120,019 research outputs found

    Static Analysis of Deterministic Negotiations

    Full text link
    Negotiation diagrams are a model of concurrent computation akin to workflow Petri nets. Deterministic negotiation diagrams, equivalent to the much studied and used free-choice workflow Petri nets, are surprisingly amenable to verification. Soundness (a property close to deadlock-freedom) can be decided in PTIME. Further, other fundamental questions like computing summaries or the expected cost, can also be solved in PTIME for sound deterministic negotiation diagrams, while they are PSPACE-complete in the general case. In this paper we generalize and explain these results. We extend the classical "meet-over-all-paths" (MOP) formulation of static analysis problems to our concurrent setting, and introduce Mazurkiewicz-invariant analysis problems, which encompass the questions above and new ones. We show that any Mazurkiewicz-invariant analysis problem can be solved in PTIME for sound deterministic negotiations whenever it is in PTIME for sequential flow-graphs---even though the flow-graph of a deterministic negotiation diagram can be exponentially larger than the diagram itself. This gives a common explanation to the low-complexity of all the analysis questions studied so far. Finally, we show that classical gen/kill analyses are also an instance of our framework, and obtain a PTIME algorithm for detecting anti-patterns in free-choice workflow Petri nets. Our result is based on a novel decomposition theorem, of independent interest, showing that sound deterministic negotiation diagrams can be hierarchically decomposed into (possibly overlapping) smaller sound diagrams.Comment: To appear in the Proceedings of LICS 2017, IEEE Computer Societ

    Microfluidic multipoles: theory and applications

    Get PDF
    Microfluidic multipoles (MFMs) have been realized experimentally and hold promise for "open-space" biological and chemical surface processing. Whereas convective flow can readily be predicted using hydraulic-electrical analogies, the design of advanced MFMs is constrained by the lack of simple, accurate models to predict mass transport within them. In this work, we introduce the first exact solutions to mass transport in multipolar microfluidics based on the iterative conformal mapping of 2D advection-diffusion around a simple edge into dipoles and multipolar geometries, revealing a rich landscape of transport modes. The models were validated experimentally with a library of 3D printed MFM devices and found in excellent agreement. Following a theory-guided design approach, we further ideated and fabricated two new classes of spatiotemporally reconfigurable MFM devices that are used for processing surfaces with time-varying reagent streams, and to realize a multistep automated immunoassay. Overall, the results set the foundations for exploring, developing, and applying open-space MFMs.Comment: 16 pages, 5 figure

    Contrast sensitivity of insect motion detectors to natural images

    Get PDF
    How do animals regulate self-movement despite large variation in the luminance contrast of the environment? Insects are capable of regulating flight speed based on the velocity of image motion, but the mechanisms for this are unclear. The Hassenstein–Reichardt correlator model and elaborations can accurately predict responses of motion detecting neurons under many conditions but fail to explain the apparent lack of spatial pattern and contrast dependence observed in freely flying bees and flies. To investigate this apparent discrepancy, we recorded intracellularly from horizontal-sensitive (HS) motion detecting neurons in the hoverfly while displaying moving images of natural environments. Contrary to results obtained with grating patterns, we show these neurons encode the velocity of natural images largely independently of the particular image used despite a threefold range of contrast. This invariance in response to natural images is observed in both strongly and minimally motion-adapted neurons but is sensitive to artificial manipulations in contrast. Current models of these cells account for some, but not all, of the observed insensitivity to image contrast. We conclude that fly visual processing may be matched to commonalities between natural scenes, enabling accurate estimates of velocity largely independent of the particular scene

    Rotorcraft aviation icing research requirements: Research review and recommendations

    Get PDF
    The status of rotorcraft icing evaluation techniques and ice protection technology was assessed. Recommendations are made for near and long term icing programs that describe the needs of industry. These recommended programs are based on a consensus of the major U.S. helicopter companies. Specific activities currently planned or underway by NASA, FAA and DOD are reviewed to determine relevance to the overall research requirements. New programs, taking advantage of current activities, are recommended to meet the long term needs for rotorcraft icing certification
    corecore