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ARTICLE

Microfluidic multipoles theory and applications
Pierre-Alexandre Goyette1, Étienne Boulais2, Frédéric Normandeau3, Gabriel Laberge2, David Juncker 3 &

Thomas Gervais1,2,4

Microfluidic multipoles (MFMs) have been realized experimentally and hold promise for

“open-space” biological and chemical surface processing. Whereas convective flow can

readily be predicted using hydraulic-electrical analogies, the design of advanced microfluidic

multipole is constrained by the lack of simple, accurate models to predict mass transport

within them. In this work, we introduce the complete solutions to mass transport in multi-

polar microfluidics based on the iterative conformal mapping of 2D advection-diffusion

around a simple edge into dipoles and multipolar geometries, revealing a rich landscape of

transport modes. The models are validated experimentally with a library of 3D printed devices

and found in excellent agreement. Following a theory-guided design approach, we further

ideate and fabricate two classes of spatiotemporally reconfigurable multipolar devices that

are used for processing surfaces with time-varying reagent streams, and to realize a multistep

automated immunoassay. Overall, the results set the foundations for exploring, developing,

and applying open-space microfluidic multipoles.
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Over the past decade, “open-space” systems that provide
locally addressable fluid streams have emerged and
broadened the definition of microfluidics to include

channel-free fluidic processors1,2. Contrary to traditional
channel-based microfluidic systems, they operate from above a
surface, are contact free, and can be used for local processing of
large surfaces such as petri dishes and culture flasks with high
resolution, which previously could only be accomplished using
static, flow-less methods such as inkjet and pin-spotting. Pio-
neering technologies such as the microfluidic pipette3, aqueous
two-phase reagent delivery4, and droplet-based reagent delivery
and sensing (a.k.a. the chemistrode5) all localize fluid flow
without closed channels. Arguably the most established, most
versatile open-space microfluidics technology to date is the
microfluidic probe (MFP)6, a device originally containing two
flow apertures, one of which is withdrawing a fluid. The apertures
of a MFP are located within a blunt tip positioned parallel, close
to a surface, effectively forming a Hele-Shaw cell7. By modulating
the flow ratio between injection and aspiration apertures, while
keeping a net positive aspiration under the device, confined
streams of reagents under the MFP can be scanned over the
surface to form patterns with high spatial resolution, low shear
stress, and low reagent consumption. MFPs, however, face one
main drawback: their scanning speed is limited by the reaction
kinetics between the delivered reagent and the surface. Reaction
times in the life sciences being generally in the minute to hour
time scales, surface patterning with a MFP becomes slow and
impractical in many instances due to the inherently serial nature
of the scanning process.
To increase MFP versatility, a growing number of designs

incorporating multiple flow apertures have been reported. They
are all part of a more general class of flow patterns which we term
microfluidic multipoles (MFMs). Under this nomenclature, the
original two-aperture MFP design can be construed as a simple
microfluidic dipole8. Another well-studied MFM is the micro-
fluidic quadrupole, which enables the simultaneous confinement
of two different reagents9. However, the concept of open MFM is
generalizable to an arbitrary number of injection and aspiration
apertures, which may be configured to generate a variety of flow
and diffusion patterns. We enumerated a total of 11 previously
published different MFM configurations that are irreducible, i.e.
they generate reagent profiles that cannot be achieved with one of
the other systems. They were used for various processes,
including surface functionalization6,10, local cell lysis and DNA
analysis11,12, sharp gradient generation13, tissue staining with
immunohistochemical markers14, and “Stokes trapping” of
microparticles in large chambers acting as Hele-Shaw cells15 (see
Supplementary Table 1). While these represent a growing diver-
sity, innovation in open-space microfluidics has so far mainly
been driven by trial and error, which can be in part ascribed to
the lack of a complete formalism to describe mass transport in 2D
MFMs.
Several attempts have been made to model the flow and dif-

fusion under open-space microfluidic devices. Full 3D finite ele-
ment simulations have been used extensively11,12,16. However,
they provide minimal insight on the relationship between design
and operation variables and are too slow and resource-intensive
to be used in a closed-loop, real-time experimental setup. From
an analytical standpoint, the flow streamlines generated by point
source openings located within a Hele-Shaw cell are rigorously
analogous to the electric field lines around a distribution of point
charges in 2D space9. Although seldom used in the context of
microfluidics, this analogy effectively generalizes the oft-used
hydraulic-electrical analogy to model the pressure-flow rate
relationships in networks of quasi-1D microchannels using
Kirchhoff’s laws17. However, contrary to the case of simple

