    A three-dimensional deformable capsule convected through a square duct with a corner is studied via numerical simulations. We develop an accelerated boundary integral implementation adapted to general geometries and boundary conditions. A global spectral method is adopted to resolve the dynamics of the capsule membrane developing elastic tension according to the neo-Hookean constitutive law and bending moments in an inertialess flow. The simulations show that the trajectory of the capsule closely follows the underlying streamlines independently of the capillary number. The membrane deformability, on the other hand, significantly influences the relative area variations, the advection velocity and the principal tensions observed during the capsule motion. The evolution of the capsule velocity displays a loss of the time-reversal symmetry of Stokes flow due to the elasticity of the membrane. The velocity decreases while the capsule is approaching the corner as the background flow does, reaches a minimum at the corner and displays an overshoot past the corner due to the streamwise elongation induced by the flow acceleration in the downstream branch. This velocity overshoot increases with confinement while the maxima of the major principal tension increase linearly with the inverse of the duct width. Finally, the deformation and tension of the capsule are shown to decrease in a curved corner

    Centrifuge Modelling of the Collapse of Shaft Linings

    Get PDF
    The collapse of abandoned and often hidden mine shafts is a serious problem in the UK and many parts of Europe. The collapse of these shafts is often related to the failure of the shaft lining. Understanding the mechanisms of ground movements around deforming/collapsing mine shafts is, therefore, important in the assessment of mine shaft location as well as lining condition. This paper presents an experimental study of the mechanisms of soil failure around a deforming shaft lining. Geotechnical centrifuge modelling of reduced-scale buried mine shafts was tested to determine the magnitude and pattern of ground deformations that occurred during loss of internal support pressure. An axis-symmetric centrifuge container was used along with half-cylindrical model shafts. These allowed for the acquisition of digital images of the sub-surface soil and mine shafts which enabled the measurement of soil and shaft deformation using image analysis techniques. The results from two model shaft tests are presented. The first test involved the loss of internal support along the entire shaft length, whereas the second test studied the effect of a discrete weakened zone within the lining

    DeformNet: Free-Form Deformation Network for 3D Shape Reconstruction from a Single Image

    Full text link
    3D reconstruction from a single image is a key problem in multiple applications ranging from robotic manipulation to augmented reality. Prior methods have tackled this problem through generative models which predict 3D reconstructions as voxels or point clouds. However, these methods can be computationally expensive and miss fine details. We introduce a new differentiable layer for 3D data deformation and use it in DeformNet to learn a model for 3D reconstruction-through-deformation. DeformNet takes an image input, searches the nearest shape template from a database, and deforms the template to match the query image. We evaluate our approach on the ShapeNet dataset and show that - (a) the Free-Form Deformation layer is a powerful new building block for Deep Learning models that manipulate 3D data (b) DeformNet uses this FFD layer combined with shape retrieval for smooth and detail-preserving 3D reconstruction of qualitatively plausible point clouds with respect to a single query image (c) compared to other state-of-the-art 3D reconstruction methods, DeformNet quantitatively matches or outperforms their benchmarks by significant margins. For more information, visit: https://deformnet-site.github.io/DeformNet-website/ .Comment: 11 pages, 9 figures, NIP
    • …
    corecore