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This thesis considers Hermitian/symmetric, alternating and palindromic matrix poly-
nomials which all arise frequently in a variety of applications, such as vibration
analysis of dynamical systems and optimal control problems. A classification of
Hermitian matrix polynomials whose eigenvalues belong to the extended real line,
with each eigenvalue being of definite type, is provided first. We call such polyno-
mials quasidefinite. Definite pencils, definitizable pencils, overdamped quadratics,
gyroscopically stabilized quadratics, (quasi)hyperbolic and definite matrix polyno-
mials are all quasidefinite. We show, using homogeneous rotations, special Hermi-
tian linearizations and a new characterization of hyperbolic matrix polynomials, that
the main common thread between these many subclasses is the distribution of their
eigenvalue types. We also identify, amongst all quasihyperbolic matrix polynomials,
those that can be diagonalized by a congruence transformation applied to a Hermi-
tian linearization of the matrix polynomial while maintaining the structure of the
linearization.

Secondly, we generalize the notion of self-adjoint standard triples associated with
Hermitian matrix polynomials in Gohberg, Lancaster and Rodman’s theory of matrix
polynomials to present spectral decompositions of structured matrix polynomials in
terms of standard pairs (X,T ), which are either real or complex, plus a parameter
matrix S that acquires particular properties depending on the structure under inves-
tigation. These decompositions are mainly an extension of the Jordan canonical form
for a matrix over the real or complex field so we investigate the important special
case of structured Jordan triples.

Finally, we use the concept of structured Jordan triples to solve a structured in-
verse polynomial eigenvalue problem. As a consequence, we can enlarge the collection
of nonlinear eigenvalue problems [NLEVP, 2010] by generating quadratic and cubic
quasidefinite matrix polynomials in different subclasses from some given spectral
data by solving an appropriate inverse eigenvalue problem. For the quadratic case,
we employ available algorithms to provide tridiagonal definite matrix polynomials.
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Chapter 1

Introduction

Matrix polynomials [31], λ-matrices [50] and polynomial matrices [73] are different

names for polynomials in λ whose coefficients are matrices, or equivalently, matrices

whose entries are polynomials in λ with scalar coefficients. The polynomial eigenvalue

problem (PEP), which is to find eigentriples (λ, x, y) ∈ C∪ {∞}×Cn\{0}×Cn\{0}

that satisfy P (λ)x = 0 and y∗P (λ) = 0, where

P (λ) = λmAm + λm−1Am−1 + · · ·+ λA1 + A0, (1.1)

Aj ∈ Cn×n for j = 0:m, extends the well-known standard eigenvalue problem (SEP)

and the generalized eigenvalue problem (GEP), for which P (λ) in (1.1) has the forms

−λI+A and λA−B respectively, whereA,B ∈ Cn×n. In general, the finite eigenvalues

of P are the solutions of the characteristic equation

det (P (λ)) = 0. (1.2)

Infinity is an eigenvalue of P when det(Am) = 0. The vectors x and y are right and

left eigenvectors corresponding to the eigenvalue λ, respectively. If Am 6= 0 then m is

the degree of P , denoted by deg(P ). P (λ) is regular whenever its determinant does

not vanish identically. Throughout this thesis, P (λ) is assumed to be regular with

n× n matrix coefficients and degree m.

The PEP is a subclass of the more general nonlinear eigenvalue problem (NLEVP)

that takes the form of finding eigentriples (λ, x, y) ∈ C ∪ {∞} × Cn\{0} × Cn\{0}

14



CHAPTER 1. INTRODUCTION 15

satisfying T (λ)x = 0 and y∗T (λ) = 0, where T : C → Cn×n is a nonlinear opera-

tor. PEPs arise in many applications in science and engineering. Examples include

acoustic structural coupled systems, fluid mechanics, multiple input multiple output

systems in control theory, signal processing, and constrained least square problems,

for all of which details and references are listed in [90]. Frazer et al.’s book on

Elementary Matrices [26] includes a collection of PEPs’ applications to aerodynam-

ical systems, for example equations of motion of an aeroplane and small motions of

systems subject to aerodynamical forces. The most commonly occurring PEPs are

quadratic eigenvalue problems (QEPs)

(λ2A2 + λA1 + A0)x = 0, (1.3)

where in mechanical systems A2 is a mass matrix, A1 a damping matrix, A0 a stiffness

matrix, λ a resonant frequency, and x a mode shape. Consider a simple standard

mass-spring damper system with a free body of mass m, a spring of stiffness coefficient

k, viscous damper of damping coefficient d and assume that no external force acts on

the system (see Figure 1.1). The solutions of the differential equation

m
d2v

dt2
+ d

dv

dt
+ kv = 0 (1.4)

determine the dynamics of the system, where v is the displacement of the mass relative

to a fixed point. Clearly, the solutions of (1.4) have the form

v(t) = xeλt,

where x is a right eigenvector associated with λ as an eigenvalue of the quadratic

scalar polynomial λ2m+λd+k. Such a system is overdamped [11] if d2 > 4mk. Note

that, as m, d and k are positive, the overdamped system has real negative distinct

eigenvalues. Consequently, all the solutions v(t) approach zero as t→∞. Similarly,

systems with multiple degrees of freedom give rise to (1.3) where A2, A1 are Hermitian

positive definite and A0 is Hermitian positive semidefinite, which extends the idea of

overdamping. In fact, overdamped quadratics form a subclass of special Hermitian

matrix polynomials that have interesting stability properties under Hermitian per-

turbations. Such Hermitian matrix polynomials and some closely related structured
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dd
m

k

Figure 1.1: A mass-spring damped system with one degree of freedom.

matrix polynomials are the topics of concern in this work. Note that P (λ) of degrees

larger than two also arise in applications [44], [76], [84].

This chapter covers the background material, introduces the notation that is used

throughout the thesis and outlines its contents.

1.1 Notations

• F is the field of real or complex numbers.

• Fn×n is the set of n× n matrices with coefficients in F.

• AT is the transpose of the matrix A.

• A∗ =
(
A
)T

is the conjugate transpose of the matrix A.

• ? denotes the transpose T for real matrices and either the transpose T or the

conjugate transpose ∗ for matrices with complex entries.

• kerA is the kernel of the matrix A.

• A > 0 denotes A ∈ Cn×n that is positive definite, i.e.

A = A∗, x∗Ax > 0, ∀x ∈ Cn\{0}.

• A < 0 denotes A ∈ Cn×n that is negative definite, i.e. −A > 0.

• A ∈ Cn×n is definite if A > 0 or −A > 0.
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• A1, A2 ∈ Cn×n have opposite parity if one is positive definite and the other is

negative definite. Similarly, a sequence A0, A1, A2, . . . of definite matrices has

alternating parity if Aj and Aj+1 have opposite parity for all j.

• A ≥ 0 denotes A ∈ Cn×n that is positive semi-definite, i.e.

A = A∗, x∗Ax ≥ 0 ∀x ∈ Cn.

• For A ∈ Fn×n with no eigenvalues on the closed negative real axis, A1/2 denotes

the principal square root of A which is the unique square root of A all of whose

eigenvalues lie in the segment {z : −π/2 < arg(z) < π/2} [36, Thm. 1.29].

• A−1 denotes the inverse of A ∈ Fn×n.

• In is the identity n× n matrix.

• ei is the vector that is equal to the i-th column of In.

• If Am 6= 0 then the positive integer m is the degree of P (λ) =
∑m

j=0 λ
jAj,

denoted by deg (P ), where Aj ∈ Fn×n for j = 0:m.

• The homogenous form of the matrix polynomial P (λ) =
∑m

j=0 λ
jAj is

P (α, β) =
m∑
j=0

αjβm−jAj,

where λ is identified with any pair (α, β) 6= (0, 0) for which λ = α/β.

• revP (λ) :=
∑m

j=0 λ
m−jAj is the reversal polynomial of P (λ) =

∑m
j=0 λ

jAj.

• P?(λ) :=
∑m

j=0 λ
jA?j .

• P?(α, β) :=
∑m

j=0 α
jβm−jA?j .

• P ′λ is the first derivative of P with respect to λ. The subscript λ is dropped

when there is no ambiguity.

• P(Fn) denotes the set of all matrix polynomials with coefficient matrices in

Fn×n. When the polynomials are structured with structure S, the corresponding

space is denoted by PS(Fn).
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• σ(P ) is the set of the eigenvalues of P .

• ρ(P ) = max{|λ| : λ ∈ σ(P )} is the spectral radius of P .

• sig(S) denotes the signature of S, that is, the difference between the number of

positive eigenvalues and the number of negative eigenvalues of S.

• If A = (Aij) is a block k × ` matrix with m × n blocks Aij, then the block

transpose of A is the block ` × k matrix AB with m × n blocks defined by(
AB
)
ij

= Aji.

• The Kronecker product of A ∈ Fm×n and B ∈ Fq×p is [43, Section 4.2],

A⊗B =


a11B · · · a1nB

...
...

am1B · · · amnB

 ∈ Fmp×nq, where A =


a11 · · · a1n

...
...

am1 · · · amn

 .

• The direct sum of A ∈ Fn×n and B ∈ Fm×m is [42, Section 0.9.2],

A⊕B =

 A 0

0 B

 ∈ F(n+m)×(n+m).

•
⊕m

j=1 Aj = A1 ⊕ · · · ⊕ Am.

• L1(P ) =
{
L(λ) : L(λ)(Λ⊗ In) = v ⊗ P (λ), v ∈ Cm

}
, where

L(λ) = λA−B, A,B ∈ Cn×n and Λ = [λm−1, λm−2, . . . , 1]T ∈ Cm.

• H(P ) =
{
L(λ) = λA−B ∈ L1(P ) : A = A∗, B = B∗

}
.

• L2(P ) =
{
L(λ) : (ΛT ⊗ In)L(λ) = wT ⊗ P (λ), w ∈ Cm

}
, where

L(λ) = λA−B, A,B ∈ Cn×n and Λ = [λm−1, λm−2, . . . , 1]T ∈ Cm.

• DL(P ) = L1(P ) ∩ L2(P ).

1.2 Preliminaries

This section collects the basic definitions and concepts that we need in the sequel.
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1.2.1 Some structured matrix polynomials

Table 1.1 defines the structures of interest in this work. We use ?-alternating to

refer to either ?-even or ?-odd polynomials, where ? denotes the transpose T for real

matrices and either the transpose T or the conjugate transpose ∗ for matrices with

complex entries. For real-life applications associated with these structured matrix

polynomials, see [65, Section 6.4] and [13, Section 3].

Table 1.1: Matrix polynomials P (λ) =
∑m

j=0 λ
jAj, det(Am) 6= 0 with structure S.

Structure S Definition Coefficients property

Hermitian P (λ) = P ∗(λ) Aj = A∗j

symmetric P (λ) = PT (λ) Aj = ATj

?-even P (λ) = P?(−λ) Aj = (−1)jA?j

?-odd P (λ) = −P?(−λ) Aj = (−1)j+1A?j

?-palindromic P (λ) = λmP?( 1
λ ) Aj = A?m−j

?-antipalindromic P (λ) = −λmP?( 1
λ ) Aj = −A?m−j

In Chapter 2 we present the diverse subclasses of Hermitian λ-matrices with real

eigenvalues, specifically those for which every eigenvalue λ0 satisfies x∗P ′(λ0)x 6= 0 for

all nonzero x ∈ kerP (λ0), which we call quasidefinite matrix polynomials. We collect

and unify existing results scattered in the literature about such polynomials, propose

a new characterization of hyperbolicity and show how to avoid the requirement of

having a nonsingular or a definite leading coefficient matrix of P . Moreover, we

identify an important new class of diagonalizable matrix polynomials. For the sake

of completeness, we provide a survey of the available algorithms for detecting some

specific structures of Hermitian matrix polynomials in Figure 2.1.

The notion of a Jordan triple (X, J, Y ), introduced by Gohberg, Lancaster and

Rodman, summarizes the spectral properties of P (λ) (see [58, Section 14.2]). In

particular if (X, J, Y ) is a Jordan triple for P (λ), then

m∑
j=0

AjXJ
j = 0,

m∑
j=0

J jY Aj = 0.

In Chapter 3 we investigate Jordan triples of the structured λ-matrices listed in Ta-

ble 1.1, which have extra properties depending on the underlying structure. For
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instance, GLR in [29] show that if (X, J, Y ) is a Jordan triple for a Hermitian ma-

trix polynomial then Y = SX∗ for some nonsingular mn ×mn matrix S such that

S = S∗, JS = (JS)∗. They call Jordan triples with such properties self-adjoint. We

show that this type of result also holds for all the structures S listed in Table 1.1.

We introduce the notion of S-structured standard triples and show that, apart from

T -(anti)palindromic matrix polynomials of even degree with both −1 and 1 as eigen-

values, if P (λ) admits an S-structured standard triple then P (λ) has structure S.

Reciprocally, if P (λ) has structure S then its standard triples are S-structured.

Chapter 4 highlights the use of the S-structured standard triples theory in solv-

ing a structured inverse polynomial eigenvalue problem (SIPEP) of the following

form: Construct a quadratic matrix polynomial Q(λ) with structure S from a given

admissible list of elementary divisors. Additionally, Chapter 4 concerns generating

quadratic and cubic matrix polynomials in different subclasses displayed in Figure 2.1

from some given spectral data by solving an appropriate inverse polynomial eigenvalue

problem (IPEP). Furthermore, it points out that generating hyperbolic quadratic ma-

trix polynomials that are real monic (i.e., with In as the leading coefficient matrix)

and tridiagonal is always possible when the eigenvalues are given. As a result, we

contribute to increase the collection of NLEVPs [13].

1.2.2 Elementary divisors

In order to define elementary divisors, we recall some fundamental notions from the

theory of matrix polynomials [31, Chap. S1].

Theorem 1.2.1 [31, Thm. S1.1] Every n × n matrix polynomial P (λ) admits the

representation

P (λ) = E (λ)D (λ)F (λ) , (1.5)

where

D(λ) = diag(d1(λ), . . . , dr(λ), 0, . . . , 0), (1.6)

is a diagonal λ-matrix with monic scalar polynomials di (λ) such that di (λ) is divisible

by di−1 (λ), r = maxλ∈C {rankP (λ)} and the n × n matrix polynomials E (λ), F (λ)

have constant nonzero determinants.
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Representation (1.5) as well as the diagonal matrix D (λ) from (1.6) is called the

Smith form of P (λ). The diagonal matrix D (λ) is unique while the matrix polynomi-

als E (λ) and F (λ) are not defined uniquely. The diagonal elements d1 (λ) , . . . , dr (λ)

in the Smith form are called the invariant polynomials of P (λ) . Each invariant poly-

nomial can be written as

di (λ) = (λ− λi1)αi1 · · · (λ− λiki)
αiki , i = 1: r,

where the complex numbers λi1, . . . , λiki are distinct and αi1, . . . , αiki are positive

integers. The factors (λ− λij)αij , j = 1: ki, i = 1: r, are the elementary divisors of

P (λ) .

1.2.3 Linearization

A standard way of treating the PEP to find eigenpairs (λ, x) ∈ C ∪ {∞} × Cn \ {0}

that satisfy P (λ)x =
(∑m

j=0 λ
jAj

)
x = 0, both theoretically and numerically, is to

convert P (λ) into an equivalent linear matrix pencil L(λ) = λA−B ∈ Cmn×mn using

the process known as linearization. To be more specific, L is a linearization of P if it

satisfies

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(m−1)n

]
(1.7)

for some matrix polynomials E(λ) and F (λ) with constant nonzero determinants. It

is clear that the eigenvalues of L and P coincide. As an example, if Am is nonsingular,

the pencil λI − C with

C =


−A−1

m

In
. . .

In



Am−1 Am−2 . . . A0

In 0 . . . 0
. . . . . .

...

0 In 0

 (1.8)

is the first companion form linearization of A−1
m P (λ). In recent work [70] vector spaces

of pencils have been studied, namely,

L1(P ) =
{
L(λ) : L(λ)(Λ⊗ In) = v ⊗ P (λ), v ∈ Cm

}
, (1.9)
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and DL(P ) :=
{
L(λ) = λA − B ∈ L1(P ) : AB = A, BB = B

}
, where Λ =

[λm−1, λm−2, . . . , 1]T ∈ Cm and AB is the block transpose of A [37, Def. 2.1]. L1(P )

generalizes the first companion form (indeed for C in (1.8), λI − C ∈ L1(A−1
m P ) with

v = e1) and supplies a rich source of interesting linearizations.

The following result provides a condition that L ∈ DL(P ) be a linearization of P .

Theorem 1.2.2 (eigenvalue exclusion theorem) [70, Thm. 6.7]

Suppose that P (λ) is a regular matrix polynomial of degree m and L(λ) ∈ DL(P )

with vector v ∈ Cm. Then L(λ) is a linearization for P (λ) if and only if no root of

the v-polynomial

p(x; v) := v1x
m−1 + v2x

m−2 + · · ·+ vm−1x+ vm (1.10)

is an eigenvalue of P (λ), where, by convention, p(x; v) has a root at ∞ whenever

v1 = 0.

It is worth mentioning that in (1.7), the identity block can be of a size less than

(m− 1)n, which introduces the trimmed linearizations that allow partial deflation of

∞ as an eigenvalue (i.e., obtaining as short as possible Jordan chains associated with

∞) [14]. For lower bounds of the size of the identity block appearing in the definition

of linearization, see [23].

The first companion form linearization λI−C of A−1
m P (λ) with C in (1.8) is easily

constructed from the coefficients of P (λ) but it does not reflect its structure. For ex-

ample, C is not Hermitian when P (λ) is Hermitian. This might lead to problems such

as the loss of spectral symmetry when eigenvalues are computed in finite precision

arithmetic. Linearizations that respect the structure are the subject of Section 2.2.4

and Section 3.2.1. A huge number of linearizations is available in the literature; see

for example [5], [7], [8], [24], [37], [69], and [70].

Concerning solving GEPs and related computational issues such as the best algo-

rithms regarding speed and accuracy for different structures of interest, we refer to

[10], [32], [41], [47], [67], [74], [75] and [87]. Schreiber’s thesis [85] provides a review

of the available methods for solving NLEVPs, among which PEPs have experienced

a surge of research activity in the last few years, motivated by its applications and

the development of new theoretical ideas and algorithms.



Chapter 2

Classification of Quasidefinite

Matrix Polynomials

2.1 Introduction

The spectral properties of Hermitian matrix polynomials with real eigenvalues have

been extensively studied, through classes such as the definite or definitizable pen-

cils, definite, hyperbolic, or quasihyperbolic matrix polynomials, and overdamped or

gyroscopically stabilized quadratics [25], [38], [51], [59], [72], [90]. Indeed, we have

found inconsistency in the definitions of some of these classes, in particular whether

the leading coefficient have to be nonsingular or positive definite. This chapter gives

a unified treatment of these and related classes that uses the eigenvalue type (or sign

characteristic) as a common thread. Equivalent conditions are given for each class in

a consistent format. We show that these classes form a hierarchy, all of which are con-

tained in the new class of quasidefinite matrix polynomials. As well as collecting and

unifying existing results, we make several new contributions. We propose a new char-

acterization of hyperbolicity in terms of the distribution of the eigenvalue types on the

real line. We show that definite matrix polynomials can be characterized in terms of

the eigenvalue types—something that does not seem well known for definite pencils.