parallel streams inside a microchannel, taking the diffusion of a
scalar (concentration, temperature) into account in a 2D flow
field remains a challenge due to their typical complexity. As a
result, despite over a decade of efforts, a complete analytical
expression for 2D advection-diffusion profiles in MFMs is still
missing, even for the dipole, the simplest open-space microfluidic
unit and canonical embodiment of the MFP. Moreover, the few
approximations published to this day are only valid for very
localized areas of space and fail to account for the full diffusion
footprint of the device.
On the experimental level, several MFM fabrication methods

were presented over the years, but they all required micro-
fabrication of silicon or glass components6,18,19 which are costly
and slow to yield prototypes. In recent years, 3D printing has
emerged as a disruptive technology for microfluidic device fab-
rication20–22. 3D printing is fast and yields ready-to-use devices
that require no alignment, bonding or molding steps. Moreover,
single block printing of microfluidic devices affords full design
flexibility in three dimensions that can simply not be realized
using microfabrication processes dependent on iterative photo-
lithography and microstructuring cycles. We recently presented a
method for 3D printing of MFMs23, but a proof of concept for the
fabrication of more general open-space microfluidic devices is still
missing.
Here, we first introduce an analytical framework to study the

general problem of advective-diffusive transport in MFMs that is
experimentally-validated using 3D printed MFM devices. The
model we propose exploits mathematical advances in the con-
formal mapping of non-harmonic functions24 to find transport
solutions to infinite families of MFM with arbitrary number of
apertures. In a second step, we employ our formalism and
experimental platform and combine it with flow modulation to
introduce spatiotemporally reconfigurable MFM devices which
exploit the various symmetries in multipolar flow patterns.
Whereas MFPs were scanned on surfaces, MFMs use the dynamic
control of independent confinement zones to address multiple
surface regions in parallel, effectively forming a 2D reconfigurable
reagent display. Finally, the potential of MFMs for long-lasting
multistep experiments is demonstrated by performing a fully
automated, three-step immunofluorescence assay over an open
surface, generating a complete binding curve in a single
experiment.

Results
Model of advection-diffusion for an asymmetric dipole. In this
section, we lay out the basic transport theory for 2D MFMs as
illustrated in Fig. 1. We use complex potential representation to
provide a complete analytical model for both advection and dif-
fusion profiles under an asymmetric flow dipole (sometimes
called “doublet” in fluid mechanics) in a Hele–Shaw cell such as
those formed by a dipole MFPs (Fig. 1a). In the subsequent
section, we show how this model can be extended to obtain exact
flow profiles for an infinite variety of MFM devices (Fig. 1b–d).
We define an asymmetric dipole of finite dimensions as two

point-source apertures of arbitrary flow rates, one aspirating and
one injecting, separated by a distance L. We assume an infinite
flow domain, which in practice is realized by ensuring that the
surface of the injection device is multiple times larger than the
maximum inter-aperture distance. An adimensional variable
system with x= X/L, v= 2πGLV/Q0, c= C/C0 is used. X and V
are, respectively, the position and velocity vectors, L is the
interaperture distance in the dipole, G is the height of the gap
forming the Hele–Shaw cell, Q0 is the injection rate of the
injection aperture, and C0 is the injected reagent concentration.
We model the apertures as point sources and thus neglect their
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finite radii. The effects of this approximation have already been
well-studied25 and shown to be negligible in most practical
applications. Creeping flow (Reynolds number « 1) is assumed
throughout the analysis.
We use complex flow representation to describe vectors in the

2D plane R
2 as complex numbers z= x+ iy. This notation is

already well-used in the fields of groundwater flow26, viscous
fingering27, or in the design of airfoils and hulls28. A study of
water permeation in bulk PDMS29 constitutes its only application
in microfluidics to the best of our knowledge. Under complex
representation, a multi-aperture flow can be conveniently
described by the complex potential30

