890 research outputs found

    The C Object System: Using C as a High-Level Object-Oriented Language

    Full text link
    The C Object System (Cos) is a small C library which implements high-level concepts available in Clos, Objc and other object-oriented programming languages: uniform object model (class, meta-class and property-metaclass), generic functions, multi-methods, delegation, properties, exceptions, contracts and closures. Cos relies on the programmable capabilities of the C programming language to extend its syntax and to implement the aforementioned concepts as first-class objects. Cos aims at satisfying several general principles like simplicity, extensibility, reusability, efficiency and portability which are rarely met in a single programming language. Its design is tuned to provide efficient and portable implementation of message multi-dispatch and message multi-forwarding which are the heart of code extensibility and reusability. With COS features in hand, software should become as flexible and extensible as with scripting languages and as efficient and portable as expected with C programming. Likewise, Cos concepts should significantly simplify adaptive and aspect-oriented programming as well as distributed and service-oriented computingComment: 18

    A model-driven approach for facilitating user-friendly design of complex event patterns

    Get PDF
    Complex Event Processing (CEP) is an emerging technology which allows us to efficiently process and correlate huge amounts of data in order to discover relevant or critical situations of interest (complex events) for a specific domain. This technology requires domain experts to define complex event patterns, where the conditions to be detected are specified by means of event processing languages. However, these experts face the handicap of defining such patterns with editors which are not user-friendly enough. To solve this problem, a model-driven approach for facilitating user-friendly design of complex event patterns is proposed and developed in this paper. Besides, the proposal has been applied to different domains and several event processing languages have been compared. As a result, we can affirm that the presented approach is independent both of the domain where CEP technology has to be applied to and of the concrete event processing language required for defining event patterns

    A Practical Example for Model-Driven Web Requirements

    Get PDF
    The number of approaches for Web environments has grown very fast in the last years: HDM, OOHDM, and WSDM were among the first, and now a large number can be found in the literature. With the definition of MDA (Model- Driven Architecture) and the acceptance of MDE (Model-Driven Engineering) techniques in this environment, some groups are working in the use of metamodels and transformations to make their approaches more powerful. UWE (UMLBased Web Engineering) or OOWS (Object-Oriented Web Solutions) are only some examples. However, there are few real experiences with Web Engineering in the enterprise environment, and very few real applications of metamodels and MDE techniques. In this chapter the practical experience of a Web Engineering approach, NDT, in a big project developed in Andalusia is presented. Besides, it shows the usability of metamodels in real environments

    A case study on the transformation of context-aware domain data onto XML schemas

    Get PDF
    In order to accelerate the development of context-aware applications, it would be convenient to have a smooth path between the context models and the automated services that support these models. This paper discusses how MDA technology (metamodelling and the QVT standard) can support the transformation of high-level models of context-aware services onto the implementation of these services using web services. The total transformation process from context-aware services onto web services involves the following aspects: 1. service signatures, which should be translated onto WSDL definitions; 2. context-aware domain data used as input and output data in service operations, which should be translated onto XML schemas; and 3. service behaviours, which should be used to generate the service implementation. This paper concentrates on the modelling and transformation of the context-aware domain data. The results of this paper are generally applicable to the transformation of elements of any domain-specific language expressed in terms of a metamodel onto XML Schema data

    Expanding JavaScript\u27s metaobject protocol

    Get PDF

    Evaluating Knowledge Representation and Reasoning Capabilites of Ontology Specification Languages

    Get PDF
    The interchange of ontologies across the World Wide Web (WWW) and the cooperation among heterogeneous agents placed on it is the main reason for the development of a new set of ontology specification languages, based on new web standards such as XML or RDF. These languages (SHOE, XOL, RDF, OIL, etc) aim to represent the knowledge contained in an ontology in a simple and human-readable way, as well as allow for the interchange of ontologies across the web. In this paper, we establish a common framework to compare the expressiveness of "traditional" ontology languages (Ontolingua, OKBC, OCML, FLogic, LOOM) and "web-based" ontology languages. As a result of this study, we conclude that different needs in KR and reasoning may exist in the building of an ontology-based application, and these needs must be evaluated in order to choose the most suitable ontology language(s)
    corecore