We prove interlacing inequalities for the eigenvalues of the submatrices of hyperbolic

matrix polynomials of any degree and point out that each hyperbolic quadratic ma-

trix polynomial is strictly isospectral to a real monic tridiagonal quadratic matrix

polynomial. By analyzing their effect on eigenvalue type, we show that homogeneous

23
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rotations allow results for matrix polynomials with nonsingular or definite leading

coefficient to be translated into results with no such requirement on the leading coef-

ficient, which is important for treating definite and quasidefinite polynomials. We use

definite linearizations of definite matrix polynomials [38] as another tool in obtaining

the relations between the many subclasses of quasidefinite matrix polynomials which

allow producing the diagram in Figure 2.1 that provides a diagrammatic summary of

most of the results in this chapter. We also give a sufficient and necessary condition

for a quasihyperbolic matrix polynomial to be strictly isospectral to a real diagonal

quasihyperbolic matrix polynomial of the same degree, and show that this condition

is always satisfied in the quadratic case and for any hyperbolic matrix polynomial,

thereby identifying an important new class of diagonalizable matrix polynomials.

The chapter is organized as follows. We recall in Section 2.2 the notion of eigen-

value type and show how homogeneous rotations of matrix polynomials as well as

linearizations in H(P ) may affect the eigenvalue type. Section 2.3 investigates defi-

nite matrix polynomials and their subclasses, while Section 2.4 deals with quasidefi-

nite polynomials and their subclasses. Finally, quasidefinite matrix polynomials that

can be diagonalized by structure preserving congruences are identified in Section 2.5

followed by a summary and further discussion in Section 2.6.

2.2 Preliminaries

An n×n Hermitian matrix polynomial P of degree m as in (1.1) has mn eigenvalues,

which are all finite when Am is nonsingular. Infinite eigenvalues occur when Am is

singular and zero eigenvalues are present when A0 is singular. Because P is Hermitian,

σ(P ) is symmetric with respect to the real axis.

Since we concentrate here on Hermitian matrix polynomials whose eigenvalues are

all real and of definite type, we begin this section with a brief review of the eigenvalue

types and sign characteristic (detailed discussions can be found in [30], [31]).

2.2.1 Eigenvalue type and sign characteristic

We start by defining the concept of eigenvalue type. Here P ′(λ) denotes the first

derivative of P with respect to λ.
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Quasidefinite λ-Matrices of Degree m
(Def. 2.4.8)

det(Am) 6= 0 Distribution (a)
of e’val types

Quasihyperbolic λ-Matrices

of degree m (Def. 2.4.5)

Definite λ-Matrices

of degree m (Def. 2.3.13)

m = 1

Distribution (b)
of e’val types

m = 1

Distribution (a)
of e’val types

m = 1m = 1

Distribution (a) of e’val
types with p = 0, ε > 0

Definitizable Pencils

(Def. 2.4.1)

Definite Pencils

(Def. 2.3.1)

p = 0,
ε > 0

Hyperbolic λ-Matrices

of degree m (Def. 2.3.3)

Diagonalizable Quasihyperbolic

λ-Matrices of degree m (Sec. 2.5)

Gyroscopically stabilized

quadratics (Def. 2.4.9)

Overdamped Quadratics

(Def. 2.3.11)

A1 > 0

m = 2Nonpositive e’vals

Distribution (a) : λmn ≤ · · · ≤ λ(m−1)n+p+1︸ ︷︷ ︸
n− p eigenvalues
of (−1)m−1ε type

< · · · < λjn+p ≤ · · · ≤ λ(j−1)n+p+1︸ ︷︷ ︸
n eigenvalues of

(−1)j−1ε type, 1≤j≤m−1

< · · · < λp ≤ · · · ≤ λ1︸ ︷︷ ︸
p eigenvalues
of −ε type

,

with 0 ≤ p < n and where “αε type” denotes positive type when αε > 0 and negative type

otherwise, λp+1 being of ε type.

Distribution (b) : there is a grouping of the eigenvalues into n subsets {λij : j = 1:m}ni=1 that can be ordered

so that λim < · · · < λi2 < λi1︸ ︷︷ ︸
alternating types

, i=1:n.

Figure 2.1: Quasidefinite n × n matrix polynomials P (λ) =
∑m

j=0 λ
jAj of degree m

and their subclasses. A subclass A pointing to a subclass B with a solid line (dotted
line) and property “C” means that the subclass A with the property “C” is exactly
(is contained in) the subclass B.
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Definition 2.2.1 (positive type/ negative type) Let P (λ) be a Hermitian ma-

trix polynomial. A finite real eigenvalue λ0 of P is of positive type (negative type) if

x∗P ′(λ0)x > 0 (x∗P ′(λ0)x < 0) for all nonzero x ∈ kerP (λ0), respectively.

Thus for an eigenvalue λ0 of positive type (negative type), the graph of the scalar

polynomial x∗P (λ)x for any nonzero x ∈ kerP (λ0) crosses the x-axis at λ0 with a

positive slope (negative slope). Note that simple eigenvalues are either of positive

type or of negative type since for nonzero x ∈ kerP (λ0), x∗P ′(λ0)x 6= 0 [6, Thm. 3.2].

This does not necessarily hold for semisimple eigenvalues: for example the pencil

L(λ) = λ

[
1 0

0 −1

]
+

[
−a 0

0 a

]

has a semisimple1 eigenvalue λ0 = a with corresponding eigenvectors e1 =
[

1
0

]
and

e2 =
[

0
1

]
and it is easily seen that e∗1L

′(a)e1 = 1 and e∗2L
′(a)e2 = −1. The eigenvalue

λ0 = a is of mixed type. Note that x∗L′(λ0)x = 0 for x = e1 + e2.

Definition 2.2.2 (definite type/mixed type) A finite real eigenvalue of a Her-

mitian matrix polynomial is of definite type if it is either of positive type or of negative

type. It is of mixed type otherwise.

If λ0 is a real eigenvalue of P of mixed type then there exist x, y ∈ kerP (λ0) such

that x∗P ′(λ0)x > 0 and y∗P ′(λ0)y < 0. But x + αy ∈ kerP (λ0), α ∈ C and clearly

(x+ αy)∗P ′(λ0)(x+ αy) = 0 for some nonzero α (see the previous example).

Lemma 2.2.3 A finite real eigenvalue λ0 of a Hermitian matrix polynomial is of

definite type if and only if x∗P ′(λ0)x 6= 0 for all nonzero x ∈ kerP (λ0).

As shown in [12, Lem. 2.1], eigenvalues of definite type are necessarily semisimple.

Indeed, if λ0 is not semisimple then there is an eigenvector x and a generalized

eigenvector y such that P (λ0)y + P ′(λ0)x = 0. Multiplying on the left by x∗ yields

x∗
(
P (λ0)y + P ′(λ0)x

)
= x∗P ′(λ0)x = 0.

Hence λ0 is of mixed type.

1An eigenvalue of a matrix polynomial P (λ) =
∑m
j=0 λ

jAj is semisimple if it appears only in
1× 1 Jordan blocks in a Jordan form for P [31].
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We will need a notion of eigenvalue type at infinity. To this end use the reversal

of P denoted by revP , which is obtained by reversing the order of the coefficient

matrices of P :

revP (λ) = λmP (1/λ) = λmA0 + λm−1A1 + · · ·+ λAm−1 + Am. (2.1)

Note that λ0 is an eigenvalue of P (λ) if and only if 1/λ0 is an eigenvalue of revP (λ)

with 0 and ∞ regarded as reciprocals. Easy manipulations show that when λ0 6= 0

the equation (m/λ0)x∗P (λ0)x = 0 can be rewritten as

x∗P ′(λ0)x = −λm−2
0 x∗(revP )′(1/λ0)x. (2.2)

This suggests the following definition.

Definition 2.2.4 (type at ∞) The type of λ0 =∞ as an eigenvalue of a Hermitian

matrix polynomial P is given by the type of 1/λ0 = 0 as an eigenvalue of −revP . In

other words, λ0 = ∞ is of positive type if x∗Am−1x < 0 for every nonzero x ∈

ker revP (0) and of negative type if x∗Am−1x > 0 for every nonzero x ∈ ker revP (0).

The notion of eigenvalue type is connected with the more general notion of sign

characteristic of a Hermitian matrix polynomial with nonsingular leading term [30],

[31]. When all the eigenvalues λj of P are real, finite and of definite type, the

sign characteristic, for a given ordering λ1, . . . , λmn, is a set of signs {εj}mnj=1 with

εj = sign(x∗jP
′(λj)xj), where xj is an eigenvector corresponding to λj.

We will show in Sections 2.3 and 2.4 that the sign characteristic of definite pencils,

overdamped and gyroscopically stabilized quadratics, and hyperbolic and definite

polynomials has a particular distribution over the extended real line. Indeed the

eigenvalues of these matrix polynomials belong to disjoint intervals, each interval

containing eigenvalues of a single type. We say that an interval I of R is of positive

(negative) type for a matrix polynomial P if every λ ∈ σ(P ) ∩ I is of positive

(negative) type. The interval I is of definite type if every λ ∈ σ(P ) ∩ I is of definite

type. We also use the wording “ε type” to denote positive type for ε > 0 and negative

type for ε < 0.
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2.2.2 Motivation

Eigenvalue problems Ax = λx, with Hermitian A, have many desirable properties

which lead to a variety of special algorithms. Here we consider what can be regarded

as the closest analogues of this class of problems for the generalized eigenvalue prob-

lem L(λ)x = 0, with L(λ) = λA − B, A = A∗, B = B∗, and for the polynomial

eigenvalue problem P (λ)x = 0, with Hermitian P (λ) of degree m. Namely, the

classes of definite, definitizable, hyperbolic, quasihyperbolic, overdamped and gyro-

scopically stabilized eigenproblems [25], [38], [51], [59], [72], [90]. A property common

to all these problems is that the eigenvalues are all real and of definite type.

The interest in matrix polynomials with real eigenvalues of definite type comes

from systems of differential equations with constant coefficients of the form

m∑
j=0

ijAj
dju

dtj
= 0, t ∈ R, (2.3)

where i =
√
−1, Aj = A∗j ∈ Cn×n, j = 0:m, and Am nonsingular. It is known [30,

Thm. 13.1.1] that the general solution of (2.3) is given by

u(t) = [ 0 · · · 0 In ] e−itCu0, (2.4)

where C is as in (1.8) and u0 ∈ Cnm is arbitrary. The solutions (2.4) are bounded

on the half line [0,∞) if and only if C, or equivalently P (λ), has all its eigenvalues

real and semisimple, and these solutions remain bounded under small perturbations

of the matrix coefficients Aj of P (λ) if and only if the eigenvalues of P are real and

of definite type [30, Thm. 13.2.1].

The results presented in this chapter are useful in the solution of the inverse

problem of constructing quasidefinite matrix polynomials and their subclasses from

given spectral data, as will be shown in Chapter 4.
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α

β

λ>0λ<0

λ>0 λ<0

λ=0

λ=0

λ=∞

λ=∞
−

−

+

+

Figure 2.2: Correspondence between λ and (α, β).

2.2.3 Homogeneous rotation

We will use the homogenous forms of the matrix polynomial P (λ) in (1.1) and the

pencil L(λ) = λA−B, which are given by

P (α, β) =
m∑
j=0

αjβm−jAj, L(α, β) = αA− βB.

This form is particularly useful when Am or A is singular or indefinite. An eigenvalue

λ is identified with any pair (α, β) 6= (0, 0) for which λ = α/β. Note that P (0, β) =

βmA0 so that λ = 0 represented by (0, β) is an eigenvalue of P if and only if A0 is

singular. Similarly, λ = ∞ represented by (α, 0) is an eigenvalue of P if and only if

Am is singular. Without loss of generality we can take α2 + β2 = 1. We then have

a direct correspondence between eigenvalues on the extended real line R ∪ {∞} and

the unit circle (see Figure 2.2). Note the two copies of R ∪ {∞}, represented by the

upper semicircle and the lower semicircle.

The matrix polynomial P̃ (α̃, β̃) is obtained from P (α, β) by homogenous rotation

if

G

[
α

β

]
=

[
c s

−s c

][
α

β

]
=:

[
α̃

β̃

]
, c, s ∈ R, c2 + s2 = 1 (2.5)

and

P (α, β) =
m∑
j=0

(cα̃− sβ̃)j(sα̃ + cβ̃)m−jAj =:
m∑
j=0

α̃jβ̃m−jÃj =: P̃ (α̃, β̃). (2.6)
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Homogeneous rotations can be seen as an analogue of translations of λ in the non-

homogeneous case: one common feature is that they both preserve the eigenvectors.

Indeed P and P̃ have the same eigenvectors but the corresponding eigenvalues are

rotated. On using P (α, β) = P̃ (α̃, β̃), the binomial expansion theorem leads to an

expression for each Ãj. In particular we find that

Ãm = P (c, s),

Ãm−1 =
m∑
j=0

(
− jcj−1sm+1−j + (m− j)cj+1sm−j−1

)
Aj, (2.7)

Ã0 = P (−s, c).

We will use homogeneous rotations to transform a polynomial P with singular

or indefinite leading coefficient Am to a polynomial P̃ with nonsingular or positive

definite leading coefficient Ãm = P (c, s), which we can do provided that a pair (c, s)

on the unit circle is known such that det(P (c, s)) 6= 0 or P (c, s) > 0, respectively (see

Example 2.2.5).

Example 2.2.5 The pencil

L(λ) = λdiag(1, 1,−1)− diag(2, 3,−5) =: λA−B

has indefinite leading coefficient matrix A. Note that for µ = 4, L(µ) = diag(2, 1, 1) >

0. We homogeneously rotate L into L̃ so that µ corresponds to ∞. This is achieved

by taking c = µ/
√
µ2 + 1 and s = 1/

√
µ2 + 1 in (2.5). Then G rotates L(λ) into

L̃(λ̃) =: λ̃Ã− B̃, where Ã = L(µ)/
√
µ2 + 1 > 0. Note that L has eigenvalues 2 and

3 of positive type and eigenvalue 5 of negative type. These eigenvalues are rotated

to 4.5, 13 and −21, respectively, all of positive type since Ã is positive definite.

Example 2.2.5 shows that homogeneous rotation does not preserve the eigenvalue

types, but as the next lemma shows it always preserves definite type. Now, we study

the effects of homogeneous rotation and linearization on the eigenvalue types. To

avoid ambiguity, P ′λ denotes the first derivative of P with respect to the variable λ.

Lemma 2.2.6 Let P̃ of degree m be obtained from P by homogeneous rotation (2.5).

Let the real numbers λ0 = α0

β0
and λ̃0 = α̃0

β̃0
with

[ α̃0

β̃0

]
= G

[
α0

β0

]
be eigenvalues of P
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and P̃ , respectively, with corresponding eigenvector x.

(i) If λ0 and λ̃0 are both real and finite then c− λ0s 6= 0 and

x∗P ′λ(λ0)x = (c− λ0s)
m−2 x∗P̃ ′

λ̃
(λ̃0)x.

(ii) If λ0 is real and finite and λ̃0 =∞ then s 6= 0 and

x∗P ′λ(λ0)x = s2−m x∗
(
− (revP̃ )′

λ̃
(0)
)
x.

(iii) If λ0 =∞ and λ̃0 is real and finite then s 6= 0 and

x∗
(
− (revP )′λ(0)

)
x = (−s)m−2 x∗P̃ ′

λ̃
(λ̃0)x.

Proof. (i) Note that
[
α̃
β̃

]
= G

[
α
β

]
where (α, β) 6= (0, 0) and (α̃, β̃) 6= (0, 0) represent

λ and λ̃ respectively, that is λ = α/β and λ̃ = α̃/β̃. When λ and λ̃ are finite, β 6= 0

and β̃ = βc−αs 6= 0 hence c−λs 6= 0. It follows from (2.6) that βmP (λ) = β̃mP̃ (λ̃) =

(βc− αs)mP̃ (λ̃) so that

P (λ) = (c− λs)mP̃ (g(λ)), g(λ) =
λc+ s

c− λs
= λ̃. (2.8)

Differentiating with respect to λ yields

P ′λ(λ) = −ms(c− λs)m−1P̃ (g(λ)) + (c− λs)m−2P̃ ′
λ̃
(g(λ)). (2.9)

Multiplying (2.9) on the left by x∗ and on the right by x, evaluating at λ0 and using

λ̃0 = g(λ0) and P̃ (λ̃0)x = 0 yield the desired result.

(ii) When λ0 is finite, β0 6= 0 and λ̃0 infinite implies that β̃0 = β0c−α0s = 0, that

is, c = sλ0 with s 6= 0 since c2 + s2 = 1. Using (2.7) we obtain

s−mÃm−1 =
m∑
j=0

(
− jλj−1

0 + (m− j)λj+1
0

)
Aj. (2.10)

Multiplying (2.10) on the left by x∗ and on the right by x we find that
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• if λ0 6= 0 then

s−mx∗Ãm−1x = −x∗P ′λ(λ0)x+ λm0 x
∗
(
Am−1 + · · ·+ m− 1

λm−2
0

A1 +
m

λm−1
0

A0

)
x

= −x∗P ′λ(λ0)x+ λm0 x
∗(revP )′λ(1/λ0)x

= −x∗P ′λ(λ0)x− λ2
0x
∗P ′λ(λ0)x,

where we used (2.2) for the last equality. The relation in (ii) follows on noting

that 1 + λ2
0 = s−2 and x∗

(
(revP̃ )′

λ̃
(0)
)
x = x∗Ãm−1x.

• if λ0 = 0 then c = 0, s = ±1 and

s−mx∗Ãm−1x = −x∗A1x

which is the relation in (ii) since s = ±1.

(iii) Suppose that G rotates λ0 =∞ to a finite eigenvalue λ̃0 then G−1 rotates λ̃0

to λ0 =∞ and we can apply (ii) to obtain the desired result.

2.2.4 Hermitian linearizations

Higham et al. in [37] show that

H(P ) :=
{
L(λ) = λA−B ∈ L1(P ) : A∗ = A, B∗ = B

}
=

{ m∑
j=1

vjLj(λ), v ∈ Rm

}
,

where Lj(λ) = λBj − Bj−1 and the matrices Bj are a direct sum of block Hankel

matrices (see [37, (3.6)–(3.8)]). The pencil λBj − Bj−1 ∈ H(P ) with vector v = ej,

where ej denotes the jth column of the identity matrix, is referred to as the jth basis

pencil. When Am is nonsingular,

λBm −Bm−1 := λ



Am

. . . Am−1

. . . . . .
...

. . . . . . A2

Am Am−1 . . . A2 A1


−



Am

. . . Am−1

. . . . . .
...

Am Am−1 . . . A2

−A0


(2.11)
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is always a linearization of P by the Eigenvalue Exclusion Theorem, Theorem 1.2.2.

Note that H(P ) ⊂ DL(P ).

Any linearization L(λ) ∈ H(P ) with vector v has the property that x is a right

eigenvector of P associated to the eigenvalue λ if and only if Λ⊗ x (if λ is finite) or

e1 ⊗ x (if λ =∞) is a right eigenvector for L with eigenvalue λ.

The following result relates the type of a real eigenvalue λ of P to its type as an

eigenvalue of a linearization L ∈ H(P ) and shows that linearizations in H(P ) preserve

definite type.

Lemma 2.2.7 Let (λ0, x) be an eigenpair of P with λ0 ∈ R and let L(λ) ∈ H(P )

with vector v be a linearization of P . Then,

z∗L′(λ0)z = p(λ0; v) · x∗P ′(λ0)x, (2.12)

where z = Λ0 ⊗ x. Hence a real eigenvalue λ0 of L is of definite type if and only if

λ0 as an eigenvalue of P is of definite type. Moreover, if P (λ) =
∑m

j=0 λ
jAj with Am

nonsingular then λBm−Bm−1 in (2.11) is a linearization of P that preserves the type

of the real eigenvalues.