Φ ¼
X
i

qilog z � zið Þ; ð1Þ

where each point-like aperture is located at position zi and has
flow rate qi. One useful feature of the complex potential Φ= ϕ+
iψ is that its real part describes the pressure field while the
imaginary part represents the streamlines of the flow17.
Furthermore, the potential (Eq. 1) can be differentiated to obtain
the complex conjugate of the velocity flow field
�u ¼ dΦ

dz ¼ uxðx; yÞ � iuyðx; yÞ. This format enables the use of
conformal mapping, which via a complex variable transformation
of the form ω= f(z) warps the solution domain of specific 2D
differential equations in a simple geometry to generate exact
solutions for more complex geometries. Conformal mapping
stems from the conformal invariance of the Laplace equation31

and is used extensively to study purely advective multipolar flows
in porous media26. Once the complex potential for a given
problem is known, the diffusive transport of a diluted species
within this field can also be obtained by solving the advection-
diffusion equation under 2D potential flow. In cases where total
aspiration is superior to injection, there exists a steady-state
where advection balances diffusion, allowing us to use the steady
advection-diffusion equation

∇2c� Pe∇ϕ � ∇c ¼ 0; ð2Þ

where Pe=Q0/2πGD represents the ratio of diffusive to
convective time scales. The algebraic term ∇ϕ·∇c constitutes a
challenge as it quickly renders the equation intractable even for
relatively simple flow patterns. To address this issue, we turn
again to conformal mapping. It is known that the advection-
diffusion equation for potential flows is, like Laplace’s equation,
one of a handful of conformally invariant PDEs24. Hence, the
same conformal transformations could be applied to transform-
ing advection diffusion problems into a streamline coordinates as
originally proposed by Boussinesq32. Indeed, under this type of
hodograph transform, the flow becomes straight and advection
naturally becomes decoupled from diffusion, thus leading to a
simplified transport equation:

∂2c

∂ϕ2
þ ∂2c
∂ψ2

¼ Pe
∂c
∂ϕ

ð3Þ

Using the streamline coordinates described above, the
advection-diffusion profile under a dipole flow (Fig. 2b) can be
represented easily in dimensionless units, with an injection
aperture (c= 1) located at the origin, an aspiration aperture at z
=−1 and a fixed concentration c= 0 for |z|→∞. The ratio of
aspiration to injection flow rates is given by the parameter
α ¼ qasp

qinj
>1. The flow pattern in such a dipole has a stagnation

point located at8

zstag ¼
1

α� 1
ð4Þ

Upon inspection, the problem can be transformed to stream-
line coordinates (Fig. 2a) using the function

Φ zð Þ ¼ log zð Þ � α log z þ 1ð Þ: ð5Þ
In the streamline domain Φ, the problem is equivalent to a

channel geometry with flows of concentration c= 1 and c=
0 separated by a no-flux boundary condition on the origin. At the
stagnation point, the no-flux condition is dropped, and the flows
are free to mix (Fig. 2a) (see Supplementary Table 2 for more
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Fig. 1 From dipoles and quadrupoles to multipoles. Theoretical streamlines (a–d) and fluorescence micrograph (e–h). Positive and negative sign,
respectively, represent injection and aspiration apertures. To facilitate comparison between theory and experiment, green and red background were
superposed on flow fields to highlight the expected areas of confinement not captured by streamlines. a, e Microfluidic dipole. b, fMicrofluidic quadrupole.
c, g MFM with rotational symmetry. d, h 12-aperture MFM with translational symmetry. Scale bars represent 500 μm
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details on the streamline problem). The separating streamline
going from the stagnation point to the aspiration aperture
corresponds to the semi-infinite segment of the horizontal axis
where the fluids can mix. If the Péclet number is high enough
(higher than about 10, which is always realized in microfluidics
applications), this segment can be taken to have concentration c
= 1/2 and the walls of the channel geometry can be safely ignored
(Supplementary Note 1). The problem can thus be decomposed
in two problems of advection-diffusion around semi-infinite
obstacles of fixed concentration. The problem of advection-
diffusion around such a semi-infinite obstacle has been
extensively studied in theoretical fluid mechanics, notably in the
theory of dendrite solidification33, and in the study of out of plane
flow in Burgers vortex sheets24,34. It yields the solution

c Φð Þ ¼ 1=2 1 ± erf Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe Φ�Φstag

