29 research outputs found

    Deformable Shape Completion with Graph Convolutional Autoencoders

    Full text link
    The availability of affordable and portable depth sensors has made scanning objects and people simpler than ever. However, dealing with occlusions and missing parts is still a significant challenge. The problem of reconstructing a (possibly non-rigidly moving) 3D object from a single or multiple partial scans has received increasing attention in recent years. In this work, we propose a novel learning-based method for the completion of partial shapes. Unlike the majority of existing approaches, our method focuses on objects that can undergo non-rigid deformations. The core of our method is a variational autoencoder with graph convolutional operations that learns a latent space for complete realistic shapes. At inference, we optimize to find the representation in this latent space that best fits the generated shape to the known partial input. The completed shape exhibits a realistic appearance on the unknown part. We show promising results towards the completion of synthetic and real scans of human body and face meshes exhibiting different styles of articulation and partiality.Comment: CVPR 201

    3D Shape Completion with Multi-view Consistent Inference

    Full text link
    3D shape completion is important to enable machines to perceive the complete geometry of objects from partial observations. To address this problem, view-based methods have been presented. These methods represent shapes as multiple depth images, which can be back-projected to yield corresponding 3D point clouds, and they perform shape completion by learning to complete each depth image using neural networks. While view-based methods lead to state-of-the-art results, they currently do not enforce geometric consistency among the completed views during the inference stage. To resolve this issue, we propose a multi-view consistent inference technique for 3D shape completion, which we express as an energy minimization problem including a data term and a regularization term. We formulate the regularization term as a consistency loss that encourages geometric consistency among multiple views, while the data term guarantees that the optimized views do not drift away too much from a learned shape descriptor. Experimental results demonstrate that our method completes shapes more accurately than previous techniques.Comment: Accepted to AAAI 2020 as oral presentatio

    Adaptive Density Estimation for Generative Models

    Get PDF
    Unsupervised learning of generative models has seen tremendous progress over recent years, in particular due to generative adversarial networks (GANs), variational autoencoders, and flow-based models. GANs have dramatically improved sample quality, but suffer from two drawbacks: (i) they mode-drop, i.e., do not cover the full support of the train data, and (ii) they do not allow for likelihood evaluations on held-out data. In contrast, likelihood-based training encourages models to cover the full support of the train data, but yields poorer samples. These mutual shortcomings can in principle be addressed by training generative latent variable models in a hybrid adversarial-likelihood manner. However, we show that commonly made parametric assumptions create a conflict between them, making successful hybrid models non trivial. As a solution, we propose to use deep invertible transformations in the latent variable decoder. This approach allows for likelihood computations in image space, is more efficient than fully invertible models, and can take full advantage of adversarial training. We show that our model significantly improves over existing hybrid models: offering GAN-like samples, IS and FID scores that are competitive with fully adversarial models, and improved likelihood scores
    corecore