Proof. How to obtain (2.12) can be found in [39, Section 3]. Now if L ∈ H(P ) is

a linearization of P then by Theorem 1.2.2, p(λ0; v) 6= 0. Hence z∗L′(λ0)z 6= 0 if

and only if x∗P ′(λ0)x 6= 0. The pencil in (2.11) is in H(P ) with vector v = em so

p(λ0; em) = 1. It is a linearization of P when Am is nonsingular.

2.3 Definite matrix polynomials

The class of definite matrix polynomials (defined in Section 2.3.4) has recently been

introduced and investigated by Higham, Mackey and Tisseur [38]. It includes definite

pencils, hyperbolic matrix polynomials, and overdamped quadratics. We review these

subclasses in the following way: for each subclass we provide a list of equivalent

properties, named consistently according to

(P1) the distribution of the eigenvalue type on the real line,

(P2) certain definiteness properties,
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(P3) the roots of the scalar equations x∗P (λ)x = 0 (or x∗L(λ)x = 0 for pencils).

Each subclass has extra equivalent properties listed, either because the property is

commonly used to define the subclass or because the property is relevant to the rest

of the chapter. We do not claim to provide a full list of characterizations.

2.3.1 Definite pencils

We start with definite pencils, whose occurrence is frequent in applications in science

and engineering (see [21, Chap. 9], [46] for examples).

Definition 2.3.1 (definite pencils) An n×n Hermitian pencil is definite if it sat-

isfies any one (and hence all) of the equivalent properties of Theorem 2.3.2.

Theorem 2.3.2 For an n × n Hermitian pencil L(λ) = λA − B the following are

equivalent:

(P1) σ(L) ⊂ R∪{∞} with all eigenvalues of definite type and where the eigenvalues of

positive type are separated from the eigenvalues of negative type (see Figure 2.3).

(P2) L(µ) is a definite matrix for some µ ∈ R ∪ {∞}, or equivalently L(α, β) > 0

for some (α, β) on the unit circle.

(P3) For every nonzero x ∈ Cn, the scalar equation x∗L(λ)x = 0 has exactly one

zero in R ∪ {∞}.

(P4) (x∗Ax, x∗Bx) 6= 0 for all nonzero x ∈ Cn.

(D) There exists a nonsingular X ∈ Cn×n such that

X∗L(λ)X =

[
L+(λ) 0

0 L−(λ)

]
,

where L+(λ) = λD+ − J+ and L−(λ) = λD− − J− are real diagonal pencils,

such that [λmin(L+), λmax(L+)]∩ [λmin(L−), λmax(L−)] = ∅, D+ has nonnegative

entries, D− has nonpositive entries and if (D+)ii = 0 then (J+)ii > 0 or if

(D−)ii = 0 then (J−)ii < 0.
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−∞ +∞
0

−∞ +∞
0

−∞ +∞
0

L<0 L>0
+ve type
e’vals of

L>0
+ve type
e’vals of

-ve type
e’vals of

L<0
-ve type
e’vals of

+ve type
e’vals of

A > 0, B indefinite A indefinite, B < 0 A,B both indefinite

Figure 2.3: Distribution of the eigenvalue types for three types of definite pencils
L(λ) = λA−B. On the shaded intervals L is indefinite.

Proof. The proof of (P2) ⇔ (P4) can be found in [88, Thm. 6.1.18] and the equiva-

lence (P3) ⇔ (P4) is immediate. We show that (P2) ⇒ (P1) ⇒ (D) ⇒ (P2).

(P2) ⇒ (P1): Suppose L(c, s) > 0 for some c, s ∈ R, c2 + s2 = 1. If s = 0 then

A is definite so that all the eigenvalues belong to one interval of either positive type

if A > 0 or negative type if A < 0 since for all eigenpairs (λ, x), x∗L′(λ)x = x∗Ax

is either positive or negative. Assume without loss of generality that s > 0 and

homogeneously rotate L into L̃(λ̃) = λ̃Ã − B̃ as in Example 2.2.5 so that Ã > 0.

Hence all the eigenvalues of L̃ are real and of positive type. Let λj be an eigenvalue

of L rotated to λ̃j. By Lemma 2.2.6, their types are related by

x∗L̃′
λ̃
(λ̃j)x =

 (c− λjs)x∗L′λ(λj)x if λj is finite,

−sx∗
(
− (revL)′λ(0)

)
x if λj =∞.

(2.13)

Note that

c− λjs = det

[
c λj

s 1

]
(2.14)

and the sign of these determinants is positive for any λj = (λj, 1) that lies counter-

clockwise from (c, s), and negative for any that lies clockwise from (c, s); see Fig-

ure 2.4. Hence it follows from (2.13) that eigenvalues of L lying clockwise from (c, s)

(including +∞) are of negative type and eigenvalues of L lying counterclockwise from

(c, s) are of positive type. Also, there is a gap between the two types because c/s is

not an eigenvalue of L.

(P1)⇒ (D): Recall that a Hermitian pencil is diagonalizable by congruence if and

only if its eigenvalues belong to R ∪ {∞} and are semisimple [56]. Since eigenvalues

of definite type are semisimple, there exists X nonsingular such that X∗L(λ)X =

λD−J , with D and J both real and diagonal. Their diagonal entries can be reordered

so that D = D+⊕D− and J = J+⊕J−, where the eigenvalues of λD+−J+ = L+(λ)
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(λj ,1)

(c,s)

(λk,1)

∣∣ c
s
λj
1

∣∣ > 0∣∣ c
s
λk
1

∣∣ < 0

Figure 2.4: Pictorial representation of (2.14).

are of positive type and that of λD− − J− = L−(λ) are of negative type. If A is

singular then one of D+ or D− (but not both otherwise λ = ∞ would be of mixed

type) must be singular. Hence D+ and −D− have nonnegative entries. Each zero

entry on D corresponds to an infinite eigenvalue. By Definition 2.2.4 when (D+)ii = 0

we must have (J+)ii > 0 for λ =∞ to be of positive type and when (D−)ii = 0 then

(J−)ii < 0 . Finally because the eigenvalues of positive type are separated from

the eigenvalues of negative type, the intersection between [λmin(L+), λmax(L+)] and

[λmin(L−), λmax(L−)] must be empty.

(D) ⇒ (P2): It follows from (D) that

L+(µ) < 0 for µ < λmin(L+), L+(µ) > 0 for µ > λmax(L+) if D+ is nonsingular,

L−(µ) > 0 for µ < λmin(L−), L−(µ) < 0 for µ > λmax(L−) if D− is nonsingular.

Hence

(i) if L− is void then L(µ) < 0 for µ < λmin(L+),

(ii) if L+ is void then L(µ) > 0 for µ < λmin(L−),

(iii) if λmax(L+) < λmin(L−) then L(µ) > 0 for λmax(L+) < µ < λmin(L−),

(iv) if λmax(L−) < λmin(L+) then L(µ) < 0 for λmax(L−) < µ < λmin(L+),

which completes the proof.

Characterizations (P2) and (P4) in Theorem 2.3.2 are commonly used as defini-

tions of definite pencils. In (P2), µ =∞ is allowed and L(∞) definite means that A

is definite. Note that (P4) is equivalent to saying that 0 is not in the field of values
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of A+ iB or that the Crawford number

γ(A,B) = min
z∈Cn
z∗z=1

√
(z∗Az)2 + (z∗Bz)2 (2.15)

is strictly positive. Finally we remark that in property (D) all the eigenvalues of L+

are of positive type and those of L− are of negative type.

Pencils L(λ) = λA − B with A > 0 have computational advantages: the eigen-

values can be computed by methods that exploit the definiteness of A [22]. When A

and B are both indefinite, characterization (P1) offers an easy way to check definite-

ness, but it is computationally unattractive since it requires all the eigenpairs. As

an alternative, the recently improved arc algorithm of Crawford and Moon [19], [34]

efficiently detects whether λA − B is definite and determines µ such that L(µ) > 0

at the cost of just a few Cholesky factorizations. The pencil can then be rotated to

a pencil with positive definite leading term as in Example 2.2.5. An earlier level set

algorithm of Higham, Tisseur, and Van Dooren [40, Alg. 2.3] is more expensive as it

requires the solution of a complex QEP with a zero linear term for the eigenvalues

and, possibly, eigenvectors.

2.3.2 Hyperbolic matrix polynomials

Hyperbolic matrix polynomials generalize definite pencils λA−B with A > 0.

Definition 2.3.3 (hyperbolic matrix polynomial) A Hermitian matrix polyno-

mial is hyperbolic if it satisfies any one (and hence all) of the equivalent properties of

Theorem 2.3.4.

Theorem 2.3.4 For an n× n Hermitian matrix polynomial P (λ) =
∑m

j=0 λ
jAj the

following are equivalent:

(P1) All eigenvalues of P are real and finite, of definite type, and such that

λmn ≤ · · · ≤ λ(m−1)n+1︸ ︷︷ ︸
(−1)m−1 type

< · · · < λ2n ≤ · · · ≤ λn+1︸ ︷︷ ︸
negative type

< λn ≤ · · · ≤ λ1︸ ︷︷ ︸
positive type

,

where σ(P ) = {λj}mnj=1 and “(−1)m−1 type” denotes positive type for odd m and

negative type for even m.
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−∞ +∞Im I2 I1
︷ ︸︸ ︷e’vals of

-ve type ︷ ︸︸ ︷e’vals of
-ve type ︷ ︸︸ ︷e’vals of

+ve type

λmn λ
(m−1)n+1 λ2n λn+1 λn λ1

p(λ;v)

Figure 2.5: Distribution of eigenvalue types of n× n hyperbolic polynomials of even
degree m.

(P2) There exist µj ∈ R ∪ {∞} such that

(−1)jP (µj) > 0, j = 0:m− 1, ∞ = µ0 > µ1 > µ2 > · · · > µm−1.

(P3) Am > 0 and for every nonzero x ∈ Cn, the scalar equation x∗P (λ)x = 0 has m

distinct real and finite zeros.

(L) P has a definite linearization L(λ) ∈ H(P ) with vector v ∈ Rm, where v1 6= 0,

such that L(∞) > 0 if v1 > 0 and L(∞) < 0 if v1 < 0.

Proof. That (P2) ⇔ (P3) and (P2) ⇒ (P1) is due to Markus [72, Section 31]. We

show that (P1) ⇒ (L) and (L) ⇒ (P3).

(P1) ⇒ (L): If m = 1 and L ∈ H(P ) then L(λ) = vP (λ) and L is a linearization

if v 6= 0. By property (P1) of Theorem 2.3.2, P (λ) is a definite pencil. Since all

the eigenvalues are of positive type, property (D) of Theorem 2.3.2 implies that the

leading coefficient of P is positive definite, i.e., P (∞) > 0. Hence property (L) holds.

Now assume that m > 1. Let v ∈ Rm be such that the roots µj of the v-polynomial

in (1.10) satisfy λjn > µj > λjn+1, j = 1:m−1. Then by Theorem 1.2.2, L(λ) ∈ H(P )

with vector v is a linearization of P . By construction, p(x; v) = v1

∏m−1
j=1 (x − µj)

with v1 6= 0 since all roots of p(x; v) are finite and sign(p(λk; v)) = (−1)j−1sign(v1)

for (j − 1)n + 1 ≤ k ≤ jn, j = 1:m − 1 (see Figure 2.5). By Lemma 2.2.7 we

have that for each eigenpair (λk, xk) of P , z∗kL
′(λk)zk = p(λk; v) · x∗kP ′(λk)xk, where

zk = [λm−1
k , λm−2

k , . . . , 1]T ⊗ xk is an eigenvector of L with eigenvalue λk. Hence all

eigenvalues of L are of positive type when v1 > 0 and of negative type when v1 < 0.

Now properties (P1) and (D) of Theorem 2.3.2 imply that L is a definite pencil with

L(∞) > 0 if v1 > 0 and L(∞) < 0 if v1 < 0.
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(L) ⇒ (P3): If P has a definite linearization then by [38, Thm. 4.1], there exists

µ ∈ R ∪ {∞} such that P (µ) is definite and for every nonzero x ∈ Cn the scalar

equation x∗P (λ)x = 0 has m distinct zeros in R ∪ {∞}. By [38, Thm. 4.2], L(∞)

definite implies P (∞) definite and [38, (4.7)] shows that L(1, 0) is congruent to a

block diagonal form whose (1, 1) block is v1P (1, 0). Now if v1 > 0 and L(1, 0) > 0 or

v1 < 0 and L(1, 0) < 0 then Am = P (1, 0) > 0. Hence x∗Amx 6= 0 and x∗P (λ)x = 0

has m distinct real finite zeros.

Property (P3) is used by Gohberg, Lancaster, and Rodman [30, Section 13.4] as

the definition of hyperbolicity. Characterization (P1) is stated for the quadratic case

and without proof in [48, Section 9] and [59].

It is shown in [80, Cor. 2] that for a Hermitian triple (A,B,C),

(x∗Ax, x∗Bx, x∗Cx) 6= 0

for all nonzero x ∈ Cn if and only if there exist α, β, γ ∈ R such that αA+βB+γC > 0.

So in view of (P2) in Theorem 2.3.4, the natural extension to quadratics of property

(P4) for definite pencils in Theorem 2.3.2, i.e., (x∗A2x, x
∗A1x, x

∗A0x) 6= 0 for all

nonzero x ∈ Cn, is a necessary condition for hyperbolicity (since P (µ) > 0 for

sufficiently large µ), but it is not sufficient: the quadratic Q(λ) = λ2In + λIn + In is

not hyperbolic since it has nonreal eigenvalues but (x∗x, x∗x, x∗x) 6= 0 for all nonzero

x ∈ Cn.

As for definite pencils, property (P1) is easy to check once all the eigenpairs of P

are known. Guo and Lancaster’s algorithm [35] tests for hyperbolicity by computing

the eigenvalues of the QEP. More efficient approaches to check whether a quadratic

matrix polynomial is hyperbolic or not include Guo, Higham and Tisseur’s quadrati-

cally convergent matrix iteration based on cyclic reduction [33] or Guo, Higham and

Tisseur’s adaptation of the arc algorithm [34, Section 4.1]. For matrix polynomi-

als of arbitrary degree, Niendorf and Voss [78] propose an algorithm that checks for

hyperbolicity and which is based on a minmax and maxmin characterization of the

eigenvalues.

Let Q(λ) be a Hermitian quadratic matrix polynomial with n × n coefficient

matrices and let Q̂(λ) be the matrix polynomial obtained by deleting the last row
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and column of Q(λ). In what follows we characterize hyperbolic quadratic matrix

polynomials according to the distribution of the eigenvalues of both Q and Q̂. Then

we recall a recent result by Azizov et al. [9, Thm. 5.1] which implies that hyperbolic

quadratics are always tridiagonalizable. We make use of this fact later in Chapter 4.

Theorem 2.3.5 Let Q(λ) be a Hermitian quadratic n × n matrix polynomial with

positive definite leading coefficient and let µ2n−2 ≤ · · · ≤ µ1, λ2n ≤ · · · ≤ λ1 be the

eigenvalues of Q̂(λ) and Q(λ), respectively. Then Q(λ) is hyperbolic if and only if

Q̂(ζ) < 0 for some ζ ∈ (λn+1, λn) and

1. λj+1 ≤ µj ≤ λj, for j = 1:n− 1,

2. λj+2 ≤ µj ≤ λj+1, for j = n: 2n− 2,

3. λn+1 < λn.

Proof. (⇒): If Q is hyperbolic then [79, Lem. 7.1, Thm. 7.3] show that Q̂ is hyper-

bolic with Q̂(ζ) < 0 for some ζ ∈ (λn+1, λn). Veselić in [91] shows that the eigenvalues

of Q and Q̂ are distributed as in the statement of the theorem.

(⇐): Let Q̂(ζ) be negative definite for some ζ ∈ (λn+1, λn) and let the eigenvalues

of Q and Q̂ be distributed as in the statement of the theorem. The inclusion principle

[42, Thm. 4.3.15] implies that the n − 1 smallest eigenvalues of the constant matrix

Q(ζ) are negative. But det(Q(ζ)) = c
∏2n

j=1(ζ − λj), where c is a positive constant

since the leading coefficient matrix of Q is positive definite. Since ζ ∈ (λn+1, λn),

the sign of det(Q(ζ)) is (−1)n. Thus, the largest eigenvalue of Q(ζ) is negative and

Q(ζ) < 0 which is equivalent to saying that Q is hyperbolic, see Theorem 2.3.4.

−∞ +∞
λ6 λ5 λ4

µ4 µ3

λ3

µ2

λ2

µ1

λ1

Figure 2.6: The eigenvalues interlacing of a 3×3 quadratic matrix polynomial Q and
its leading 2× 2 submatrix Q̂

Towards extending Theorem 2.3.5 to higher degrees, let P (λ) be a hyperbolic

matrix polynomial of the form (1.1). Let λ1(x) > λ2(x) > · · · > λm(x) be the roots

of x∗P (λ)x for some nonzero x ∈ Cn and recall the following result.
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Theorem 2.3.6 [38] A hyperbolic P (λ) that is n×n of degree m ≥ 2 with eigenvalues

λmn ≤ · · · ≤ λ1,

has the properties displayed in the following diagram, where Ii={λi(x):x∈Cn,‖x‖2=1} and

P (λ) is indefinite on these intervals.

−∞ +∞
Im I2 I1

λmn λ
(m−1)n+1 λ2n λn+1 λn λ1

︷ ︸︸ ︷P (λ)>0︷ ︸︸ ︷P (λ)<0︷ ︸︸ ︷P (λ)>0︷ ︸︸ ︷(−1)m−1P (λ)>0︷ ︸︸ ︷(−1)mP (λ)>0

Figure 2.7: Definiteness diagram

A direct consequence is what follows.

Corollary 2.3.7 If an n × n matrix polynomial P (λ) of degree m ≥ 2 is hyperbolic

with eigenvalues λmn ≤ · · · ≤ λ1, then for each j, 1 ≤ j ≤ m,

Π(−1)j−1(P (µ)) = jn− i, i = 1 + (j − 1)n: jn, (2.16)

for all µ ∈ (λi+1, λi), i = 1:mn − 1, where Π+(P (µ)) (Π−(P (µ))) is the number of

positive (negative) eigenvalues of the matrix P (µ).

Next, we show that the result in [91] extends to hyperbolic matrix polynomials of

any degree.

Lemma 2.3.8 If an n×n matrix polynomial P (λ) of degree m ≥ 2 is hyperbolic and

P̂ (λ) is the matrix polynomial obtained by deleting the last row and column of P (λ),

then P̂ (λ) is hyperbolic with eigenvalues µm(n−1) ≤ · · · ≤ µ1, for which

λi+j ≤ µi ≤ λi+j−1, i = (j − 1)(n− 1) + 1: j(n− 1), j = 1:m, (2.17)

where λmn ≤ · · · ≤ λ1, are the eigenvalues of P (λ).