� �r� �� �
; ð6Þ

where Φstag is the image of the stagnation point and erf(x) is the
error function35. The sign of ± is determined by whether we have
an incoming flow of concentration c= 0 or c= 1. However,
neither of these concentration profiles represent the full dipole
footprint when transformed. This can be seen physically in the
flow dipole, in which there is both incoming fluid at concentra-
tion 0 (aspirated from the system’s surroundings), and incoming
fluid at concentration 1 (injected by the aperture). To solve this
issue, we separate the problem into an “interior” and an “exterior”
domain at the streamline of concentration c= 1/2 (see

checkerboard insets in Fig. 2). There remains a discontinuity in
our solution due to the branch cut of the logarithm functions in
Eq. (1), but the solution can be made continuous by placing the
singularities on the real axis and using it as an axis of symmetry.
The final step is then to obtain the entire solution as a piecewise
function assembling the “interior” and “exterior” solutions, given
by transforming Eq. (6) back to the dipole flow domain Z. The
interior and exterior domains can be defined either by checking
the sign of Φ in the streamline domain or by using the expression
for the separating line in the Z domain in polar coordinates (see
Supplementary Note 2).
This gives us the complete, exact expression for the

concentration profile in the asymmetric dipole of finite dimen-
sions

c zð Þ ¼ 1=2 1 ± erf Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe log zð Þ � α logðzþ 1Þ �Φstag

� �r� �� �� �
:

ð7Þ
This expression is compact under complex representation and

valid for high Péclet numbers.

Generalization from microfluidic dipoles to multipoles. Once a
solution is known for one particular multipole flow profile, the
full power of conformal transforms can be exploited. By using
simple functions expressing symmetry operations, such as
inversions or power transforms with a suitably placed origin, we
can obtain concentration profiles for an infinite family of
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Fig. 2 Theoretical model. Solutions for a leading edge in a no-slip plane flow (Pe= 100) is first obtained (a) and then transformed via the complex potential
to obtain the dipole concentration profile (b). This solution can then be further transformed to obtain symmetrical configurations such as the “flower
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multipoles. In each case, the transport problem is first solved in
the streamline domain (Fig. 2a), then transformed to obtain the
flow profile for an asymmetric dipole (Fig. 2b). The dipole
solution can then be transformed again to obtain the desired flow
patterns. For example, a power law conformal transform gen-
erates a polygonal structure with a rotation symmetry whose
number of sides is dictated by the exponent of the power trans-
form (as in Fig. 2c). These devices will have injection and
aspiration apertures located at new positions, determined by the
transform of the initial aperture locations, and can then be fab-
ricated and operated to obtain the predicted patterns. This
method gives us a comprehensive toolbox to not only model and
explain phenomena in known open-space MFMs in terms of
simpler ones, but also to explore new configurations that have not
been investigated yet.
While many geometries can be obtained by directly transform-

ing the concentration profile from the microfluidic dipole, an
arbitrary placement of injection and aspiration apertures will in
general not be reducible to a semi-infinite absorbing leading edge
(Fig. 2a). In the more general case, the streamline coordinate
problem will exhibit any number of finite and semi-infinite
absorbing segments. By solving these streamline coordinate
problems, we obtained new families of multipolar devices, such
as the two-reagent microfluidic quadrupole (Fig. 2d), which can
itself be transformed to obtain new symmetrical patterns (Fig. 2e,
f and Supplementary Note 3 for more details).
Table 1 summarizes some common transforms that can be

used to obtain the concentration profile for many new devices
from the dipole solution without solving any differential equation.
A more detailed version, including many more transformation
groups is presented in the SI. These configurations include known
devices such as the previously published microfluidic quadrupole,
but also several geometries that have not yet been investigated
such as “flower” multipoles (Fig. 2c, f), alternating multipoles
(Fig. 2e), polygonal multipoles and impinging flow multipoles
(Table S3),

Practical implementation of fixed microfluidic multipoles. To
validate our theoretical model, multipolar microfluidic devices
were fabricated using a previously published single step 3D rapid
prototyping process23, which offers several advantages over
conventional silicon-based machining: it is fast and simple, and
truly 3D structures can be produced, which allows the fabrication
of compact MFM with high density of fluidic ports that are
connected via complex fluidic routing architectures to arbitrarily
positioned apertures. MFM devices can be operated in scanning
probe mode, as MFPs. They can, in addition, be operated while
remaining stationary above the surface (Fig. 3a). Under this
“fixed” mode, an accurate gap height between the MFM and the
substrate is ensured via integrated 3D-printed spacers, instead of
expensive mobile parts (Fig. 3a and Supplementary Fig. 4). MFM
devices are then clipped onto a glass slide via a simple latching
system (Fig. 3b) ensuring simple calibration. Flow patterning is
achieved by dynamically controlling the flow streams, effectively
creating a reconfigurable streaming display of spatially segregated
reagents capable of processing several small surfaces with che-
micals in parallel rather than in series as per the scanning probe
mode.
A library of 3D-printed MFM heads, each corresponding to a

