208 research outputs found

    Analysis of structured polynomial eigenvalue problems

    Get PDF
    This thesis considers Hermitian/symmetric, alternating and palindromic matrix polynomials which all arise frequently in a variety of applications, such as vibration analysis of dynamical systems and optimal control problems. A classification of Hermitian matrix polynomials whose eigenvalues belong to the extended real line, with each eigenvalue being of definite type, is provided first. We call such polynomials quasidefinite. Definite pencils, definitizable pencils, overdamped quadratics, gyroscopically stabilized quadratics, (quasi)hyperbolic and definite matrix polynomials are all quasidefinite. We show, using homogeneous rotations, special Hermitian linearizations and a new characterization of hyperbolic matrix polynomials, that the main common thread between these many subclasses is the distribution of their eigenvalue types. We also identify, amongst all quasihyperbolic matrix polynomials, those that can be diagonalized by a congruence transformation applied to a Hermitian linearization of the matrix polynomial while maintaining the structure of the linearization. Secondly, we generalize the notion of self-adjoint standard triples associated with Hermitian matrix polynomials in Gohberg, Lancaster and Rodman's theory of matrix polynomials to present spectral decompositions of structured matrix polynomials in terms of standard pairs (X,T), which are either real or complex, plus a parameter matrix S that acquires particular properties depending on the structure under investigation. These decompositions are mainly an extension of the Jordan canonical form for a matrix over the real or complex field so we investigate the important special case of structured Jordan triples. Finally, we use the concept of structured Jordan triples to solve a structured inverse polynomial eigenvalue problem. As a consequence, we can enlarge the collection of nonlinear eigenvalue problems [NLEVP, 2010] by generating quadratic and cubic quasidefinite matrix polynomials in different subclasses from some given spectral data by solving an appropriate inverse eigenvalue problem. For the quadratic case, we employ available algorithms to provide tridiagonal definite matrix polynomials.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Vector spaces of linearizations for matrix polynomials: A bivariate polynomial approach

    Get PDF
    We revisit the important paper [D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971-1004] and, by viewing matrices as coefficients for bivariate polynomials, we provide concise proofs for key properties of linearizations for matrix polynomials. We also show that every pencil in the double ansatz space is intrinsically connected to a Bézout matrix, which we use to prove the eigenvalue exclusion theorem. In addition our exposition allows for any degree-graded basis, the monomials being a special case. MATLAB code is given to construct the pencils in the double ansatz space for matrix polynomials expressed in any orthogonal basis

    A Semidefinite Hierarchy for Containment of Spectrahedra

    Full text link
    A spectrahedron is the positivity region of a linear matrix pencil and thus the feasible set of a semidefinite program. We propose and study a hierarchy of sufficient semidefinite conditions to certify the containment of a spectrahedron in another one. This approach comes from applying a moment relaxation to a suitable polynomial optimization formulation. The hierarchical criterion is stronger than a solitary semidefinite criterion discussed earlier by Helton, Klep, and McCullough as well as by the authors. Moreover, several exactness results for the solitary criterion can be brought forward to the hierarchical approach. The hierarchy also applies to the (equivalent) question of checking whether a map between matrix (sub-)spaces is positive. In this context, the solitary criterion checks whether the map is completely positive, and thus our results provide a hierarchy between positivity and complete positivity.Comment: 24 pages, 2 figures; minor corrections; to appear in SIAM J. Opti