Proof. The proof is exactly the same as the proof of the special case of hyper-

bolic quadratics [91]. In fact, the first part of that proof can be avoided using the
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definiteness diagram which proves (2.16). Now, let

P (λ) =

 P̂ (λ) P12(λ)

P ∗12(λ) p22(λ)

 , (2.18)

be a partition of P (λ), then Markus’ characterization of hyperbolicity (i.e., (P2)⇔(P3)

in Theorem 2.3.4) implies that P̂ (λ) is hyperbolic too. To prove (2.17) for j = 1,

suppose on the contrary that µi > λi or µi < λi+1 for some i = 1:n− 1. Assume first

that there is a λ /∈ σ(P̂ ), with µi < λ < λi+1. Now

P (λ) = W

 P̂ (λ) 0

0 p22(λ)− P ∗12(λ)P̂ (λ)−1P12(λ)

W ∗,

with

W =

 In−1 0

P ∗12(λ)P̂ (λ)−1 1

 .
By Sylvester’s law of inertia,

Π+(P̂ (λ)) ≤ Π+(P (λ)) ≤ Π+(P̂ (λ)) + 1. (2.19)

So, µi < λ < λi+1 would imply

Π+(P̂ (λ)) ≥ n− i, Π+(P (λ)) ≤ n− i− 1,

which contradicts the first inequality in (2.19). Similarly, λi < λ < µi implies

Π+(P (λ)) ≥ n− i+ 1, Π+(P̂ (λ)) ≤ n− i− 1,

which contradicts the second inequality in (2.19). This proves (2.17) for j = 1. The

proof of (2.17) is completely analogous for j > 1.

Now, we are in position to extend Theorem 2.3.5 for degrees greater than two.

Theorem 2.3.9 Let P (λ) be a Hermitian n× n matrix polynomial of degree m ≥ 2

with positive definite leading coefficient and let µm(n−1) ≤ · · · ≤ µ1, λmn ≤ · · · ≤ λ1

be the eigenvalues of P̂ (λ) and P (λ), respectively. Then P (λ) is hyperbolic if and
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only if there exist ζi ∈ R such that (−1)iP̂ (ζi) > 0, ζi ∈ (λin+1, λin), i = 1:m− 1 and

(2.17) holds.

Proof. (⇒): If P is hyperbolic then Markus characterization of hyperbolicity and

partition (2.18) show that P̂ is hyperbolic with (−1)iP̂ (ζi) > 0, ζi ∈ (λin+1, λin),

i = 1:m− 1. The eigenvalues interlacing follows from Lemma 2.3.8.

(⇐): A direct extension of the proof of Theorem 2.3.5. To illustrate, consider the

cubic case: Let P̂ (ζ1) (P̂ (ζ2)) be negative definite (positive definite) for some ζ1 ∈

(λn+1, λn) (ζ2 ∈ (λ2n+1, λ2n)). Let the eigenvalues of P and P̂ be distributed as in the

statement of the theorem. The inclusion principle [42, Thm. 4.3.15] implies that the

n− 1 smallest (largest) eigenvalues of the constant matrix P (ζ1) (P (ζ2)) are negative

(positive). But det(P (ζ1)) = c
∏3n

i=1(ζ1−λi) (det(P (ζ2)) = c
∏3n

i=1(ζ2−λi)), where c is

a positive constant since the leading coefficient matrix of P is positive definite. As ζ1 ∈

(λn+1, λn) (ζ2 ∈ (λ2n+1, λ2n)), the sign of det(P (ζ1)) (det(P (ζ2))) is (−1)n ((−1)2n).

Thus, the largest (smallest) eigenvalue of P (ζ1) (P (ζ2)) is negative (positive) and

P (ζ1) < 0 (P (ζ1) > 0) which is equivalent to saying that P is hyperbolic.

The following result helps in solving a particular quadratic Hyperbolic IPEP.

Theorem 2.3.10 [9, Thm. 5.1] Given two sets of real numbers {λj}2n
j=1 and {µj}2n−2

j=1 ,

n ≥ 2, that satisfy (1)− (3) of Theorem 2.3.5, there exist n×n tridiagonal symmetric

matrices A1 and A0 such that σ(Q) = {λj}2n
j=1 where Q(λ) = λ2In + λA1 + A0 and

σ(Q̂) = {µj}2n−2
j=1 . Moreover, Q is hyperbolic.

Unfortunately, the proof of the previous result does not extend easily to higher de-

grees.

2.3.3 Overdamped quadratic matrix polynomials

Overdamped quadratics form a subclass of hyperbolic quadratics. They arise in

overdamped systems in structural mechanics [25], [50, Section 7.6] and are defined as

follows.

Definition 2.3.11 (overdamped quadratic) A quadratic matrix polynomial is over-

damped if it satisfies any one (and hence all) of the equivalent properties of Theo-

rem 2.3.12.
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Theorem 2.3.12 For a Hermitian quadratic matrix polynomial Q(λ) = λ2A2+λA1+

A0 the following are equivalent:

(P1) All eigenvalues of Q are real, finite, nonpositive and distributed in two disjoint

closed intervals, the left-most containing n eigenvalues of negative type and the

right-most containing n eigenvalues of positive type.

(P2) A2 > 0, A1 > 0, A0 ≥ 0, and Q(µ) < 0 for some µ < 0.

(P3) A2 > 0 and for every nonzero x ∈ Cn, the scalar equation x∗Q(λ)x = 0 has 2

distinct real and finite nonpositive zeros.

(O) A2 > 0, A1 > 0, A0 ≥ 0 and

(x∗A1x)2 > 4(x∗A2x)(x∗A0x) for all nonzero x ∈ Cn. (2.20)

Proof. The equivalent characterizations of overdamping (P2), (P3) and (O) can

be found in [33, Thm. 2.5]. Note that (P1) ⇔ (P3) follows from (P1) ⇔ (P3) in

Theorem 2.3.4 to which is added the extra constraint that all the eigenvalues be

nonpositive.

Note that property (O) is usually taken as the definition of overdamped quadrat-

ics. If equality is allowed in (2.20) for some nonzero x then the quadratic is said to

be weakly overdamped. Its 2n eigenvalues are real and when ordered, λn = λn+1

with partial multiplicities2 at most 2. Hence λn is either of mixed type or if it is not

then the property that the eigenvalues are distributed in two disjoint intervals, each

interval containing exactly n eigenvalues of one type, is lost.

Converting hyperbolic quadratics to overdamped ones

Hyperbolic quadratic matrix polynomials can be shifted to be overdamped. This

shifting idea was discussed in [33], [40], [50]. Let Q(λ) = λ2A2 + λA1 + A0 be

Hermitian with A2 > 0 and assume thatQ is hyperbolic. Now with θ ≥ λ1 = λmax(Q),

α = λ− θ ≤ 0 for all λ ∈ σ(Q) and

2The partial multiplicities of an eigenvalue of Q are the sizes of the Jordan blocks in which it
appears in a Jordan form for Q [31].
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Q(λ) = Q (α + θ)

= α2A2 + α (A1 + 2θA2) + (A0 + θA1 + θ2A2)

= α2A2θ + αA1θ + A0θ

= α2A2 + αQ′ (θ) +Q (θ)

=: Qθ (α)

is overdamped. Thus, quadratic overdamped matrix polynomials are shifted hy-

perbolic ones and vice versa. In their effective algorithm of detecting and solving

hyperbolic QEPs, Guo, Higham and Tisseur [33] use this shifting idea to test hyper-

bolicity via testing overdamping and they emphasize how large shifts of the spectrum,

which can be obtained whenever one uses an upper bound to the modulus of the

largest eigenvalue, can be. This is easily observed because we may have a case like

|λn| � |λ1| . Such a large shift could lead to slow convergence of their iterations.

2.3.4 Definiteness of matrix polynomials

Hyperbolic pencils L(λ) = λA − B are definite since their coefficient matrices are

Hermitian with A > 0. However definite pairs are not necessarily hyperbolic since

A and B can both be indefinite. By relaxing the requirement of definiteness of the

leading coefficient, Higham, Mackey, and Tisseur [38] introduced a new class of Her-

mitian matrix polynomials, the definite matrix polynomials, that extends the notion

of hyperbolicity and is consistent with the definition of definite pencils. Definite ma-

trix polynomials that are not hyperbolic arise in acoustic fluid-structure interaction

problems [38].

Definition 2.3.13 (definite matrix polynomial) A Hermitian matrix polynomial

is definite if it satisfies any one (and hence all) of the equivalent properties of Theo-

rem 2.3.14.

Theorem 2.3.14 For an n× n Hermitian matrix polynomial P (λ) =
∑m

j=0 λ
jAj of

degree m the following are equivalent:
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(P1) All eigenvalues of P are real, of definite type and such that

λmn ≤ · · · ≤ λ(m−1)n+p+1︸ ︷︷ ︸
n− p eigenvalues

of (−1)m−1ε type

< · · · < λjn+p ≤ · · · ≤ λ(j−1)n+p+1︸ ︷︷ ︸
n eigenvalues of

(−1)j−1ε type, 1 ≤ j ≤ m− 1

< · · · < λp ≤ · · · ≤ λ1︸ ︷︷ ︸
p eigenvalues

of −ε type

≤ ∞,

with 0 ≤ p < n, where σ(P ) = {λj}mnj=1, ε = ±1 and “αε type” denotes positive

type when αε > 0 and negative type otherwise.

(P2) There exist µj ∈ R ∪ {∞} with µ0 > µ1 > µ2 > · · · > µm−1 (µ0 = ∞ be-

ing possible) such that P (µ0), P (µ1), . . . , P (µm−1) are definite matrices with

alternating parity.

(P3) There exists µ ∈ R ∪ {∞} such that the matrix P (µ) is definite and for every

nonzero x ∈ Cn the scalar equation x∗P (λ)x = 0 has m distinct zeros in R ∪

{∞}.

(L) P has a definite linearization L(λ) ∈ H(P ).

Note that when P is a definite matrix polynomial with Am definite one of P or −P

is hyperbolic and by Theorem 2.3.4, p = 0 in property (P1) of Theorem 2.3.14.

Proof. The characterizations (P2), (P3) and (L) and their equivalence can be found

in [38, Thms. 2.6 and 4.1].

(P1) ⇒ (P3): Suppose neither P nor −P is hyperbolic, i.e. p 6= 0. Let µ be such

that λp+1 < µ < λp. Then homogeneously rotate P into P̃ so that µ corresponds

to µ̃ = ∞. The rotation moves the p largest eigenvalues of P to the n − p smallest

ones to form a single group of n eigenvalues (see Figures 2.2 and 2.4) which, by

Lemma 2.2.6, are all of (−1)m−1ε type. The types of the remaining m − 1 groups

of n eigenvalues remain unchanged. Hence by property (P1) of Theorem 2.3.4, P̃ or

−P̃ is hyperbolic. By property (P3) of Theorem 2.3.4, x∗P̃ (λ̃)x = 0 has real distinct

roots for all nonzero x ∈ Cn and therefore x∗P (λ)x = 0 has distinct roots in R∪{∞}

(x∗Amx = 0 is possible). Also by [38, Lem. 2.1], P (µ) is definite.

(P3) ⇒ (P1): Homogeneously rotate P into P̃ so that µ corresponds to µ̃ = ∞.

Then P̃ (∞) = Ãm is definite, say Ãm > 0. Now if x∗P (λ)x = 0 has distinct roots in

R∪{∞} then x∗P̃ (λ̃)x = 0 has real distinct roots (and no infinite root since Ãm > 0).
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Thus P̃ (λ̃) is hyperbolic. Then property (P1) for P follows from property (P1) of

Theorem 2.3.4, Lemma 2.2.6 and Figure 2.4.

The following result follows from (P2) in Theorem 2.3.14 and from counting sign

changes in eigenvalues of the matrix P (µ) (see [38, Thm. 2.4 and its proof]).

Theorem 2.3.15 For a definite matrix polynomial P (λ) of degree m with eigenvalues

as in property (P1) of Theorem 2.3.14, let

Ij = (λjn+p+1, λjn+p), j = 1:m− 1

and

I0 =

 (λp+1, λp) if p 6= 0,

(λ1,+∞) if p = 0,
Im =

 ∅ if p 6= 0,

(−∞, λmn) if p = 0.

Then P (µ) is definite for any µ ∈ Ij, j = 0:m and if µj ∈ Ij, µj+1 ∈ Ij+1 then

P (µj) and P (µj+1) have opposite parity.

Niendorf and Voss’s algorithm [78] can be used to detect whether a Hermitian

matrix polynomial is definite or not. For definite polynomials it also returns the

µj of property (P2) so that a definite linearization can be built as shown in [38,

Thm. 4.2].

2.4 Quasidefinite matrix polynomials

We have just seen that definite matrix polynomials are characterized by the fact that

all their eigenvalues are real and of definite type and with a particular distribution

of the eigenvalue types. We now consider a wider class of Hermitian matrix polyno-

mials with real eigenvalues of definite type for which no assumption is made on the

distribution of the eigenvalues types.

2.4.1 Definitizable pencils

Definite pencils form only a small subclass of Hermitian pencils with real and semisim-

ple eigenvalues. We now consider a larger subclass of such pencils.
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Definition 2.4.1 (definitizable pencils) A Hermitian pencil λA− B is definitiz-

able if it satisfies any one (and hence all) of the equivalent properties of Theorem 2.4.2.

Theorem 2.4.2 For an n × n Hermitian pencil L(λ) = λA − B the following are

equivalent:

(P1) All the eigenvalues of L are real, finite, and of definite type.

(P2) A is nonsingular and there exists a real polynomial q such that Aq(A−1B) > 0.

(P3) A is nonsingular and the scalar equation x∗L(λ)x = 0 has one zero in R for all

eigenvectors x ∈ Cn of L.

(P4) A is nonsingular and (x∗Ax, x∗Bx, . . . , x∗A(A−1B)n−1x) 6= 0 for all nonzero

x ∈ Cn.

(D) There exists a nonsingular X ∈ Cn×n such that

X∗AX =

[
Ik 0

0 −In−k

]
, X∗BX =

[
J+ 0

0 −J−

]
, (2.21)

where J+ ∈ Rk×k and J− ∈ R(n−k)×(n−k) are diagonal and σ(J+) ∩ σ(J−) = ∅.

Proof. The equivalence of the characterizations (P1), (P2) and (P4) can be found

in [59, Thm. 1.3]. (D) ⇒ (P3) is immediate. We show that (P3) ⇒ (P1) and (P1)

⇒ (D).

(P3) ⇒ (P1) Suppose one eigenvalue is not real or is of mixed type then by [59,

Lem. 2.2] there exists a corresponding eigenvector x such that x∗Ax = 0 and hence

(P3) does not hold.

(P1)⇒ (D) A is nonsingular since all eigenvalues are finite and λA−B is simulta-

neously diagonalizable by congruence since all the eigenvalues are real and semisimple.

Hence there exists X nonsingular such that X∗(λA−B)X = λD−J is real diagonal.

Since D is nonsingular, we can choose X such that D =
[
Ik
0

0
−In−k

]
and partition J

as
[
J+
0

0
−J−

]
conformably with D. Then the property that all the eigenvalues are of

definite type implies that σ(J+) ∩ σ(J−) = ∅.

Lancaster and Ye [59] define definitizable pencils by property (P2) and add the

adverb “strongly” to definitizable to emphasize the strict inequality in (P2). Note
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that the real polynomial q in (P2) is not unique and that J+ in (2.21) contains the

eigenvalues of positive type and J− those of negative type. Now if L(λ) = λA − B

with nonsingular A is definite then by property (P2) of Theorem 2.3.2, there exists

µ ∈ R∪{∞} such that the matrix L(µ) is definite. Then Aq(A−1B) > 0 for q(x) = −ε

if µ = ∞ and q(x) = ε(x − µ) otherwise, where ε = 1 if L(µ) < 0 and ε = −1 if

L(µ) > 0. Hence definite pencils with nonsingular leading coefficient matrix are

definitizable.

Though not necessarily computationally efficient, property (P1) provides an easy

way to check whether a Hermitian pencil λA− B is definite or definitizable or none

of these.

As a by-product of the proof of [59, Thm. 1.3], a real polynomial q of minimal

degree such that Aq(A−1B) > 0 can easily be constructed once all the eigenvalues

of a definitizable pencil λA − B are known together with their types, as shown in

the next theorem. The knowledge of q can be useful when constructing conjugate

gradient iterations for solving saddle point problems [63].

Theorem 2.4.3 For an n × n definitizable pencil λA − B with eigenvalues λn ≤

· · · ≤ λ1, let kj, j = 1: `− 1 be the set of increasing integers such that

λn ≤ · · · ≤ λk`−1+1︸ ︷︷ ︸
n− k`−1 eigenvalues

of (−1)`−1ε type

< · · · < λkj+1
≤ · · · ≤ λkj+1︸ ︷︷ ︸

kj+1 − kj eigenvalues

of (−1)jε type

< · · · < λk1 ≤ · · · ≤ λ1︸ ︷︷ ︸
k1 eigenvalues

of ε type

.

Then p(x) = ε
∏`−1

j=1(x − µj) with λkj+1 < µj < λkj is a real polynomial of minimal

degree `− 1 such that Ap(A−1B) > 0.

Example 2.4.4 The pencils

L1(λ) = λ

 1 0 0

0 −1 0

0 0 1

−
 1 0 0

0 −2 0

0 0 3

 , L2(λ) = λ

 1 0 0

0 1 0

0 0 −1

−
 1 0 0

0 2 0

0 0 −3


have the same eigenvalues, i.e., σ(L1) = σ(L2) = {1, 2, 3}. Both pencils are definitiz-

able because the eigenvalues are real, distinct and hence of definite type but only L2

is definite since the eigenvalue 3, of negative type, is separated from the eigenvalues
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1 and 2 of positive type as in the right-most depiction of Figure 2.3. Furthermore,

by Theorem 2.3.15, L2(µ) > 0 for all µ ∈ (2, 3). Also, by Theorem 2.4.3 any poly-

nomial of the form p(x) = (x − µ1)(x − µ2) with µ1 ∈ (2, 3) and µ2 ∈ (1, 2) satisfies

A1p(A
−1
1 B1) > 0, where L1(λ) =: λA1 −B1.

2.4.2 Quasihyperbolic matrix polynomials

The notion of definitizable pencils extends to matrix polynomials of degree higher

than one.

Definition 2.4.5 (quasihyperbolic matrix polynomial) A Hermitian matrix poly-

nomial is quasihyperbolic if it satisfies either (and hence both) of the equivalent prop-

erties of Theorem 2.4.6.

Theorem 2.4.6 For an n × n Hermitian matrix polynomial P (λ) the following are

equivalent:

(P1) All the eigenvalues of P are real, finite and of definite type.

(L) Any linearization L(λ) ∈ H(P ) is definitizable.

Proof. We note that this result was proved in [53, Thm. 7.1] for a particular lin-

earization in H(P ).

A matrix polynomial has only finite eigenvalues if and only if its leading coefficient

matrix is nonsingular. Let L ∈ H(P ) be a linearization of P . Then P has only

finite eigenvalues if and only if L has only finite eigenvalues or equivalently L has

nonsingular leading matrix coefficient. Moreover σ(P ) ⊆ R if and only if σ(L) ⊆ R.

By Lemma 2.2.7, the eigenvalues of P are of definite type if and only if those of L

are of definite type. Hence by (P1) of Theorem 2.4.2, (P1) is equivalent to (L).

There is no obvious extension of properties (P2) and (P4) of Theorem 2.4.2 to

quasihyperbolic matrix polynomials at the nonlinear level but by property (L) of

Theorem 2.4.6 and property (P2) of Theorem 2.4.2, we have that P is quasihyperbolic

if and only if there exists a real polynomial q such that Bmq(B
−1
m Bm−1) > 0, where

λBm −Bm−1 is the mn×mn pencil (2.11). Property (P3) of Theorem 2.4.2 extends

to quadratic matrix polynomials but not to higher degrees as shown by the next

theorem and the following example.
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Theorem 2.4.7 Let P be a Hermitian matrix polynomial of degree m with nonsingu-

lar leading matrix coefficient. If the scalar equation x∗P (λ)x = 0 has m real distinct

zeros for every eigenvector x of P then P is quasihyperbolic. The converse is also

true when m ≤ 2.