different geometry obtained by a conformal transformation of
the dipole (Table 1), were fabricated. The MFMs.stl files are
available in the supplementary material. Figure 3c–h presents six
side-by-side comparisons between experimental results and
theory. A near perfect correspondence between the experimental
and the theoretical model was found for all cases, validating

the advection-diffusion model for both known and new
geometries. Further comparisons are available in Supplementary
Figs. 5 and 6.

Reconfigurable microfluidic multipole devices. Conformal
mapping can be used to map any known MFM pattern onto
arbitrarily complex geometries comprising an unlimited number
of apertures, and to position the apertures according to the pre-
dictions of the model. These patterns can then be fabricated by
simply positioning the apertures where dictated by the new map.
The number of different ways to assign n+ 2 flow modes
(aspiration, stop, or injection of n different reagent conditions)
for a MFM device with a apertures is large, scaling with (n+ 2)a.
Several symmetries can be exploited in laying out the position of
the apertures to achieve periodic patterning of a surface in order
to achieve particular confinement geometries. In this section, we
highlight two of them, the rotationally-symmetric MFM (rMFM)
and the translationally-symmetric MFM (tMFM), obtained via
our theory-assisted design approach.
The rotationally-symmetric MFM configuration is achieved by

making all aspiration apertures in a MFM superpose to form a
central drain around which injection apertures are placed to form
the vertices of a regular polygon. The advection-diffusion profile
can thus be expressed exactly by a transformation of the type
“flower” presented in Table 1 and already described in Figs. 2c, f,
and 3f, g. rMFMs allow the largest theoretical number of possible
independent confined reagent conditions (a−1) using a apertures
(see Fig. 4a). Furthermore, the confinement area (henceforth
defined as “petals” to extend the flower analogy) can easily be
kept stable by compensating for the flow variations while some
openings are turned on and off. For that reason, rMFM can be
used as a chemical stroboscope, enabling the precise and
independent spatiotemporal control of chemical pulses above a
surface.
Figure 4a shows an experiment where the amplitude (given by

the reagent concentration), the frequency, and the duty cycle of
several chemical pulses are controlled independently. One petal of
the rMFM is always exposed to the reagent, one is never exposed,
and the remaining six petals are exposed to 3 different frequencies
(period of 12 s, 16 s, and 24 s) with 2 different duty cycles (25%
and 50%) (Fig. 4b). rMFMs demonstrated flawless control with
characteristic times to achieve steady state between pattern
changes under 1 s.
Petal shapes are affected by the number of apertures turned on

and off at any given time. However, this effect can be effectively
compensated by tuning in real time the flow rate in each of the
apertures according to the exact flow model described above,
yielding fixed-size petals and thus independent confinement areas
(see Supplementary Note 4). The real-time adjustment of several
petals leads to a rich set of dynamic applications for rMFM
(Supplementary Fig. 7 and Supplementary Videos 1–3).
Another natural way to place openings in a MFM device is to

lay them in a periodic array with translational symmetry, which
yield what we define a translationally-symmetric MFM. This

Table 1 Examples of simple transforms that can be applied
to the dipole solution to obtain new geometries

Straight flow ω= log (z)− α log (z+ 1)
Microfluidic quadrupole ω= (2z+ 1)1/2

Flower multipole ω= (z+ 1)1/n

Polygonal multipole ω= z1/n

Impinging flows ω= 1/z− 1

A more exhaustive table (Supplementary Table 3) is presented in the SI
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configuration relies on the modulation of several injection/
aspiration flow apertures to spatially address, in parallel, multiple
regions with multiple reagents in a dynamic fashion. tMFMs offer
a significant advantage over rMFM: they increase the number of
achievable reagent patterns at the cost of introducing more
aspiration apertures. As a proof of the versatility of the
technology, a 12-aperture rectangular tMFM was used to make
28 confinements patterns in a single experiment lasting less than
two minutes (Fig. 4c and Supplementary Video 4). The system
showed fast transient times of around 1 s. Depending on the
injection and aspiration configurations chosen, different sets of
fluid patterns can be made (Supplementary Fig. 8) presents a
selection of the possible configurations). To give an order of
magnitude, for a 12-aperture tMFM with 2 different reagents
injection, there are 1.6 × 107 (412) different possible configura-
tions. It can be noted that every MFP flow pattern using a point
source design published until now can be made with a single
tMFM with the appropriate injection/aspiration configuration,
with the exception of the circular probe36.

