1,594 research outputs found

    Definitional Issues in Functional Encryption

    Get PDF
    We provide a formalization of the emergent notion of ``functional encryption,\u27\u27 as well as introduce various security notions for it, and study relations among the latter. In particular, we show that indistinguishability and semantic security based notions of security are {\em inequivalent} for functional encryption in general; in fact, ``adaptive\u27\u27 indistinguishability does not even imply ``non-adaptive\u27\u27 semantic security. This is alarming given the large body of work employing (special cases of) the former. We go on to show, however, that in the ``non-adaptive\u27\u27 case an equivalence does hold between indistinguishability and semantic security for what we call {\em preimage sampleable} schemes. We take this as evidence that for preimage sampleable schemes an indistinguishability based notion may be acceptable in practice. We show that some common functionalities considered in the literature satisfy this requirement

    On the semantic security of functional encryption schemes

    Get PDF
    Functional encryption (FE) is a powerful cryptographic primitive that generalizes many asymmetric encryption systems proposed in recent years. Syntax and security definitions for FE were proposed by Boneh, Sahai, and Waters (BSW) (TCC 2011) and independently by O’Neill (ePrint 2010/556). In this paper we revisit these definitions, identify several shortcomings in them, and propose a new definitional approach that overcomes these limitations. Our definitions display good compositionality properties and allow us to obtain new feasibility and impossibility results for adaptive token-extraction attack scenarios that shed further light on the potential reach of general FE for practical applications.ENIAC Joint UndertakingFundação para a Ciência e a Tecnologia (FCT

    Finding an Unlikely Combatant in the War Against Ransomware: Opportunities for Providers to Utilize Off-Site Data Backup Within the HIPAA Omnibus and Hitech Amendments

    Get PDF
    Each day the health care sector is subjected to an onslaught of thousands of ransomware virus attacks which attempt to capture a provider’s IT operations until a ransom is paid to the hacker. Apart from monetary, functional, and civil liability considerations, compromised health systems that contain electronic patient health information could expose a provider to legal liability under multiple HIPAA laws. This article will explore how recent amendments made to HIPAA, particularly under the Omnibus and HITECH Acts, incentivize providers to obtain legal, functional, and policy-based benefits by utilizing off-site data backup business associates as part of their cybersecurity defense strategy in the escalating war against ransomware

    Ad Hoc Multi-Input Functional Encryption

    Get PDF
    Consider sources that supply sensitive data to an aggregator. Standard encryption only hides the data from eavesdroppers, but using specialized encryption one can hope to hide the data (to the extent possible) from the aggregator itself. For flexibility and security, we envision schemes that allow sources to supply encrypted data, such that at any point a dynamically-chosen subset of sources can allow an agreed-upon joint function of their data to be computed by the aggregator. A primitive called multi-input functional encryption (MIFE), due to Goldwasser et al. (EUROCRYPT 2014), comes close, but has two main limitations: - it requires trust in a third party, who is able to decrypt all the data, and - it requires function arity to be fixed at setup time and to be equal to the number of parties. To drop these limitations, we introduce a new notion of ad hoc MIFE. In our setting, each source generates its own public key and issues individual, function-specific secret keys to an aggregator. For successful decryption, an aggregator must obtain a separate key from each source whose ciphertext is being computed upon. The aggregator could obtain multiple such secret-keys from a user corresponding to functions of varying arity. For this primitive, we obtain the following results: - We show that standard MIFE for general functions can be bootstrapped to ad hoc MIFE for free, i.e. without making any additional assumption. - We provide a direct construction of ad hoc MIFE for the inner product functionality based on the Learning with Errors (LWE) assumption. This yields the first construction of this natural primitive based on a standard assumption. At a technical level, our results are obtained by combining standard MIFE schemes and two-round secure multiparty computation (MPC) protocols in novel ways highlighting an interesting interplay between MIFE and two-round MPC

    On the relationship between functional encryption, obfuscation, and fully homomorphic encryption

    Get PDF
    We investigate the relationship between Functional Encryption (FE) and Fully Homomorphic Encryption (FHE), demonstrating that, under certain assumptions, a Functional Encryption scheme supporting evaluation on two ciphertexts implies Fully Homomorphic Encryption. We first introduce the notion of Randomized Functional Encryption (RFE), a generalization of Functional Encryption dealing with randomized functionalities of interest in its own right, and show how to construct an RFE from a (standard) semantically secure FE. For this we define the notion of entropically secure FE and use it as an intermediary step in the construction. Finally we show that RFEs constructed in this way can be used to construct FHE schemes thereby establishing a relation between the FHE and FE primitives. We conclude the paper by recasting the construction of RFE schemes in the context of obfuscation.NSF -National Science Foundatio

    Equivalence-based Security for Querying Encrypted Databases: Theory and Application to Privacy Policy Audits

    Full text link
    Motivated by the problem of simultaneously preserving confidentiality and usability of data outsourced to third-party clouds, we present two different database encryption schemes that largely hide data but reveal enough information to support a wide-range of relational queries. We provide a security definition for database encryption that captures confidentiality based on a notion of equivalence of databases from the adversary's perspective. As a specific application, we adapt an existing algorithm for finding violations of privacy policies to run on logs encrypted under our schemes and observe low to moderate overheads.Comment: CCS 2015 paper technical report, in progres

    Double Secret Protection: Bridging Federal and State Law To Protect Privacy Rights for Telemental and Mobile Health Users

    Get PDF
    Mental health care in the United States is plagued by stigma, cost, and access issues that prevent many people from seeking and continuing treatment for mental health conditions. Emergent technology, however, may offer a solution. Through telemental health, patients can connect with providers remotely—avoiding stigmatizing situations that can arise from traditional healthcare delivery, receiving more affordable care, and reaching providers across geographic boundaries. And with mobile health technology, people can use smart phone applications both to self-monitor their mental health and to communicate with their doctors. But people do not want to take advantage of telemental and mobile health unless their privacy is protected. After evaluating the applicability of current health information privacy law to these new forms of treatment, this Note proposes changes to the federal regime to protect privacy rights for telemental and mobile health users
    • …
    corecore