Proof. Distinct real roots of x∗P (λ)x = 0 for all eigenvectors x of P implies that

σ(P ) ⊂ R and x∗P ′(λ0)x 6= 0 for each eigenvalue λ0 ∈ σ(P ). Hence all eigenvalues

are real, finite and of definite type, so P is quasihyperbolic by Theorem 2.4.6.

The converse is clearly true for linear P (see Theorem 2.4.2). Now for quadratic

P , suppose the scalar quadratic x∗P (λ)x = 0, where x is an eigenvector, has a real

double root. Then this double root is necessarily an eigenvalue of P , say λ0 associated

with x, and since it is a double root, x∗P ′(λ0)x = 0, so that λ0 is of mixed type.

Hence P is not quasihyperbolic.

Here is an example to show that the converse of Theorem 2.4.7 does not hold for

polynomials of degree 3. The cubic polynomial

P (λ) = λ3

[
1 0

0 1

]
+ λ2

[
9 0

0 −6

]
+ λ

[
−10 0

0 11

]
+

[
0 0

0 −6

]

is quasihyperbolic. Any nonzero x ∈ C2 is an eigenvector associated with the eigen-

value λ = 1. It is easily checked that with x =
[

1
1

]
, the scalar polynomial x∗P (λ)x

has one real root and two complex conjugate roots.

We remark that a definite pencil λA − B is not necessarily definitizable because

A can be singular, and a definite matrix polynomial is not necessarily quasihyper-

bolic because its leading term can be singular. We therefore extend the definition

of quasihyperbolic matrix polynomials to allow singular leading term and call such

polynomials quasidefinite.

Definition 2.4.8 A Hermitian matrix polynomial P (λ) is quasidefinite if σ(P ) ⊂

R ∪ {∞} and each eigenvalue is of definite type.

Take a quasidefinite matrix polynomial P . Since P is regular, there exists µ ∈ R∪{∞}

such that P (µ) is nonsingular. Homogeneously rotate P into P̃ so that µ corresponds

to ∞ and Ãm = P̃ (µ) is nonsingular. Then by Lemma 2.2.6 the eigenvalues of P̃

are all of definite type and P̃ is quasihyperbolic. Hence any quasidefinite matrix
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polynomial is a “homogeneously rotated” quasihyperbolic one. Note that amongst

the properties (P1), (P2) and (P3) we started with in Section 2.3, only a property of

type (P1) remains for quasihyperbolic and quasidefinite matrix polynomials.

2.4.3 Gyroscopically stabilized systems

Quadratic matrix polynomials associated with gyroscopic systems have the form

G(λ) = λ2M + λC +K,

where M,K are Hermitian and C is skew-Hermitian [90]. As G(λ)∗ = G(−λ̄), the

spectrum of G(λ) is symmetric with respect to the imaginary axis. The quadratic

G(λ) is not Hermitian but

Q(λ) = −G(−iλ) = λ2M + λ(iC)−K =: λ2A2 + λA1 + A0

is. The gyroscopic system is said to be weakly stable if all the eigenvalues of G lie on

the imaginary axis or equivalently, if the eigenvalues of Q are all real. The following

definition appears in [12]. For a Hermitian B we write |B| = (B2)1/2, where the

square root is the principal square root [36, Prob. 1.27].

Definition 2.4.9 A Hermitian Q(λ) = λ2A2 + λA1 + A0 is gyroscopically stabilized

if A2 > 0, A0 > 0 and A1 is indefinite and nonsingular with |A1| > µA2 + µ−1A0 for

some positive µ.

Barkwell, Lancaster, and Markus [12] prove that gyroscopically stabilized quadratics

have real eigenvalues of definite type that belong to at most four distinct intervals

of alternating types, with the number of eigenvalues in each interval depending on

the number of positive eigenvalues p of A1 (see Figure 2.8). Hence gyroscopically

stabilized quadratics are quasihyperbolic. They are overdamped when A1 > 0.

Note that the eigenvalue type distribution in Figure 2.8 is just a property of

gyroscopically stabilized quadratics.
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−∞ +∞
︷ ︸︸ ︷e’vals of

-ve type ︷ ︸︸ ︷e’vals of
+ve type ︷ ︸︸ ︷e’vals of

-ve type ︷ ︸︸ ︷e’vals of
+ve type

λ2n λ2n−p+1 λ2n−p λ
2(n−p)+1

λ
2(n−p)

0

λ
(n−p)+1 λn−p λ1

Figure 2.8: Eigenvalue distribution of gyroscopically stabilized quadratics Q(λ) =
λ2A2 + λA1 + A0, where p is the number of positive eigenvalues of A1.

Example 2.4.10 Let Q(λ) = λ2A2 + λA1 + A0 with

A2 = I3, A1 =


1.7122 −0.0865 0

−0.0865 1.3770 0

0 0 −5

 , A0 =


0.7227 −0.0865 0

−0.0865 0.4164 0

0 0 6

 .

Note that A2, A0 > 0 and A1 is indefinite and nonsingular. Since λ2A2 + λ|A1|+ A0

is not overdamped, Q(λ) is not gyroscopically stabilized while its eigenvalues are

distributed as in Figure 2.8 with p = 2.

2.5 Diagonalizable quasidefinite matrix polynomi-

als

Recall that a Hermitian pencil is diagonalizable by congruence if and only if its

eigenvalues belong to R ∪ {∞} and are semisimple [56], a property shared by both

definite and definitizable pencils. We now investigate how this property extends to

(quasi)hyperbolic and definite matrix polynomials, thereby extending the simultane-

ous diagonalization property (D) in Theorems 2.3.2 and 2.4.2.

Matrix polynomials cannot in general be simultaneously diagonalized by a strict

equivalence transformation. However, Lancaster and Zaballa [61] have recently char-

acterized a class of quadratic matrix polynomials that can be diagonalized by applying

strict equivalence transformations or congruences to a linearization of the quadratic

while preserving the structure of the linearization. Along the same line, we identify

amongst all quasidefinite matrix polynomials of arbitrary degree those that can be

diagonalized by a congruence transformation applied to a Hermitian linearization L

of the matrix polynomial P while maintaining the block structure of L. In particu-

lar, we show that all hyperbolic matrix polynomials can be transformed to a diagonal
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form in this way.

Two matrix polynomials are isospectral if they have the same eigenvalues with

the same partial multiplicities. If furthermore they share the same sign characteristic

then these two matrix polynomials are strictly isospectral [54]. For example any

linearization L(λ) ∈ H(P ) is isospectral to P but not necessarily strictly isospectral

as shown by Lemma 2.2.7.

In [28] the authors focus on the theory and practice of diagonalizing Q(λ) =

λ2A2 + λA1 + A0 by the application of simple λ-dependent transformations which

they call filters. This can be done without using linearizations. They show that, in

general, if systems

Q(λ) = λ2A2 + λA1 + A0, Q̃(λ) = λ2Ã2 + λÃ1 + Ã0

are isospectral, then there exist pencils F (λ) and F̃ (λ) such that

F̃ (λ)Q(λ) = Q̃(λ)F (λ).

The interest, then, is in finding filters for which Q̃(λ) is diagonal, which is useful in

engineering and control theory as there are mechanisms admitting physical imple-

mentation of such filters.

Now suppose that two n × n quasihyperbolic matrix polynomials P1 and P2 of

degree m > 1 are strictly isospectral. Let L1m and L2m be the mth basis pencils of

H(P1) and H(P2), respectively (see (2.11)). By Lemma 2.2.7 L1m and L2m are strictly

isospectral and by Theorem 2.4.6 they are also definitizable. It follows from property

(D) of Theorem 2.4.2, that there exist nonsingular matrices X1, X2 ∈ Cnm×nm such

that

X1L1m(λ)X∗1 = λ

[
Ik 0

0 −In−k

]
−

[
J+ 0

0 −J−

]
= X2L2m(λ)X∗2 .

The matrix X−1
2 X1 defines a structure preserving congruence [54], [61], [89] since it

preserves the block structure of L1m(λ): (X−1
2 X1)L1m(λ)(X−1

2 X1)∗ = L2m(λ). Thus if

there exists a diagonal quasihyperbolic matrix polynomial D(λ) of degree m strictly

isospectral to P (λ) then there exits a congruence transformation that preserves the

block structure of the mth basis pencils of H(P ) but also diagonalizes each block. If

such structure preserving congruence exists then P is said to be diagonalizable.
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In what follows D(λ) has the form

D(λ) = diag
(
d1(λ), . . . , dn(λ)

)
, (2.22a)

di(λ) = δi(λ− λim) · · · (λ− λi2)(λ− λi1), δi 6= 0, i = 1:n (2.22b)

with
⋃n
i=1{i1, . . . , im} = {1, . . . ,mn} and δi = ±1. The scalars λij , j = 1:m, i = 1:n

are the eigenvalues of D(λ) and P (λ) and are therefore real. We assume that they

are ordered as

λmn ≤ · · · ≤ λj+1 ≤ λj ≤ · · · ≤ λ1.

Theorem 2.5.1 An n×n quasihyperbolic matrix polynomial of degree m with eigen-

values λmn ≤ · · · ≤ λ1 is strictly isospectral to an n × n diagonal matrix poly-

nomial of degree m if and only if there is a grouping of its eigenvalues into n

subsets of m distinct eigenvalues {λij : j = 1:m}ni=1 such that with the ordering

λim < · · · < λi2 < λi1 , i = 1:n, the eigenvalue λij is of δi(−1)j−1 type, where λi1 is of

δi type.

Proof. Let P (λ) denote the n× n quasihyperbolic matrix polynomial of degree m.

(⇒) Suppose P (λ) is strictly isospectral to an n × n diagonal matrix D(λ) of

degree m as in (2.22). The scalar polynomials di(λ) must have distinct roots since

otherwise 0 = d′i(λij) = e∗iD
′(λij)ei for some eigenvalue λij , which implies that λij is

not of definite type, a contradiction. Here ei, the ith column of In, is a corresponding

eigenvector. Consider the grouping {λij , j = 1:m}ni=1 of the eigenvalues. With the

ordering λim < · · · < λi2 < λi1 , i = 1:n, it is easily seen that this grouping must be

such that, in each group, the eigenvalue λij is of δi(−1)j−1 type and the sign of δi is

determined by the type of λi1 .

(⇐) Let {λij , j = 1:m}ni=1 be a grouping of the eigenvalues of P into n subsets of

m distinct eigenvalues, such that with the ordering λim < · · · < λi2 < λi1 , i = 1:n,

the eigenvalue λij is of δi(−1)j−1 type, where λi1 is of δi type. Let D(λ) and di(λ) be

as in (2.22). Then by construction D(λ) is quasihyperbolic and its eigenvalues and

their types are the same as the eigenvalues of P and their types. Hence D is strictly

isospectral to P .

Example 2.5.2 If there is a 2×2 cubic quasihyperbolic matrix polynomial P (λ) with

real eigenvalues λ1 > λ2 > λ3 = λ4 > λ5 > λ6 and associated types {+,−,+,+,+,−},
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where + means positive type and − denotes negative type, then this polynomial is not

diagonalizable by structure preserving congruence because there is no sorting of the

eigenvalues into two groups of three distinct eigenvalues, which when ordered have

alternating types. Note that if the sign characteristic had been {+,−,+,+,−,+}

then P would have been diagonalizable by structure preserving congruence.

Quasihyperbolic matrix polynomials of degree m strictly isospectral to diagonal

matrix polynomials of degree m form a new subclass of Hermitian polynomials with

eigenvalues all real and of definite type. Note that n× n Hermitian quasihyperbolic

quadratics have n eigenvalues of positive type and n eigenvalues of negative type

[29, Thm. 1.3]. So there is always a sorting of the eigenvalues into n groups of two

distinct eigenvalues with opposite types. By Theorem 2.3.4, the eigenvalues of an

n×n hyperbolic matrix polynomial of degree m are distributed in m disjoint intervals

each of which contains n eigenvalues and, the types of the intervals alternate. So we

can always sort the eigenvalues in n subsets of m distinct eigenvalues, which when

ordered have alternating types. Hence by Theorem 2.5.1, quasihyperbolic quadratics

and hyperbolic matrix polynomials of arbitrary degree, say m, are strictly isospectral

to diagonal matrix polynomials of degree m. This result also applies to quasidefinite

quadratic matrix polynomials and definite matrix polynomials.

Corollary 2.5.3 (a) A quasidefinite quadratic matrix polynomial is always strictly

isospectral to a quasidefinite diagonal quadratic matrix polynomial.

(b) A definite matrix polynomial is always strictly isospectral to a definite diagonal

matrix polynomial.

Proof. The proofs of (a) and (b) are similar so we just provide that for (b). A

definite matrix polynomial P of degree m is a homogeneously rotated hyperbolic

matrix polynomial P̃ of degree m. From the comments preceding Corollary 2.5.3, P̃

is strictly isospectral to a diagonal matrix polynomial D̃ of degree m. Applying back

the homogeneous rotation to D̃ produces a diagonal matrix polynomial of degree m,

which is strictly isospectral to P .

The following result is a direct consequence of [9, Thm. 5.1].

Corollary 2.5.4 Every n×n hyperbolic quadratic matrix polynomial is strictly isospec-

tral to a real n× n tridiagonal hyperbolic matrix polynomial.
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Applying [1, Thm. 6.1] for 2n, if Q(λ) is a given n× n quasihyperbolic quadratic

matrix polynomial, we can construct an n×n tridiagonal symmetric quadratic matrix

polynomial, say Qtri, for which σ(Qtri) = σ(Q) by assigning 2n − 2 distinct real

numbers to be the eigenvalues of Q̂tri(λ), which is the leading (n − 1) × (n − 1)

submatrix of Qtri(λ), such that σ(Qtri) ∩ σ(Q̂tri) is empty.

2.6 Summary and further discussion

In this chapter we have described the diverse subclasses of Hermitian matrix polyno-

mials with real eigenvalues of definite type scattered in the literature in a consistent

way. We have pointed out their differences and similarities in particular with respect

to the distribution of their eigenvalue types on the extended real line. This latter

property allows to produce the diagram in Figure 2.1. Among these subclasses we

have identified a new class of diagonalizable matrix polynomials. One of the main

tools used in this study is the Hermitian mth basis pencil λBm−Bm−1 in (2.11) which

preserves the eigenvalue type. For this particular linearization, as shown in Lemma

2.2.7, the v-polynomial equals 1. This may explain why this linearization is the most

frequent one appearing in the literature concerning Hermitian matrix polynomials.

Though, other Hermitian linearizations of quasidefinite matrix polynomials possess

the property of preserving the eigenvalue type. For example, Fiedler-like Hermitian

linearizations defined in [7] have this property. We realized this non-obvious fact dur-

ing Fernando De Terán’s visit to Manchester in February–May 2010. He generously

shared a lemma showing that if y and x are, respectively, left and right eigenvectors

of a given Fiedler-like linearization F of P associated with an eigenvalue λ, then

y∗F ′(λ)x = w∗P ′(λ)v,

where w and v are, respectively, left and right eigenvectors of P associated with λ.

Thus F preserves the eigenvalue type.



Chapter 3

Standard Triples of Structured

Matrix Polynomials

3.1 Introduction

Standard and Jordan triples for matrix polynomials were introduced and developed

by Gohberg, Lancaster and Rodman (see for example [29], [30], [31]). Jordan triples

extend to matrix polynomials of degree m

P (λ) =
m∑
j=0

λjAj, Aj ∈ Fn×n, det(Am) 6= 0, (3.1)

the notion of Jordan pair (X, J) for a single matrix A ∈ Cn×n, where X ∈ Cn×n is

nonsingular, J is a Jordan canonical form for A, and A = XJX−1. The matrix X

in a Jordan triple (X, J, Y ) for P (λ) is n × mn, and as for the single matrix case,

it contains the right eigenvectors and generalized eigenvectors of P (λ). The matrix

J ∈ Cmn×mn is in Jordan canonical form, displaying the elementary divisors of P (λ),

and the matrix Y ∈ Cmn×n plays the role of X−1 for a single matrix, i.e., the columns

of Y ∗ determine left eigenvectors and generalized eigenvectors of P (λ). A Jordan

triple is a particular standard triple (U, T, V ) in which the matrix T is in canonical

form. Precise definitions of standard and Jordan triples are given in Section 3.2.2.

Our objective in this chapter is to study the standard and Jordan triples of struc-

tured matrix polynomials P (λ) of the types listed in Table 1.1. Indeed the eigen-

triples’ pairing of such matrix polynomials given in Table 3.1 indicates that when all

58
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Table 3.1: Eigentriple pairings (if any) for P (λ) ∈ PS(Fn) with structure S ∈ S.
When F = R, the eigenvalues of T -even and T -odd P (λ) occur in quadruples
(λ, λ,−λ,−λ) and those of T -palindromic and T -antipalindromic P (λ) occur in
quadruples

(
λ, λ, 1/λ, 1/λ

)
.

Herm Symm ∗-even, ∗-odd T -even,T -odd ∗-(anti)palindromic T -(anti)palindromic

(λ, x, y) (λ, x, x) (λ, x, y) (λ, x, y) (λ, x, y) (λ, x, y)

(λ, y, x) (−λ, y, x) (−λ, y, x) (
1

λ
, y, x) (

1

λ
, y, x)

eigenvalues are semisimple, there exists a nonsingular matrix S that depends on the

structure and connects Y with X?. For example, consider a 2×2 Hermitian quadratic

with Jordan form J = diag(λ1, λ2, λ, λ̄) and corresponding right eigenvector matrix

X = [x1 x2 x y ], where λ1, λ2 are real and λ is nonreal. The first column of

Table 3.1 implies that Y ∗ = [ s̄1x1 s̄2x2 s̄4y s̄3x ] = XS∗ for some nonsingular

matrix S of the form

S =


s1 0 0 0

0 s2 0 0

0 0 0 s4

0 0 s3 0

 .
The structure of standard and Jordan triples are well understood for Hermitian

matrix polynomials [29], [30] and more recently real symmetric matrix polynomials

[18], [60]. With no assumption on the sizes of the Jordan blocks, GLR [29] show that

if (X, J, Y ) is a Jordan triple for a Hermitian matrix polynomial then Y = SX∗ for

some nonsingular mn ×mn matrix S such that S = S∗ and JS = (JS)∗. We show

in Section 3.3 that results of this type also hold for the structures in S, where

S = {Hermitian, symmetric, ∗-even, ∗-odd, T -even, T -odd, (3.2)

∗-palindromic, ∗-antipalindromic, T -palindromic, T -antipalindromic}.

For S ∈ S, we introduce the notion of S-structured standard triples. With the

exception of T -(anti)palindromic matrix polynomials of even degree with both −1

and 1 as eigenvalues, we show that P (λ) has structure S if and only if P (λ) admits

an S-structured standard triple, and that for any P (λ) with structure S, all standard

triples for P (λ) are S-structured. Finally, we study in Section 3.4 the special case of

S-structured Jordan triples.
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Two features of this work are (a) a distinction, when necessary, between triples

and matrix polynomials defined over the complex (C) or real (R) fields, and (b) a

unified presentation of the results, except in Section 3.5, where we provide explicit

expressions for the S-matrix of S-structured Jordan triples, which are structure-

dependent.

3.2 Preliminaries

The set of all matrix polynomials with coefficient matrices in Fn×n is denoted by

P(Fn). When the polynomials are structured with structure S, the corresponding

space is denoted by PS(Fn) (see Table 1.1). Throughout this chapter we assume that

P (λ) has a nonsingular leading coefficient matrix as in (3.1).