Immunofluorescence assay using microfluidic multipoles. To
showcase the applicability of MFM for multistep long-lasting
surface patterning applications, a fully automated three-step
immunoassay was carried out (Fig. 5). Working on functionalized
slides with spots of immobilized goat IgG anti-mouse antibodies,
a staggered 12-aperture tMFM device was used to incubate 6
different concentrations of antigen (mouse anti-human IgA heavy
chain) using the central 7 apertures to form a 6-sided rMFM
subset within it (Fig. 5a). After an incubation period of 50 min,
the antigen injection apertures were stopped, and the 4 corner
apertures were used to inject the fluorescently-labeled detection
antibody (Donkey anti-Mouse IgG) over the previously exposed
antigen zone for 1 h (Fig. 5b). At the end of the detection anti-
body incubation time, the injections were stopped for 10 s to
aspirate the detection antibody between the tMFM and the sur-
face. The central aspiration was then turned off, and the 12th
aperture was used to inject the washing buffer for 15 min
(Fig. 5c). Following retrieval of the slide, rinsing, and drying
under a stream of nitrogen, it was imaged immediately.

Clamping spring

MFM

Glass slide

Fluid confinement patterns

a b

c d e

f g h

Inverted microscope

Fig. 3 Experimental setup and side-by-side comparison between theory and experiments. a Schematics of a fixed MFM setup. The MFM is precisely
positioned over the surface with a gap controlled by the spacers. b Picture of the experimental setup with holder and MFM clamped atop of an inverted
microscope. c–f Side-by-side comparison between analytical and experimental results for various multipolar configurations. The top half of each subfigure is
the theoretical concentration profile while the bottom half is a micrograph of a fluorescent dye injected using the MFM (Pe ∼102, Reynolds number ∼10−3).
cMicrofluidic dipole. dMicrofluidic quadrupole. e Polygonal multipole (f) 4-petal axisymmetric “flower”multipole (g) 8-petal axisymmetric “flower”multipole
(h) Asymmetric impinging flows of different concentrations. Scale bars= 500 µm
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The fluorescent signal as function of antigen concentration was
used to calculate the binding curves of the assay, as shown in
Fig. 5d, e. The area not exposed to antigens and stained by
detection antibody was considered as a control area and used to
calculate the background signal. Confinement areas are well
defined and show no sign of cross-talk between them. Previous
experiments showed that, as expected, a confinement area with
[Ag]= 0 gives similar results to the detection antibody stained
background (see Supplementary Fig. 9). A limit of detection
(LOD) of 13 pM/ml (~2 pg/ml) was obtained, which is close to
the best LODs that can be obtained using the sandwich assay
format and common Enzyme-linked immunosorbent assays
(ELISA)37.

Discussion
From a theoretical standpoint, MFMs are a general theoretical
concept to guide open space microfluidic design. We have pro-
vided in this paper a complete formalism to study advection-
diffusion of reagents in 2D open-space microfluidics. The ana-
lytical solutions provided are asymptotically accurate for high
Péclet numbers (Pe > 10 in practice), which encompasses most
applications of open-space microfluidics. The method sig-
nificantly expands the microfluidics toolbox by identifying new,
broad classes of multipolar flows and concentration patterns with
known analytic expressions and by providing a simple strategy for
theory-guided design of open-space microfluidics systems. Inci-
dentally, it also yields solutions for a class of unexplored diffusion
problems in 2D laminar analogs to impinging jets15,38 relevant to
microfluidics. Given the versatility of the method and the infinite
possibilities to map multipolar flows onto new geometries

involving reagent patterning, the theoretical approach described
effectively unifies previously published MFP flow patterns under
the more general concept of MFMs of which scanning MFPs are
but a subset of the whole possible “design library”.
It is also worth emphasizing that conformal invariance is a