    Inertia-based spectrum slicing for symmetric quadratic eigenvalue problems

    Full text link
    [EN] In the quadratic eigenvalue problem (QEP) with all coefficient matrices symmetric, there can be complex eigenvalues. However, some applications need to compute real eigenvalues only. We propose a Lanczos-based method for computing all real eigenvalues contained in a given interval of large-scale symmetric QEPs. The method uses matrix inertias of the quadratic polynomial evaluated at different shift values. In this way, for hyperbolic problems, it is possible to make sure that all eigenvalues in the interval have been computed. We also discuss the general nonhyperbolic case. Our implementation is memory-efficient by representing the computed pseudo-Lanczos basis in a compact tensor product representation. We show results of computational experiments with a parallel implementation in the SLEPc library.Agencia Estatal de Investigacion, Grant/Award Number: TIN2016-75985-PCampos, C.; Román Moltó, JE. (2020). Inertia-based spectrum slicing for symmetric quadratic eigenvalue problems. Numerical Linear Algebra with Applications. 27(4):1-17. https://doi.org/10.1002/nla.2293S117274Tisseur, F., & Meerbergen, K. (2001). The Quadratic Eigenvalue Problem. SIAM Review, 43(2), 235-286. doi:10.1137/s0036144500381988Veselić, K. (2011). Damped Oscillations of Linear Systems. Lecture Notes in Mathematics. doi:10.1007/978-3-642-21335-9Grimes, R. G., Lewis, J. G., & Simon, H. D. (1994). A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems. SIAM Journal on Matrix Analysis and Applications, 15(1), 228-272. doi:10.1137/s0895479888151111Campos, C., & Roman, J. E. (2012). Strategies for spectrum slicing based on restarted Lanczos methods. Numerical Algorithms, 60(2), 279-295. doi:10.1007/s11075-012-9564-zLi, R., Xi, Y., Vecharynski, E., Yang, C., & Saad, Y. (2016). A Thick-Restart Lanczos Algorithm with Polynomial Filtering for Hermitian Eigenvalue Problems. SIAM Journal on Scientific Computing, 38(4), A2512-A2534. doi:10.1137/15m1054493Guo, C.-H., Higham, N. J., & Tisseur, F. (2010). An Improved Arc Algorithm for Detecting Definite Hermitian Pairs. SIAM Journal on Matrix Analysis and Applications, 31(3), 1131-1151. doi:10.1137/08074218xNiendorf, V., & Voss, H. (2010). Detecting hyperbolic and definite matrix polynomials. Linear Algebra and its Applications, 432(4), 1017-1035. doi:10.1016/j.laa.2009.10.014NakatsukasaY NoferiniV. Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems;2017. Preprint arXiv:1711.00495.Parlett, B. N., & Chen, H. C. (1990). Use of indefinite pencils for computing damped natural modes. Linear Algebra and its Applications, 140, 53-88. doi:10.1016/0024-3795(90)90222-xCampos, C., & Roman, J. E. (2016). Restarted Q-Arnoldi-type methods exploiting symmetry in quadratic eigenvalue problems. BIT Numerical Mathematics, 56(4), 1213-1236. doi:10.1007/s10543-016-0601-5Guo, C.-H., & Lancaster, P. (2005). Algorithms for hyperbolic quadratic eigenvalue problems. Mathematics of Computation, 74(252), 1777-1792. doi:10.1090/s0025-5718-05-01748-5Li, H., & Cai, Y. (2015). Solving the real eigenvalues of hermitian quadratic eigenvalue problems via bisection. The Electronic Journal of Linear Algebra, 30, 721-743. doi:10.13001/1081-3810.1979RomanJE CamposC RomeroE andTomasA. SLEPc users manual. DSIC‐II/24/02–Revision 3.9. D. Sistemes Informàtics i Computació Universitat Politècnica de València;2018.Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019Guo, J.-S., Lin, W.-W., & Wang, C.-S. (1995). Numerical solutions for large sparse quadratic eigenvalue problems. Linear Algebra and its Applications, 225, 57-89. doi:10.1016/0024-3795(93)00318-tSleijpen, G. L. G., Booten, A. G. L., Fokkema, D. R., & van der Vorst, H. A. (1996). Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT Numerical Mathematics, 36(3), 595-633. doi:10.1007/bf01731936Bai, Z., & Su, Y. (2005). SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem. SIAM Journal on Matrix Analysis and Applications, 26(3), 640-659. doi:10.1137/s0895479803438523Güttel, S., & Tisseur, F. (2017). The nonlinear eigenvalue problem. Acta Numerica, 26, 1-94. doi:10.1017/s0962492917000034Yang, L., Sun, Y., & Gong, F. (2018). The inexact residual iteration method for quadratic eigenvalue problem and the analysis of convergence. Journal of Computational and Applied Mathematics, 332, 45-55. doi:10.1016/j.cam.2017.10.003Keçeli, M., Corsetti, F., Campos, C., Roman, J. E., Zhang, H., Vázquez-Mayagoitia, Á., … Wagner, A. F. (2018). SIESTA-SIPs: Massively parallel spectrum-slicing eigensolver for an ab initio molecular dynamics package. Journal of Computational Chemistry, 39(22), 1806-1814. doi:10.1002/jcc.25350Voss, H., Werner, B., & Hadeler, K. P. (1982). A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems. Mathematical Methods in the Applied Sciences, 4(1), 415-424. doi:10.1002/mma.1670040126Higham, N. J., Mackey, D. S., & Tisseur, F. (2009). Definite Matrix Polynomials and their Linearization by Definite Pencils. SIAM Journal on Matrix Analysis and Applications, 31(2), 478-502. doi:10.1137/080721406Al-Ammari, M., & Tisseur, F. (2012). Hermitian matrix polynomials with real eigenvalues of definite type. Part I: Classification. Linear Algebra and its Applications, 436(10), 3954-3973. doi:10.1016/j.laa.2010.08.035Gohberg, I., Lancaster, P., & Rodman, L. (1980). Spectral Analysis of Selfadjoint Matrix Polynomials. The Annals of Mathematics, 112(1), 33. doi:10.2307/1971320RozložnÍk, M., Okulicka-DŁużewska, F., & Smoktunowicz, A. (2015). Cholesky-Like Factorization of Symmetric Indefinite Matrices and Orthogonalization with Respect to Bilinear Forms. SIAM Journal on Matrix Analysis and Applications, 36(2), 727-751. doi:10.1137/130947003Lu, D., Su, Y., & Bai, Z. (2016). Stability Analysis of the Two-level Orthogonal Arnoldi Procedure. SIAM Journal on Matrix Analysis and Applications, 37(1), 195-214. doi:10.1137/151005142Campos, C., & Roman, J. E. (2016). Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc. SIAM Journal on Scientific Computing, 38(5), S385-S411. doi:10.1137/15m1022458Higham, N. J., Mackey, D. S., Mackey, N., & Tisseur, F. (2007). Symmetric Linearizations for Matrix Polynomials. SIAM Journal on Matrix Analysis and Applications, 29(1), 143-159. doi:10.1137/050646202BalayS AbhyankarS AdamsM et al. PETSc users manual. ANL‐95/11 ‐ Revision 3.10. Argonne National Laboratory;2018.Betcke, T., Higham, N. J., Mehrmann, V., Schröder, C., & Tisseur, F. (2013). NLEVP. ACM Transactions on Mathematical Software, 39(2), 1-28. doi:10.1145/2427023.2427024Assink, J., Waxler, R., & Velea, D. (2017). A wide-angle high Mach number modal expansion for infrasound propagation. The Journal of the Acoustical Society of America, 141(3), 1781-1792. doi:10.1121/1.497757
    corecore