Recall that linearizations play a major role in the development of the theory of

matrix polynomials and note that both P (λ) and its linearization L(λ) share the same

Jordan form. The construction of linearizations that respect the structure of a given

matrix polynomial has been an important area of research in the last decade (see

for example [8], [24], [37], [69]). We give in Section 3.2.1 explicit expressions for the

structured linearizations, which are important for the derivation of some results in

Section 3.3 and all the results in Section 3.4

3.2.1 Structured linearizations

Let P (λ) =
∑m

j=0 λ
jAj ∈ PS(Fn) with det(Am) 6= 0 and S ∈ S. Recall that the vector

space of pencils L1(P ) in (1.9) provides a rich source for structured linearizations. It

is shown in [37], [65], [69] that for some v ∈ Fm satisfying the additional constraint

(i) v ∈ Rm if S = Hermitian,

(ii) v = Σmv if S ∈ {T -even, T -odd} or v = Σmv if S ∈ {∗-even, ∗-odd},

(iii) v = Fmv if S ∈ {T -palindromic, T -antipalindromic} or v = Fmv̄ if S ∈

{∗-palindromic, ∗-antipalindromic},

where

Σm = diag((−1)m−1, . . . , (−1)0), Fm =

 1

. . .

1


m×m

,
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there exists a unique pencil λAS + BS ∈ L1(P ) with structure S ∈ S. This pencil

is a linearization of P (λ) if the roots of the v-polynomial are not eigenvalues of P ,

see Theorem 1.2.2. The vector v = em is an admissible vector for S ∈ {Hermitian,

symmetric, ?-even, ?-odd} since em ∈ Rm and Σmem = em. Also, the roots of p(x; em)

are all equal to ∞ and since det(Am) 6= 0 then ∞ /∈ σ(P ). Hence the structured

pencils λAS +BS ∈ L1(P ) with vector em are linearizations of P . They are given by

λAS + BS =

 λA(1) + B(1) when S ∈ {Hermitian, symmetric},

λA(−1) + B(−1) when S ∈ {?-even, ?-odd},
(3.3)

where

A(ε) =


0 · · · 0 εm−1Am
... . . . εm−2Am−1

... . . . . . .
...

ε0Am ε0Am−1 · · · ε0A1

 ,
and

B(ε) = −



0 . . . 0 εm−1Am 0
... . . . εm−2Am εm−2Am−1

...

0 . . . . . .
...

...

εAm εAm−1 · · · εA2 0

0 . . . . . . 0 −A0


.

Note that for S ∈ {Hermitian, symmetric}, λAS+BS = λBm−Bm−1 that is given in

(2.11) and for ?-(anti)palindromic P (λ), we have 0 /∈ σ(P ) since ∞ 6∈ σ(P ). When

m = 2k + 1, v = ek+1 satisfies v = Fmv = Fmv and 0,∞ are the only roots of the

v-polynomial. The corresponding ?-(anti)palindromic pencils in L1(P ), given by

λAS + BS =

 λAodd + (Aodd)? when S = ?-palindromic with m = 2k + 1,

λAodd − (Aodd)? when S = ?-antipalindromic with m = 2k + 1,

(3.4)

where

Aodd =

[
Aodd11 Aodd12

Aodd21 Aodd22

]
, (3.5)
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with Aodd11 = (Aodd22 )T = 0nk×n(k+1) and

Aodd12 =


−A?m 0 . . . 0

−A?m−1
. . .

...
...

. . . . . . 0

−A?k+2 . . . −A?m−1 −A?m

 , Aodd21 =


Am Am−1 . . . Ak+1

0
. . . . . .

...
...

. . . . . . Am−1

0 . . . 0 Am

 ,

are linearizations of P (λ).

For ?-(anti)palindromic polynomials of even degree m = 2k, the simplest nonzero

vector v satisfying Fmv = v when ? = T or Fmv = v̄ when ? = ∗ is of the form

v = [ 0 · · · 0 z z? 0 · · · 0 ]T ,

where z and z? are in positions k and k + 1, respectively. The corresponding ?-

(anti)palindromic pencil in L1(P ) is a linearization of P (λ) if −z/z? is not an eigen-

value of P and is given by

λAS+BS =

 λAeven− (z) + (Aeven− (z))? when S = ?-palindromic with m = 2k,

λAeven− (z)− (Aeven− (z))? where S = ?-antipalindromic with m = 2k,

(3.6)

where

Aeven− (z) =

[
Aeven11 (z) Aeven12 (z)

Aeven21 (z) Aeven22 (z)

]
,

with

Aeven11 (z) = z


0 0 . . . 0
...

...
...

0 0 . . . 0

Am Am−1 . . . Ak+1

 , Aeven22 (z) = z


Ak+1 0 . . . 0

...
...

...

Am−1 0 . . . 0

Am 0 . . . 0

 ,

Aeven12 (z) = −



z?A0 zA0 0 · · · · · · 0

z?A1 z?A0 + zA1

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

z?Ak−2 z?Ak−2 + zAk−1 · · · z?A1 + zA2 z?A0 + zA1 zA0

−zAk + z?Ak−1 z?Ak−2 . . . z?A1 z?A0

 ,
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Aeven21 (z) =



z?Am zAm + z?Am−1 zAm−1 + z?Am−2 . . . . . . zAk+2 + z?Ak+1

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . zAm−1 + z?Am−2

...
. . . z?Am zAm + z?Am−1

0 . . . . . . . . . 0 z?Am

 .

Note that when ? = ∗, we can always pick a z ∈ F such that −z/z? /∈ σ(P ). But

when ? = T , −z/z? = −1 so if −1 ∈ σ(P ), the corresponding ?-(anti)palindromic

pencil in L1(P ) is not a linearization of P (λ). In fact it is shown in [69] that some T -

(anti)palindromic matrix polynomials of even degree do not have T -(anti)palindromic

linearizations. Instead, we allow a linearization with “anti” structure: palindromic be-

comes antipalindromic and vice versa. For this, let v = [ 0 · · · 0 1 −1 0 · · · 0 ]T

satisfying v = −Fmv. If P (λ) is T -palindromic then there is a unique T -antipalindromic

pencil in L1(P ) with vector v. Similarly if P (λ) is T -antipalindromic then there is

unique T -palindromic pencil in L1(P ) with vector v. Such pencils are linearizations

of P if 1 /∈ σ(P ) and are given by

λAS + BS =

 λAeven+ − (Aeven+ )T when S = T -palindromic with m = 2k,

λAeven+ + (Aeven+ )T when S = T -antipalindromic with m = 2k,

(3.7)

where Aeven+ (z) has a block structure similar to that of Aeven− (z) in (3.6) with z

replaced by 1 and z? replaced by −1. In particular, when m = 2,

Aeven+ =

[
A2 A1 + A0

−A2 A2

]
.

The next result, useful later, shows that the linearizations (3.3)–(3.7) share a

property.

Lemma 3.2.1 Let S ∈ S and P (λ) ∈ PS(Fn) with nonsingular leading coefficient. If

λAS + BS is a structured linearization of P (λ) as in (3.3)–(3.7) then C = −A−1
S BS ,

where C is the companion form of P (λ) given in (1.8).

Proof. Some easy calculations show that −ASC = BS .

Hence, with the exception of T -(anti)palindromic matrix polynomials of even

degree with both −1 and 1 as eigenvalues, the companion form of P (λ) can be

factorized as C = −A−1
S BS , where λAS+BS = AS(λI−C) is a structured linearization
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of P (λ).

3.2.2 Standard triples

Recall that (U, T ) is an (m,n)-standard pair over F if T ∈ Fmn×mn and U ∈ Fn×mn

are such that

Q = Q(U, T ) :=


UTm−1

...

UT

U

 (3.8)

is nonsingular [62, Def. 2.1]. The triple (U, T, V ) forms an (m,n)-standard triple over

F if (U, T ) is an (m,n)-standard pair over F and V ∈ Fmn×n is such that UTm−1V is

nonsingular and, if m ≥ 2,

UT jV = 0, j = 0:m− 2, (3.9)

or equivalently,

QV = e1 ⊗N (3.10)

for some nonsingular n× n matrix N , and where e1 is the first column of the m×m

identity matrix [62, Def. 2.3]. Note that the definitions of standard pairs and triples

make no reference to matrix polynomials.

An (m,n)-standard pair (U, T ) over F is a standard pair for P (λ) =
∑m

j=0 λ
jAj if

AmUT
m + Am−1UT

m−1 + · · ·+ A1UT + A0U = 0, (3.11)

[31, p. 46]. A standard triple (U, T, V ) is a standard triple for P (λ) if (3.11) holds and

Am = (UTm−1V )−1. Any P (λ) ∈ P(Fn) with nonsingular leading coefficient admits

a standard triple. For example, it is easy to check that

(eTm ⊗ In, C, e1 ⊗ A−1
m ) (3.12)

with C as in (1.8) is a standard triple for P (λ).

Let Ui ∈ Fn×mn, Ti ∈ Fmn×mn and Vi ∈ Fmn×n, i = 1, 2. Then (U1, T1, V1) is
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similar to (U2, T2, V2) if there exists a nonsingular G ∈ Fmn×mn such that

U2 = U1G, T2 = G−1T1G, V2 = G−1V1.

Moreover if (U1, T1, V1) is a standard triple so is (U2, T2, V2) [30, Prop. 12.1.3]. Note

that if (U, T, V ) is a standard triple for P (λ) then

(eTm ⊗ In)Q = U, Q−1CQ = T, e1 ⊗ A−1
m = QV,

with Q as in (3.8). Hence any standard triple (U, T, V ) for P (λ) is similar to (eTm ⊗

In, C, e1⊗A−1
m ). Note that because T is similar to C, λI−T is a linearization of P (λ)

and σ(P ) = σ(T ). The following result [30, Thm. 12.1.4] will be useful.

Lemma 3.2.2 Let U ∈ Fn×mn, T ∈ Fmn×mn, V ∈ Fmn×n and let P (λ) ∈ P(Fn) be

of degree m with nonsingular leading coefficient. Then (U, T, V ) is a standard triple

for P (λ) if and only if P (λ)−1 = U(λI − T )−1V for λ ∈ C \ σ(P ).

A Jordan triple (X, J, Y ) over F for P (λ) is a standard triple for P (λ) for which

the matrix J is in Jordan form or real Jordan form if F = R. By (3.11) and [31,

Prop. 2.1], we have that
∑m

j=0AjXJ
j = 0 and

∑m
j=0 J

jY Aj = 0. The columns of X

and Y ∗ determine right and left eigenvectors and generalized eigenvectors of P (λ).

The matrix J is the Jordan form of the companion form C of P (λ). In a similar way

that a Jordan pair (X, J) with X nonsingular generates A − λI via A = XJX−1,

I = XX−1, an (m,n)-Jordan triple (X, J, Y ) over F generates a matrix polynomial

P (λ) =
∑m

j=0 λ
jAj ∈ P(Fn) uniquely, where

Am = (XJm−1Y )−1, (3.13)

and for 1 ≤ j ≤ m,

Am−j = −Am
m∑

i=m−j+1

XJ i+j−1Y Ai = −
m∑

i=m−j+1

AiXJ
i+j−1Y Am. (3.14)

These formulae follow directly from [58, Thm. 14.7.1] on using [58, Thm. 14.2.5], and

a similar argument to that in the proof of [49, Thm. 1] can be used to prove the

uniqueness of P (λ) (see also [62, Thm. 2.4]).
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3.3 S-structured standard triples

We now consider standard triples in the context of structured matrix polynomials.

We start by listing two assumptions used in our analysis. Let S ∈ S, P (λ) ∈ PS(Fn)

have degree m with nonsingular leading coefficient and let T ∈ Fmn×mn.

Assumption (a): if S ∈ {T -palindromic, T -antipalindromic} and P (λ)

has degree m = 2k then either −1 /∈ σ(P ) or 1 /∈ σ(P ).

Assumption (b): if S ∈ {T -palindromic, T -antipalindromic} and m =

2k then either −1 /∈ σ(T ) or 1 /∈ σ(T ).

These two assumptions are equivalent when λI − T is a linearization of P (λ).

For some T satisfying assumption (b) we define uS(T ), tS(T ), vS(T ) as in Table 3.2.

Note that assumption (b) ensures the existence of α ∈ F such that α?α = 1 and

−α /∈ σ(T ). Also, for ?-(anti)palindromic structures, the eigenvalues of T come in

pairs (λ, λ−?). Hence 0 /∈ σ(T ) since ∞ /∈ σ(T ) and T−? is well defined.

Before stating our main result in Theorem 3.3.5, we provide a few lemmas and

introduce the notion of S-structured standard triple. The first lemma of this section

extends to all structures in S a result in [58, Cor. 14.2.1] for Hermitian structure.

Table 3.2: Definition of uS(T ), tS(T ), vS(T ) for some T ∈ Fmn×mn satisfying assump-
tion (b), where α is some scalar in F such that α?α = 1 and −α /∈ σ(T ).

Structure S uS(T ) tS(T ) vS(T )

Hermitian/symmetric I T? I

?-even −I −T? I

?-odd I −T? I

?-palindromic, m = 2k + 1 −T?(k−1) T−? T?k

?-palindromic, m = 2k −T?(k−1)(I + αT?)−1 T−? (I + αT?)T?(k−1)

?-antipalindromic, m = 2k + 1 T?(k−1) T−? T?k

?-antipalindromicm = 2k T?(k−1)(I + αT?)−1 T−? (I + αT?)T?(k−1)

Lemma 3.3.1 Let (U, T, V ) be an (m,n)-standard triple for P (λ) ∈ P(Fn) with

nonsingular leading coefficient and let S ∈ S. Assume that T satisfies assumption (b).

Then P (λ) has structure S if and only if (V ?uS(T ), tS(T ), vS(T )U?) is a standard

triple for P (λ).
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Proof. The proof for S ∈ {Hermitian, symmetric, ?-even, ?-odd} is easy to obtain

using the resolvent form for P (λ) given in Lemma 3.2.2 and the definition of the

structures in Table 1.1. See also [58, Cor. 14.2.1] for the Hermitian structure.

Now suppose that P (λ) is ?-palindromic. Since any standard triple for P (λ) is

similar to (eTm ⊗ In, C, e1 ⊗ A−1
m ) =: (Ũ , C, Ṽ ), it suffices to show that this standard

triple is similar to (Ṽ ?uS(C), C−?, vS(C)Ũ?). We need to consider three cases:

(i) m = 2k+ 1. The pencil λAodd + (Aodd)? with Aodd as in (3.5) is a linearization

of P (λ). By Lemma 3.2.1, C = −(Aodd)−1(Aodd)?. So if we let G−1 = Aodd then

Ṽ ?uS(C) = −(e1 ⊗ A−1
m )?(C?)k−1 = ŨG, G−1CG = C−? = tS(C),

and

G−1Ṽ = G−1(e1 ⊗ A−1
m ) = e2k ⊗ I = (C?)k(em ⊗ I) = vS(C)Ũ?.

(ii) m = 2k, ? = T and −1 ∈ σ(T ). From assumption (b) it follows that 1 /∈ σ(T )

so we can take α = −1 in the definition of uS and vS . The pencil λAeven+ −

(Aeven+ )? with Aeven+ as in (3.7) is a linearization of P (λ). By Lemma 3.2.1,

C = −(Aeven+ )−1(Aeven+ )?. If we let G−1 = Aeven+ then as in (i), G−1CG = tS(C).

Also,

vS(C)ŨT = (I − CT )CT (k−1)(em ⊗ In)

= ek+1 ⊗ I − ek ⊗ I

= −G−1(e1 ⊗ I)A−1
m = −G−1Ṽ .

From Ṽ = −GvS(C)ŨT it follows that Ṽ T = −ŨC(k−1)(I − C)GT so that

Ṽ TuS(C) = ŨC(k−1)(I − C)GTCT (k−1)(I − CT )−1

= ŨC(k−1)(I − C)C(1−k)GT (I − CT )−1

= −ŨG(I − CT )(I − CT )−1 = −ŨG,

where we used GTCT (k−1)G−T = C−(k−1) and CGT = −G.

(iii) m = 2k, ? = ∗, T and −1 /∈ σ(T ). In this case Lemma 3.2.1 says that C =
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−(Aeven− (z))−1(Aeven− (z))? with Aeven− (z) as in (3.6). The proof is similar to that

in (ii) with α = z/z?.

Conversely, suppose that (U, T, V ) and (V ?uS(T ), T−?, vS(T )U?) are standard

triples for P (λ). Assumption (b) guarantees the existence of α ∈ F such that α?α = 1

and I + αT? is nonsingular. Hence uS and vS are well defined. Using the resolvent

form for P (λ), P (λ)−1 = U(λI − T )−1V , we obtain

λ−m(P (λ−?))−? = λ−m(U(λ−?I − T )−1V )? = λ1−mV ?(I − λT?)−1U?.

If ρ(λT?) < 1 then

(I − λT?)−1 = I + λT? + λ2T?2 + · · · . (3.15)

Using (3.15) and the fact that V ?T?jU? = 0, j = 0:m− 2 (see (3.9)), we obtain

λ−m(P (λ−?))−? = V ?T?(m−1)(I + λT? + λ2T?2 + · · ·)U?

= V ?T?(k−1)(I − λT?)−1T?(m−k)U?

= −V ?T?(k−1)(λI − T−?)−1T?(m−k−1)U? (3.16)

for all |λ| < (ρ(T ))−1. When m = 2k + 1, (3.16) reads as

λ−m(P (λ−?))−? = V ?uS(T )(λI − T−?)−1vS(T )U? = P (λ)−1.

Note that (λI − T−?)−1 commutes with T?k−1, (I + αT?) and (I + αT?)−1 so when

m = 2k, (3.16) can be rewritten as

λ−m(P (λ−?))−? = V ?uS(T )(λI − T−?)−1vS(T )U? = P (λ)−1

for all |λ| < (ρ(T ))−1. Since λ−m(P (λ−?))−? = P (λ)−1 holds for many values of λ,

P (λ) = λmP?(λ−1) for all λ, that is, P (λ) is ?-palindromic.

The results for the ?-antipalindromic structure are proved in a similar way.
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In the proof of Lemma 3.3.1 we use the fact that if (U, T, V ) is a standard triple

for a structured P (λ) then there exists a nonsingular S such that

US = V ?uS(T ), S−1TS = tS(T ), S−1V = vS(T )U?. (3.17)

These relations imply certain properties of S, which we use in our definition of S-

structured standard triples.

Definition 3.3.2 (S-structured standard triple) Let S ∈ S. An (m,n)-standard

triple (U, T, V ) with T satisfying assumption (b) is said to be S-structured if V =

SvS(T )U? for some nonsingular S ∈ Fmn×mn having the following properties:

• S = S?, TS = (TS)? when S ∈ {Hermitian, symmetric},

• S = −S?, TS = (TS)? when S = ?-even,

• S = S?, TS = −(TS)? when S = ?-odd,

• TS? = −S when S = ?-palindromic and m = 2k + 1 or TS? = −αS when S

= ?-palindromic and m = 2k,

• TS? = S when S = ?-antipalindromic and m = 2k + 1 or TS? = αS when S

= ?-antipalindromic and m = 2k,

for some α ∈ F such that α?α = 1 and −α /∈ σ(T ).

We refer to the matrix S in Definition 3.3.2 as the S-matrix of the S-structured stan-

dard triple (U, T, V ). We point out that Hermitian and symmetric structured stan-

dard triples are called self-adjoint standard triples in the literature (see for example

[30, p. 244]). For ?-(anti)palindromic structures, the matrix T in Definition 3.3.2 is

S−1-unitary, that is, T?S−1T = S−1, and with additional constraints on T ’s struc-

ture, Lancaster, Prells and Rodman refer to (U, T, V ) as a unitary standard triple

[55, Def. 4]. Hence a unitary standard triple is S-structured but the converse is not

true in general.