property of the advection-diffusion equation in 2D potential flows
that can be used regardless of whether we know or not the exact
solution to a specific problem. Any initial 2D image of the dif-
fusion profile can be mapped using conformal transforms, be it
analytical, numerical, or experimental. Thus, transport profiles
generated numerically or observed experimentally can also be
used as an initial “known solution” onto which conformal
transforms are applied to yield new solutions without solving any
differential equations (see examples in Supplementary Note 5).
Conformal mapping is therefore versatile and useful experimen-
tally even in cases where no a priori analysis has been made.
From a technological standpoint, MFMs are a step towards

multipolar open-space microfluidic technologies. They improve
on other open-space microfluidic systems on two fundamental
points: reconfigurability and parallelization. Hence, fixed spatio-
temporally reconfigurable MFM devices could conveniently
replace scanning MFPs for various surface processing applica-
tions and potentially channel-based microfluidics for some special
cases. They can also handle effectively, in a parallel fashion, long
(minutes to days) incubation times typical of immunohisto-
chemical (IHC) staining12, immunoassays, and DNA hybridiza-
tion assays. The simplified and smaller positioning system
involving spacers and surface latching mechanism makes for a
simple integration of fixed MFM devices inside an incubator,
which can be required for long experiments such as
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Fig. 4 Microfluidic multipole devices. a Fluorescence micrograph showing the confinement pattern of a rMFM device. b Graph representing the periodic
exposure to reagents for each confinement area of a rMFM used as a chemical stroboscope. c Fluorescence micrographs showing 28 different confinement
patterns made with a 12-aperture tMFM during a single experiment lasting less than 2min. Scale bar represents 500 µm
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immunofluorescence staining. In all assays, MFM also possess the
obvious advantage that control and experimental conditions are
tested within at most a few millimeters of each other all the while
being completely isolated biochemically from each other.
Combining both the ability to pattern entire open surfaces and

to manipulate streams of fluids in geometrically well-defined
structures, fixed MFM devices effectively bridge the gap between
mobile MFPs and closed-channel microfluidics. They afford
spatiotemporal control with a resolution dictated by the spacing
and number of apertures, and with combinations that scale along
with the number of apertures as well. Finally, through the accu-
rate theoretical framework proposed, their transport behavior is
now as predictable as that of closed-channel microfluidics
systems.
In this article, MFM devices of up to 12 apertures were 3D

printed and operated using syringe pumps as a proof of concept
of their operation. It is understood that MFMs with even more
apertures would allow the generation of more complex patterns
but scaling up of the current setup is a challenge that remains to
be solved because the flow in each aperture is currently controlled
by an individual syringe pump. However, several available stra-
tegies, using fluidic routing systems39, multilayer soft lithography
valves arrays40, or upstream gradient generators41, could provide
avenues to form large MFMs with compact control systems, thus
enabling random access surface processing and gradient forma-
tion onto very large areas. The current resolution of commercial
3D printing technologies limits the integration of large numbers

of connectors and multiplexers. However, custom 3D printer and
resin42 have been made demonstrating the integration of 88
connectors per mm2, with a feature resolution <20 μm43,44, which
could allow making MFM with higher resolution and higher
density applications, and serve many more applications in the life
sciences.
In the future, MFM devices may play an important role to

study spatially resolved systems with fast transient kinetics. Using
the presented advection-diffusion models, precise biochemical
gradients could be generated, making MFM devices potentially
useful to study biological processes sensitive to gradients, like
neutrophils migration through chemotaxis45, stem cells differ-
entiation46, and neuronal developement47,48.
Finally, we hope that the proposed framework to study

hydrodynamics and diffusion in multipolar flows will spark
interest in open-space microfluidics much the same way rigorous
quasi-1D models contributed to the development of channel-
based microfluidics devices, and inspire fundamentally new
applications exploiting the unique properties of these planar
flows.

Method
Conformal mapping. All images were generated from analytical expressions using
Matlab R2016a (MathWorks, Inc., Natick, USA). No numerical simulations were
used in this article.