Our definition of S-structured standard triples is justified by the next lemma.

Lemma 3.3.3 Let S ∈ S. An (m,n)-standard triple (U, T, V ) with T satisfying as-

sumption (b) is S-structured if and only if it is similar to (V ?uS(T ), tS(T ), vS(T )U?).
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Proof. The proof of this lemma appears in [60, Thm. 3.4] for the symmetric structure

and the proof there extends easily to structures S ∈ {Hermitian, ?-even, ?-odd}.

Suppose S=?-palindromic (the proof for ?-antipalindromic structure is similar

and so we omit it). If m = 2k + 1 and (U, T, V ) is S-structured, then there exists S

nonsingular such that TS? = −S and V = ST?kU?. Hence S−1TS = T−? and

US = V ?S−?T−kS = −V ?S−?T−(k−1)S? = −V ?T?(k−1).

Hence (U, T, V ) is similar to (−V ?T?k−1, T−?, T?m−k−1U?).

When m = 2k, TS? = −αS and V = S(I + αT?)T?(k−1)U? for some α ∈ F such

that α?α = 1 and −α /∈ σ(T ). The first equality implies that S−1TS = T−? while

the first and second equality yield

US = V ?S−?T−(k−1)(I + α?T )−1S

= V ?T?(k−1)S−?(I + α?T )−1S

= −V ?T?(k−1)(I + αT?)−1 = V ?uS(T ).

Conversely, if (U, T, V ) is similar to (V ?uS(T ), T−?, vS(T )U?) then there exists

S nonsingular such that (3.17) holds with tS(T ) = T−?. It remains to show that

TS? = −S when m = 2k + 1 and TS? = −αS when m = 2k. If m = 2k + 1, the

first and last equalities in (3.17) imply that V = −ST?kS−?T k−1V and since V has

full rank, −ST?kS−?T k−1 = I, which on using the second equality in (3.17) yields

TS? = −S. When m = 2k, the first and last equalities in (3.17) and the fact that V

has full rank imply that

−ST?(k−1)(I + αT?)S−?(I + α?T )−1T (k−1) = I

⇔ −T−(k−1)(I + αT−1)SS−?(I + α?T )−1T (k−1) = I

⇔ −T−(k−1)SS−?(αT−1)T (k−1) = I

⇔ −αSS−? = T (k−1)T−(k−2) = T,

which completes the proof.

The next lemma shows that any standard triple that is similar to an S-structured

standard triple is itself S-structured.
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Lemma 3.3.4 Let (U, T, V ) be a standard triple similar to (U1, T1, V1), that is,

(U1, T1, V1) = (UG,G−1TG,G−1V )

for some nonsingular matrix G. Let S ∈ S and assume that T satisfies assump-

tion (b). If (U, T, V ) is S-structured with matrix S then (U1, T1, V1) is S-structured

with matrix S1 = G−1SG−?.

Proof. It is easy to check that V1 = S1vS(T1)U?1 and since the properties of S are

preserved by ?-congruence, (U1, T1, V1) is S-structured with matrix S1.

We can now state our main result, which is a direct consequence of Lemma 3.3.1,

Lemma 3.3.3 and Lemma 3.3.4. It extends a result for Hermitian structure [30,

Thm. 12.2.2] to all structures in S.

Theorem 3.3.5 Let S ∈ S and P (λ) ∈ P(Fn) with nonsingular leading coefficient

satisfying assumption (a). Then P (λ) has structure S if and only if P (λ) admits

an S-structured standard triple, in which case every standard triple for P (λ) is S-

structured.

The structure of the matrix S in an S-structured standard triple is uniquely deter-

mined by the triple, as shown by the next result.

Proposition 3.3.6 Let S ∈ S and (U, T, V ) be an S-structured standard triple with

matrix S. Then

S = Q(U, T )−1Q
(
V ?uS(T ), tS(T )

)
.

with Q(U, T ) as in (3.8).

Proof. Using Definition 3.3.2 we check that Q(U, T )S = Q
(
V ?uS(T ), tS(T )

)
.

The matrix S is also easy to construct when the matrix coefficients of P (λ) are

known.

Proposition 3.3.7 Let S ∈ S and P (λ) ∈ PS(Fn) of degree m with nonsingular

leading coefficient be satisfying assumption (a). If (U, T ) is a standard pair for P (λ)

then (U, T, SvS(T )U?) is an S-structured standard triple for P (λ) with matrix S given



CHAPTER 3. STRUCTURED STANDARD TRIPLES 72

by

S−1 =


QTAeven+ Q if P is T -(anti)palindromic, m = 2k and −1 ∈ σ(P ),

z−?Q?Aeven− (z)Q if P is ?-(anti)palindromic, m = 2k, −z/z? /∈ σ(P ),

Q?ASQ otherwise,

where Q := Q(U, T ) is as in (3.8), and AS , Aeven− (z) and Aeven+ are as in (3.3)–(3.7).

Proof. We first show that the matrix S in the proposition has the properties listed in

Definition 3.3.2. Note that under assumption (a), P (λ) has a structured linearization

λAS+BS , which is one of (3.3)–(3.7). The pair (Q, T ) is a standard pair for λAS+BS ,

and hence

Q?ASQT = −Q?BSQ⇔ Q?BSQ = −z?S−1T,

where z = 1 except when AS = Aeven− (z), in which case z is such that −z/z? 6∈ σ(P ).

Since ?-congruence preserves any structure in S, the pencil

Q?(λAS + BS)Q = z?
(
λS−1 − S−1T

)
has the same structure as λAS+BS , and hence S satisfies the appropriate properties.

It remains to show that V in (3.10), for which (U, T, V ) is a standard triple for

P (λ) ∈ PS(Fn), has the form V = SvS(T )U?. For S ∈ {Hermitian, symmetric,

?-even, ?-odd}, vS(T ) = I. Since U? = Q?(em ⊗ In) and S−1 = Q?ASQ, we find

that

SU? = Q−1A−1
S Q

−?Q?(em ⊗ In) = Q−1A−1
S (em ⊗ In).

From the block structure of AS in (3.3) we see that AS(e1 ⊗ In) = (em ⊗ I)Am, or

equivalently, A−1
S (em ⊗ I) = (e1 ⊗ In)A−1

m since AS and Am are both nonsingular.

Hence SU? = Q−1(e1 ⊗ In)A−1
m = V .

When P (λ) is ?-(anti)palindromic of odd degree then the definition of V in (3.10),

the expression for S in the proposition and the structure of AS = Aodd in (3.4) yield

S−1V = Q?ASQQ−1(e1 ⊗ In)A−1
m = T?kU?.

For a ?-palindromic P of even degree, we have shown that TS? = −αS, where

α = −z/z?. From the definition of Q in (3.8), T?(k−1)U? = Q?(ek+1⊗ In). Hence on
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using the definition of V in (3.10), the expression for S in the proposition and the

structure of AS = Aeven− (z) in (3.6) we have that

QS(I + αT?)T?(k−1)U? = Q(S − S?)Q?(ek+1 ⊗ In)

= z?
(
Aeven− (z)

)−1
(ek+1 ⊗ In)− z

(
Aeven− (z)

)−?
(ek+1 ⊗ In).

From the definition of Aeven− (z) in (3.6), we find that

Aeven− (z)



z−1A−1
m − zm−1P (z,−z?)−1

(−z)m−2z?P (z,−z?)−1

(−z)m−3z?2P (z,−z?)−1

...

(−z)0z?(m−1)P (z,−z?)−1


= −α−1ek+1 ⊗ In,

(
Aeven− (z)

)?


−zm−1(z?)0P (z,−z?)−1

(−z)m−2z?P (z,−z?)−1

(−z)m−3z?2P (z,−z?)−1

...

(−z)0z?(m−1)P (z,−z?)−1


= ek+1 ⊗ In,

where P (z,−z?) =
∑m

j=0 z
j(−z?)m−jAj. Hence,

z?
(
Aeven− (z)

)−1
(ek+1 ⊗ In)− z

(
Aeven− (z)

)−?
(ek+1 ⊗ In) = (e1 ⊗ In)A−1

m ,

that is, S(I+αT?)T?(k−1)U? = Q−1(e1⊗In)A−1
m = V . The proof for ?-antipalindromic

P is along the same lines.

It follows from Theorem 3.3.5 and Proposition 3.3.7 that if P (λ) has structure S

then the standard triple (3.12) is S-structured with matrix S = A−1
S except when

AS = Aeven− (z) in which case S = z?(Aeven− (z))−1.

3.4 S-structured Jordan triples

We now explain how to obtain explicit expressions for the Jordan matrix and S-matrix

of S-structured Jordan triples (X, J, SJvS(J)X?) for P (λ) ∈ PS(Fn). We note that

the matrix SJ displays the sign characteristic of P (λ). Indeed, if (U, T, STvS(T )U?)
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is a standard triple for P (λ) ∈ PS(Fn), then the sign characteristic of P (λ) can be

defined as the sign characteristic of the pair (T, S−1
T ), which is a list of signs, with a

sign (+1 or −1) attached to each partial multiplicity of

• real eigenvalues of Hermitian or real symmetric matrix polynomials,

• purely imaginary eigenvalues of ∗-even, ∗-odd, real T -even and real T -odd ma-

trix polynomials, and

• eigenvalues with unit modulus of ∗-(anti)palindromic and real T -(anti)palindromic

matrix polynomials.

These signs can be read off the canonical decomposition of λS−1
T − S−1

T T via ?-

congruence (see [30, Section 12.4] for Hermitian structure). Note that the definition

of the sign characteristic for P (λ) is independent of the choice of standard triple.

Indeed if (Ui, Ti, STivS(Ti)U
?
i ), i = 1, 2 are S-structured standard triples for P (λ),

then by Lemma 3.3.4 there exists a nonsingular G such that T2 = G−1T1G and

ST2 = G−1ST1G
−?. Hence, λS−1

T2
− S−1

T2
T2 = G?(λS−1

T1
− S−1

T1
T1)G, that is, the pencils

λS−1
Ti
−S−1

Ti
Ti, i = 1, 2 are ?-congruent. They share the same canonical decomposition

via ?-congruence and therefore the same sign characteristic.

We know that the triple
(
(eTm ⊗ In), C, (e1 ⊗ A−1

m )
)

is a standard triple for P (λ)

and by Theorem 3.3.5, it is S-structured with S-matrix as in Proposition 3.3.7 with

Q = Imn, say SC = z?A−1
S . Hence, on using Lemma 3.2.1, we find that

λS−1
C − S

−1
C C = λz−?AS + z−?BS ,

where λAS + BS is a structured linearization of P (λ) as in (3.3)–(3.7), and z = 1

except when AS = Aeven− (z), in which case z ∈ F is chosen such that −z/z? /∈ σ(P ).

So what we need is a canonical decomposition of λAS + BS via ?-congruence,

Z?(λAS + BS)Z = λ(Z?ASZ)− (Z?ASZ)
(
Z−1CZ

)
= z?(λS−1

J − S
−1
J J),

where J = Z−1CZ is the Jordan form of C. Fortunately, such decompositions are

available in the literature for all the structures in S. We use these canonical decom-

positions to provide explicit expressions for J and SJ in Section 3.5. These expressions
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show that SJ and J have the same block structure and that we can read the sign

characteristic of P (λ) from certain diagonal blocks of SJ .

3.5 Explicit expressions for J and SJ

Using the canonical decompositions of structured pencils via ?-congruences, we pro-

vide in this section an explicit expression for the Jordan matrix and S-matrix of

S-structured Jordan triples (X, J, SJvS(J)X?) of P (λ) ∈ PS(Fn) for each S ∈ S.

We assume that P (λ) is of degree m with nonsingular leading coefficient matrix. To

facilitate the description of J and SJ , we introduce the matrices F1 = E1 = [1] and

for integers k > 1

Ek =



1

−1

. . .

1

(−1)k−1


k×k

= (−1)k−1ET
k , Fk =

 1

. . .

1


k×k

.

We denote by

J`k(λk) =


λk 1

λk
. . .

. . . 1

λk

 ∈ C`k×`k , (3.18)

the Jordan block of size `k associated with λk, and by

K2mk(λk, λ̄k) = K2mk(Λk) =


Λk I

Λk
. . .

. . . I

Λk

 ∈ R2mk×2mk , Λk =

[
αk βk

−βk αk

]
,

(3.19)

the 2mk × 2mk real Jordan block associated with the pair of complex conjugate

eigenvalues (λk, λ̄k), where λk = αk + iβk with αk, βk ∈ R, βk 6= 0. We use the

notation
⊕r

j=1 Fj to denote the direct sum of the matrices F1, . . . , Fr.

Note that there are restrictions on the Jordan structure of P . For instance,

a regular n × n matrix polynomial cannot have more than n elementary divisors
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associated with the same eigenvalue [64]. Also, the elementary divisors have certain

pairing, which depends on the structure S ∈ S and the eigenvalue. Hence we describe

for each S ∈ S the elementary divisors arising from P (λ) ∈ PS(Fn) and then provide

an expression for J and SJ .

3.5.1 Hermitian structure

Suppose P (λ) is Hermitian with

• r real elementary divisors (λ− λj)`j , j = 1: r, and

• s pairs of nonreal conjugate elementary divisors (λ−µj)mj , (λ−µj)mj , j = 1: s,

with `j,mj such that
∑r

j=1 `j + 2
∑s

j=1 mj = mn. It follows from [56, Thm. 6.1] that

J =
r⊕
j=1

J`j(λj)⊕
s⊕
j=1

(Jmj(µ̄j)⊕ Jmj(µj)), SJ = S−1
J =

r⊕
j=1

εjF`j ⊕
s⊕
j=1

F2mj .

Here {ε1, . . . , εr} with εj = ±1 is the sign characteristic associated with the real

eigenvalues λj, j = 1: r of P (λ). We easily check that SJ = S∗J and JSJ = (JSJ)∗.

3.5.2 Real symmetric structure

Suppose P (λ) is real symmetric with

• r real elementary divisors (λ− λj)`j , j = 1: r, and

• s pairs of nonreal conjugate elementary divisors (λ−µj)mj , (λ−µj)mj , j = 1: s,

with `j,mj such that
∑r

j=1 `j + 2
∑s

j=1mj = mn. On using [56, Thm. 9.2] we find

that

J =
r⊕
j=1

J`j(λj)⊕
s⊕
j=1

K2mj(µj, µ̄j), SJ = S−1
J =

r⊕
j=1

εjF`j ⊕
s⊕
j=1

F2mj ,

where the scalars εj = ±1 form the sign characteristic associated with the real eigen-

values of P (λ). Note that SJ = STJ and JSJ = (JSJ)T .
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3.5.3 Complex symmetric structure

Suppose P (λ) is complex symmetric with q elementary divisors (λ − λj)mj , λj ∈ C,

j = 1: q, with mj such that
∑q

j=1 mj = mn. Then [83, Prop. 4.3] leads to

J =

q⊕
j=1

Jmj(λj), SJ = S−1
J =

q⊕
j=1

Fmj ,

which satisfy SJ = STJ and JSJ = (JSJ)T .

3.5.4 ∗-even structure

Suppose P (λ) is ∗-even with

• r purely imaginary (including 0) elementary divisors (λ− iβj)`j , j = 1: r, and

• s pairs of nonzero and non-purely imaginary elementary divisors (λ − iµj)mj ,

(λ− iµj)mj , j = 1: s,

with `j,mj such that
∑r

j=1 `j + 2
∑s

j=1mj = mn. With the change of eigenvalue

parameter λ = −iµ, the ∗-even linearization of P (λ), λAS + BS = µ(−iAS) + BS
becomes a Hermitian pencil in µ. Using Section 3.5.1 we obtain that

J = −i
( r⊕

j=1

J`j(−βj)⊕
s⊕
j=1

(Jmj(−µ̄j)⊕ Jmj(−µj))
)
,

SJ = −i

(
r⊕
j=1

εjF`j ⊕
s⊕
j=1

F2mj

)
.

Here {ε1, . . . , εr} with εj = ±1 is the sign characteristic associated with the zero and

purely imaginary eigenvalues of P (λ). Note that SJ = −S∗J and JSJ = (JSJ)∗.

3.5.5 Real T -even structure

Suppose P (λ) is real T -even with (see [66])

• t zero elementary divisors λnj with nj even, j = 1: t,

• r pairs of real elementary divisors (λ+ αj)
pj , (λ− αj)pj with pj odd if αj = 0,

j = 1: r,
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• s pairs of purely imaginary elementary divisors (λ + iβj)
kj , (λ − iβj)

kj with

βj > 0, j = 1: s, and

• q quadruples of nonreal and non-purely imaginary elementary divisors (λ +

µj)
mj , (λ− µj)mj , (λ+ µj)

mj , (λ− µj)mj , j = 1: q,

with nj, pj, kj,mj such that
∑t

j=1 nj + 2
∑r

j=1 pj + 2
∑s

j=1 kj + 4
∑q

j=1mj = mn.

Using [57, Thm. 16.1], we find that

J =
t⊕

j=1

Jnj(0)⊕
r⊕
j=1

(
Jpj(αj)⊕−Jpj(αj)T

)
⊕

s⊕
j=1

K2kj(iβj,−iβj)⊕
q⊕
j=1

(
K2mj(µj, µ̄j)⊕−K2mj(µj, µ̄j)

T
)
,

SJ =
t⊕

j=1

εjEnj ⊕
r⊕
j=1

[
0 −Ipj
Ipj 0

]
⊕

s⊕
j=1

εj(Ekj ⊗ E
kj
2 )⊕

q⊕
j=1

[
0 −I2mj

I2mj 0

]
,

where the scalars εj = ±1 form the sign characteristic associated with the purely

imaginary eigenvalues and zero eigenvalues of even partial multiplicities (see [77]).

We easily check that SJ = −STJ and JSJ = (JSJ)T .

3.5.6 Complex T -even structure

Let λj ∈ C \ {0} and suppose P (λ) is complex T -even with (see [66])

• t zero elementary divisors λmj with mj even, j = 1: t, and

• q pairs of elementary divisors (λ − λj)
kj , (λ + λj)

kj with kj odd if λj = 0,

j = 1: q,

with mj, kj such that
∑t

j=1mj + 2
∑q

j=1 kj = mn. Then, by [83, Prop. 4.7 (b)], we

obtain that

J =
t⊕

j=1

Jmj(0)⊕
q⊕
j=1

(Jkj(λj)⊕ Jkj(−λj)),

SJ =
t⊕

j=1

[
0 −F 1

2
mj

F 1
2
mj

0

]
⊕

q⊕
j=1

[
0 −Fkj
Fkj 0

]
.
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Note that SJ = −STJ and JSJ = (JSJ)T .

3.5.7 ∗-odd structure

Suppose P (λ) is ∗-odd with

• r purely imaginary (including 0) elementary divisors (λ− iβj)`j , j = 1: r, and

• s pairs of nonzero and non-purely imaginary elementary divisors (λ − iµj)mj ,

(λ− iµj)mj , j = 1: s,

with `j,mj such that
∑r

j=1 `j+2
∑s

j=1mj = mn. Note that for the ∗-odd linearization

λAS +BS of P (λ) in (3.3), the pencil i(λAS +BS) is ∗-even and the structure for SJ

and J follows from Section 3.5.4. We find that

J = −i
( r⊕
j=1

J`j(−βj)⊕
s⊕
j=1

(
Jmj(−µ̄j)⊕ Jmj(−µj)

))
,

SJ = S−1
J =

r⊕
j=1

εjF`j ⊕
s⊕
j=1

F2mj ,

which satisfy SJ = S∗J and JSJ = −(JSJ)∗. Here {ε1, . . . , εr} with εj = ±1 is the

sign characteristic associated with the zero and purely imaginary eigenvalues of P (λ).