Microfluidic multipoles design and fabrication. MFMs were designed using
Catia V5 (Dassault Système, Vélizy-Villacoublay, France) and then 3D printed
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Fig. 5 Immunofluorescence assay experiment using a microfluidic multipole. a–c Workflow of an immunofluorescence assay using a staggered tMFM.
a The device is used as a 6-sided rMFM device to expose the capture antibody to 6 different concentrations of antigen. b The corner apertures are then
used to expose the previous areas with detection antibodies. c The last aperture is used to wash the slide. d Micrograph of the detection antibody of the
immunoassay made with the tMFM device. e Experimental binding curve of the immunoassay. Error bars represent the standard deviation over 6 spots
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using a 27 μm resolution stereolithography printer (Freeform Pico and Pico 2 HD,
Asiga, Alexandria, Australia). Plasgrey V2 resin (Asiga) and Pro3dure GR-1 resin
(Pro3dure medical, Dortmund, Germany) were used to print the MFMs. Plasgrey
V2 MFMs were printed using the Freeform Pico printer with a wavelength of 405
nm and an exposure time of 1.150 s. GR-1 MFMs were printed using the Pico 2 HD
printer with a wavelength of 385 nm and an exposure time of 0.468 s. A layer
thickness of 50 µm were used for both resins. After the printing, they were cleaned
in an isopropanol bath in a sonicator (Branson, Danburry, USA). 1/16” O.D. Tygon
tubes (Cole Parmer, Vernon Hills, USA) were then plugged and glued to the MFMs
using cyanoacrylate glue. The fabrication method is further described in a pre-
viously published article23. MFMs with auto-alignment pillars required no active
component and were simply clamped on a glass slide using a simple 3D printed
setup and a spring. Commercially available (ProPlate® 1 Well Slide Module, Grace
Bio-Labs, Bend, USA) and custom-made microscope slide walls were used
depending on the experiment. Flow rates were controlled by NEMESYS syringe
pumps (CETONI, Korbußen, Germany). The pump system was controlled by a
custom-made LabView code (National Instrument, Austin, USA).

Experimental characterization. Fluids confinement areas were imaged using on
inverted epifluorecence microscope (Axio Observer.Z1, Zeiss, Oberkochen, Ger-
many) with the Lavision sCMOS camera (Göttingen, Germany). Fluorescein
sodium salt (Sigma Aldrich, Saint-Louis, USA) dissolved in ultrapure water was
used as primary fluorophore for the experiment. For experiment requiring a second
fluorophore, a solution of Propidium Iodide (Sigma Aldrich) and DNA sodium salt
(DNA sodium salt from salmon testes, Sigma Aldrich) dissolved in ultrapure water
was used. For each channel, the background was subtracted, and image intensities
amplified using MATLAB before being merged. The background used for back-
ground removal was an image of the probe with the injection and aspiration
apertures stopped. Videos were made using the same method frame-by-frame and
then compressed using MATLAB.

Immunofluorescence assay experimental procedures. Glass Slides functiona-
lized with 2D Aldehyde were purchased from PolyAn GmbH (Berlin, Germany).
Goat anti-Mouse IgG (H+ L) labeled with Alexa Fluor 488 (Thermo fisher sci-
entific, Waltham, USA) was used as capture antibody and was spotted using an
inkjet spotter (sciFLEXARRAYER SX, Scienion, Berlin, Germany) in a printing
buffer (100 µg/mL cAb, 15% 2,3-butanediol and 15% betaine in PBS). Slides were
incubated overnight at 70% humidity and then blocked for 2 hours in PBS buffer
with 3% BSA and 0.1% Tween 20. Both the antigen (Mouse anti-Human IgA
(Heavy chain), Thermofisher scientific) and the detection antibody (Donkey anti-
Mouse IgG (H+ L) tagged with Alexa Fluor 647, Thermofisher) were diluted in
PBS buffer with 3% BSA and 0.1% Tween 20. The 6 antigen concentration points
were prepared by performing a four-fold dilution series with a starting con-
centration of 1 µg/mL. Antigens were incubated for 50 min on the slide using a
staggered tMFM with α= 1.3, Qinj= 0.3 µL/s and a gap of 50 µm. The detection
antibody was subsequently incubated for 60 min with α= 1.05 and Qinj= 0.3 µL/s.
The slide was washed with the MFM by injecting 3 µL/s of PBST (PBS and 0.1%
Tween 20) with one aperture for 15 min. The MFM was then removed, and slides
were quickly dipped in ultrapure water before being dried under a nitrogen stream.
Results were imaged using a fluorescence microarray scanner (Innoscan 1100 AL,
Innopsys, Carbonne, France) at 635 nm. The binding curve was made by calcu-
lating the means and standard deviation for 6 antibody spots for each con-
centration. The curve was fitted with a 5 parameters logistic curve using MATLAB.
Limit of detection (LOD) was defined as:49 LOD=meanblank+ 1.645(SDblank)+
1.645(SDlowest concentration sample).

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary information files.
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