3.5.8 Real T -odd structure

Suppose P (λ) is real T -odd with (see [66])

• t zero elementary divisors λ`j with `j odd, j = 1: t,

• r pairs of real elementary divisors (λ+ αj)
pj , (λ− αj)pj with pj even if αj = 0,

j = 1: r,

• s pairs of purely imaginary elementary divisors (λ + iβj)
kj , (λ − iβj)

kj with

βj > 0, j = 1: s, and

• q quadruples of nonreal and non-purely imaginary elementary divisors (λ +

µj)
mj , (λ− µj)mj , (λ+ µj)

mj , (λ− µj)mj j = 1: q,
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with `j, pj, kj,mj such that
∑t

j=1 `j + 2
∑r

j=1 pj + 2
∑s

j=1 kj + 4
∑q

j=1 mj = mn. On

using [57, Thm. 17.1] we find that

J =
t⊕

j=1

J`j(0)⊕
r⊕
j=1

(
Jpj(αj)⊕−Jpj(αj)T

)
⊕

s⊕
j=1

K2kj(iβj,−iβj)⊕
q⊕
j=1

(
K2mj(µj, µ̄j)⊕−K2mj(µj, µ̄j)

T
)
,

SJ = S−1
J =

t⊕
j=1

εjE`j ⊕
r⊕
j=1

[
0 Ipj

Ipj 0

]
⊕

s⊕
j=1

εj(Ekj ⊗ E
kj−1
2 )⊕

q⊕
j=1

[
0 I2mj

I2mj 0

]
,

where the scalars εj = ±1 form the sign characteristic associated with the purely

imaginary eigenvalues and the zero eigenvalues with odd partial multiplicities. We

easily check that SJ = STJ and JSJ = −(JSJ)T .

3.5.9 Complex T -odd structure

Let λj ∈ C \ {0} and suppose P (λ) is complex T -odd with (see [66])

• s zero elementary divisors λ`j with `j odd, j = 1: s, and

• q pairs of elementary divisors (λ + λj)
kj , (λ − λj)

kj with kj even if λj = 0,

j = 1: q,

with `j, kj such that
∑s

j=1 `j + 2
∑q

j=1 kj = mn. It follows from [83, Prop. 4.7 (b)]

that

J =
s⊕
j=1

J`j(0)⊕
q⊕
j=1

(
−Jkj(λj)⊕ Jkj(λj)

)
, SJ = S−1

J =
s⊕
j=1

E`j ⊕
q⊕
j=1

F2kj .

Clearly, SJ = STJ and JSJ = −(JSJ)T .

Notice the difference between the zero elementary divisors associated with T -even

and T -odd pencils (see [66, Cor. 4.3]).

3.5.10 ∗-(anti)palindromic structure

Suppose P (λ) is complex ∗-palindromic with −1 /∈ σ(P ) and (see [68])

• q pairs of elementary divisors (λ−λj)kj , (λ−1/λj)
kj with λj ∈ C\{0}, |λj| 6= 1,

j = 1: q,
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• t elementary divisors (λ− λj)2`j+1 with λj ∈ C such that |λj| = 1, j = 1: t, and

• s elementary divisors (λ− λj)2mj with λj ∈ C, |λj| = 1, j = 1: s,

with kj, `j,mj such that 2
∑q

j=1 kj +
∑t

j=1(2`j + 1) + 2
∑s

j=1mj = mn. Then using

either [86, Thm. 5] or [87, Section 2.2.2] we find that

J = −SJS−∗J

with

SJ =

q⊕
j=1

[
0kj FkjJkj(−λj)

Fkj 0kj

]
⊕

t⊕
j=1

εj

 0 0 F`jJ`j(−λj)

0 (−λj)1/2 eT1

F`j 0 0


⊕

s⊕
j=1

εj

[
0mj FmjJmj(−λj)

Fmj e1e
T
1

]

has the above elementary divisors. The scalars εj = ±1 form the sign characteristic

associated with the eigenvalues of unit modulus of P (λ) (see [55]).

For the ∗-antipalindromic structure, J = SJS
−∗
J with SJ as above but with −λj

replaced by λj.

3.5.11 Real T -(anti)palindromic structure

Suppose P (λ) is real T -palindromic with −1 /∈ σ(P ), λj ∈ C \ {0}, and (see [68])

• r pairs of real elementary divisors (λ−λj)kj , (λ−1/λj)
kj with λj ∈ R, |λj| 6= 1,

j = 1: r,

• q quadruples of nonreal elementary divisors (λ−λj)nj , (λ−λj)nj , (λ− 1/λj)
nj ,

(λ− 1/λj)
nj with |λj| 6= 1, j = 1: q,

• s elementary divisors (λ− 1)2mj , j = 1: s,

• t pairs of elementary divisors (λ− 1)2`j+1, (λ− 1)2`j+1 j = 1: t,

• u pairs of elementary divisors (λ − λj)`
′
j , (λ − λj)`

′
j with |λj| = 1, λj 6= 1, `′j

odd, j = 1:u, and
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• p pairs of elementary divisors (λ− λj)m
′
j , (λ− λj)m

′
j with |λj| = 1, λj 6= 1, m′j

even, j = 1: p.

We have that 2
∑r

j=1 kj + 4
∑q

j=1 nj + 2
∑s

j=1mj + 2
∑t

j=1(2`j + 1) + 2
∑u

j=1 `
′
j +

2
∑p

j=1 m
′
j = mn.

On using [87, Thm. 2.8] we find that J = −SJS−TJ has the above list of elementary

divisors, where

SJ =
r⊕
j=1

[
0kj FkjJkj(−λj)

Fkj 0kj

]
⊕

q⊕
j=1

[
02nj K2nj(−Λj)

Fnj ⊗ I2 02nj

]

⊕
s⊕
j=1

[
0 FmjJmj(−1)

Fmj 0

]

⊕
t⊕

j=1

εj

 0`j 0 F`jJ`j(−1)

0 1 eT1

F`j 0 0`j

⊕ t⊕
j=1

εj

 0`j 0 F`jJ`j(−1)

0 1 eT1

F`j 0 0`j



⊕
u⊕
j=1

εj

 0`′j−1 0 K`′j−1(−Λj)

0 (−Λj)
1
2 eT1 ⊗ I2

F(`′j−1)/2 ⊗ I2 0 0`′j−1

⊕ p⊕
j=1

εj

 0m′j Km′j
(−Λj)

F 1
2
m′j
⊗ I2 e1e

T
1 ⊗ I2

 .
Here (−Λj)

1
2 is the principal square root of −Λj. The scalars εj are signs ±1 and

form the sign characteristic associated with the eigenvalues of unit modulus of P (λ)

except the eigenvalues 1 with even partial multiplicities (see [55]).

For the T -antipalindromic P (λ), J = SJS
−T
J where SJ is as above but with

−λj,−1,−Λj replaced by λj, 1,Λj, respectively.

3.5.12 Complex T -(anti)palindromic structure

Suppose P (λ) is complex T -palindromic with −1 /∈ σ(P ) and (see [68])

• t elementary divisors (λ− 1)mj with mj even, j = 1: t,

• q pairs of elementary divisors (λ−λj)kj , (λ− 1/λj)
kj with kj odd when λj = 1,

λj 6= 0, j = 1: q,
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with mj, kj such that
∑t

j=1mj + 2
∑q

j=1 kj = mn. On using either [86, Thm. 1] or

[87, Thm. 2.6], we find that with

SJ =
t⊕

j=1

[
0mj/2 Fmj/2Jmj/2(−1)

Fmj/2 e1e
T
1

]
⊕

q⊕
j=1

[
0kj FkjJkj(−λj)

Fkj 0kj

]

the matrix J = −SJS−TJ has the above elementary divisors.

Now if P (λ) is complex T -antipalindromic with −1 /∈ σ(P ) and (see [68])

• t elementary divisors (λ− 1)`j with `j odd, j = 1: t,

• q pairs of elementary divisors (λ − λj)kj , (λ − 1/λj)
kj with kj even if λj = 1,

j = 1: q,

with `j, kj such that
∑t

j=1 `j + 2
∑q

j=1 kj = mn. On using [87, Thm. 2.6], we find

that the matrix J = SJS
−T
J with

SJ =
t⊕

j=1

 0`j 0 F`jJ`j(1)

0 1 eT1

F`j 0 0`j

⊕ q⊕
j=1

[
0kj FkjJkj(λj)

Fkj 0kj

]

has the above elementary divisors.

Note that J in Section 3.5.10—Section 3.5.12 is “almost” in Jordan canonical

form.

3.6 Applications

The theory developed in this chapter simplifies the structured inverse quadratic eigen-

value problem having the form that given a structure S and 2n eigenvalues with their

algebraic, geometric and partial multiplicities plus the attached sign characteristic

when necessary, construct the corresponding Q(λ) ∈ PS(Fn). We illustrate with

some examples now and offer a deeper discussion in the next chapter.

Example 3.6.1 (complex symmetric) If J = J2(1 + i) ⊕ J2(2 − i) is a Jordan

matrix containing the eigenvalues of a complex symmetric quadratic matrix polyno-

mial, then we can use Section 3.5.3 to construct SJ = F2 ⊕ F2. A solution X for
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XSJX
T = 0 is

X =

 1 0 1 0

0 1 0 −1

 .
Thus

A2 = (XJSJX
T )−1 =

 0 −0.2− 0.4i

−0.2− 0.4i 0.24− 0.32i

 ,
A1 = −A2XJ

2SJX
TA2 =

 0 0.6 + 1.2i

0.6 + 1.2i −0.72 + 0.96i

 ,
and

A0 = −A2(XJ2SJX
TA1 +XJ3SJX

TA2) =

 0 −0.2− 1.4i

−0.2− 1.4i 0.04− 0.72i

 ,
define a complex symmetric Q(λ) = λ2A2 + λA1 +A0 with the prescribed spectrum.

Example 3.6.2 (real T -even) If J = J1(1)⊕−J1(1)T ⊕K2(1 + i, 1− i)⊕−K2(1 +

i, 1 − i)T ⊕K2(i,−i) is a Jordan matrix containing the eigenvalues of a real T -even

quadratic matrix polynomial where ε1 associated with i,−i equals 1. Then we use

Section 3.5.5 to construct

SJ =

 0 −1

1 0

⊕


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

⊕
 0 1

−1 0

 .

A solution for XSJX
T = 0 is

X =


0 1 1 0 0 0 0 0

1 0 0 0 1 0 0 0

0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 −1

 .
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Thus

A2 = (XJSJX
T )−1 =


−0.2 −0.2 −0.4 −0.6

−0.2 −0.2 0.6 0.4

−0.4 0.6 −0.8 −1.2

−0.6 0.4 −1.2 −0.8

 ,

A1 = −A2XJ
2SJX

TA2 =


0 −0.6 1 0.2

0.6 0 0.2 1

−1 −0.2 0 −2.6

−0.2 −1 2.6 0

 ,

and

A0 = −A2(XJ2SJX
TA1 +XJ3SJX

TA2) =


0.2 0.8 −0.6 0.4

0.8 0.2 −0.4 0.6

−0.6 −0.4 1.8 −1.2

0.4 0.6 −1.2 1.8

 ,

define a real T -even Q(λ) = λ2A2 + λA1 + A0 with the prescribed spectrum.

Example 3.6.3 (real or complex ?-palindromic) If 2, 1/2, i,−i are the simple

eigenvalues of either a real or a complex quadratic ?-palindromic matrix polynomial

where ε1,2 = 1. Then we can use Sections 3.5.10, 3.5.12 and 3.5.11 to construct com-

plex Q1(λ), Q2(λ) and a real Q3(λ) with the prescribed eigenvalues and the desirable

structure. For example,

Q1(λ) = λ2A2 + λA1 + A∗2 :=

λ2

 0.2879 −0.1111− 0.1768i

−0.1111 + 0.1768i 0.2879


+ λ

 −0.2778 0.2778

0.2778 −0.2778

+ A∗2,

Q2(λ) = λ2A2 + λA1 + AT2 :=

λ2

 0 0.1333− 0.2667i

−0.1333− 0.2667i 0


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+ λ

 0 0.2000 + 0.2667i

0.2000 + 0.2667i 0

+ AT2 ,

and

Q3(λ) = λ2

 0.3536 0.1667

−0.6667 0.3143

+λ

 −0.8839 0

0 −0.7857

+

 0.3536 0.1667

−0.6667 0.3143

T .
3.7 Concluding remarks

The results in this chapter represent a first step towards the solution of the SIPEP:

given a list of admissible elementary divisors for the structure, and possibly, cor-

responding right eigenvectors and generalized eigenvectors, construct a structured

matrix polynomial having these elementary divisors and eigenvectors/generalized

eigenvectors. Indeed, using the results in Sections 3.3 and 3.4 we show in Chap-

ter 4 how to construct an S-structured (2, n)-Jordan triple (X, J, Y ) from a given

list of 2n prescribed eigenvalues and n linearly independent eigenvectors and gener-

alized eigenvectors, and use the fact that an S-structured (2, n)-Jordan triple defines

a unique structured quadratic Q(λ) ∈ PS(Fn).

Also, in the next chapter, we provide a detailed treatment of the associated

quadratic and cubic quasidefinite IPEP using self-adjoint Jordan triples.

Finally, we note that standard triples have been useful to describe structure pre-

serving transformations (SPTs) for matrix polynomials, and in particular quadratic

matrix polynomials [28]. We believe that the notion of S-structured standard triples

will further our understanding of SPTs for structured matrix polynomials.



Chapter 4

Structured Inverse Polynomial

Eigenvalue Problems

4.1 Introduction

The IPEP is to determine the coefficient matrices of P (λ) from its prescribed spectral

data (i.e., eigenvalues and eigenvectors). Standard, generalized and quadratic inverse

eigenvalue problems have been widely investigated, see [15], [16], [17], [20], [27] and

the references therein. For example, suppose that a 2n × 2n Jordan matrix J is

given together with an n × 2n matrix X whose columns contain the corresponding

eigenvectors and generalized eigenvectors. Then if
[
XJ
X

]
is nonsingular, the n × n

quadratic Q(λ) = λ2A2 + λA1 + A0 defined by

A2 = In, [A1 A0 ] = −XJ2

[
XJ

X

]−1

(4.1)

has the prescribed Jordan form J and eigenvector matrix X [31, p. 3].

In applications, the coefficients of P (λ) often have a specific structure such as

for example symmetry or skew-symmetry, which corresponds to the physics of the

problem. This leads to SIPEPs. Note that apart from A2, the other coefficient

matrices in (4.1) have no particular structure in general. The inverse problem for

Hermitian and symmetric quadratics has been the topic of many papers such as [18],

[48], [49] to cite just a few.

The interest in this chapter is in constructing, from spectral data, complex and

87
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real quadratics with structures S listed in Table 1.1 as well as generating quadratic

and cubic quasidefinite matrix polynomials displayed in Figure 2.1.

Our solution process makes use of the recent concept of S-structured Jordan

triples introduced in Chapter 3. The structure of P (λ) imposes certain constraints

on the Jordan form of S-structured Jordan triples. For example, the spectrum of

Hermitian matrix polynomials is symmetric with respect to the real line. So for

each S ∈ S, we carefully describe in Section 4.3 the structure of the Jordan matrix,

or equivalently, the list of elementary divisors admissible for the structure S of a

quadratic Q(λ) ∈ PS(Fn). Given such a list, we show how to construct families of S-

structured Jordan triples that generates structured quadratics having the given list of

elementary divisors. Our construction shows that a solution to the quadratic inverse

problem also exists when half of the eigenvectors and generalized eigenvectors are

also provided. Since the solution process we provide allows freedom on how to choose

the sign characteristic, which is an invariant for certain structured λ-matrices, an

appropriate choice for the sign characteristic will facilitate generating quasihyperbolic

quadratics and cubics.

We also show how to use Theorem 2.3.10 along with [81, Alg. 2.1] to generate

tridiagonal hyperbolic quadratics.

Some of our constructions form the basis of a MATLAB function, gen−hyper2,

in the NLEVP collection [13].

4.2 Preliminaries

Throughout this chapter, J ∈ Fmn×mn satisfies Assumption (b) of Section 3.3.

Recall that an ` × ` Jordan matrix over C is a block diagonal matrix displaying

the algebraic, geometric and partial multiplicities of the eigenvalues, that is,

J =
s⊕
i=1

mi⊕
j=1

J`ij(λi) ∈ C`×`, λi 6= λk if i 6= k, (4.2)
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where

J`ij(λi) :=


λi 1

λi
. . .

. . . 1

λi

 ∈ C`ij×`ij

is a Jordan block of size `ij associated with λi. To each J`ij(λi) corresponds an

elementary divisor (λ − λi)`ij of λI − J , or respectively, P (λ). The integer `ij is a

partial multiplicity of λi and λi can have several partial multiplicities. The integer

mi, which is the number of partial multiplicities associated with λi is called the

geometric multiplicity of λi. The algebraic multiplicity of λi is the sum of its partial

multiplicities. Note that
∑s

i=1

∑mi
j=1 `ij = `.

An `× ` Jordan matrix J over R is a block diagonal matrix

J =
r⊕
i=1

mi⊕
j=1

J`ij(λi)
t⊕
i=1

m′i⊕
j=1

K2`′ij
(µi, µ̄i) ∈ C`×`, λi 6= λk, µi 6= µk if i 6= k, (4.3)

where λi ∈ R, i = 1: r and µi ∈ C with Im(µi) > 0 , i = 1: t, and

K2`′ij
(µi, µ̄i) =


Λi I2

Λi
. . .

. . . I2

Λi

 ∈ R2`′ij×2`′ij , Λi =

[
Re(µi) Im(µi)

−Im(µi) Re(µi)

]
∈ R2×2,

is a real Jordan block associated with (µi, µ̄i). To each K2`ij(µi, µ̄i) corresponds a

pair of elementary divisors (λ−µi)`
′
ij , (λ− µ̄i)`

′
ij of λI−J . Note that

∑r
i=1

∑mi
j=1 `ij +

2
∑t

i=1

∑m′i
j=1 `

′
ij = `.

A quadratic Q(λ) = λ2A2 + λA1 +A0 ∈ P(Fn) with A2 nonsingular has 2n finite

eigenvalues so its Jordan form J over F is 2n×2n. Note that the geometric multiplicity

of λi is the number of linearly independent eigenvectors of Q(λ) corresponding to λi

and since Q(λ) is n× n, we have that mi and m′i in (4.2) and (4.3) cannot be larger

than n. Recall that, as a direct consequence of Theorem 3.3.5, if (X, J, Y ) is an

S-structured Jordan triple then the matrices in (3.13)–(3.14) with m = 2 define a

unique structured quadratic.

If Q(λ) is a quadratic matrix polynomial with structure S ∈ S and S-structured

Jordan triple (X, J, SvS(J)X?) then the sign characteristic is defined as the sign
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characteristic of the pair (J, S−1) (see Section 3.4). This is a list of signs, with a sign

(+1 or −1). These signs can be read off the block diagonal entries of S. They form

an invariant for Q(λ) and they play an essential role in the construction of Hermitian

and symmetric quadratics with special properties (see Chapter 2 and Section 4.3.1).

4.3 Building S-structured Jordan triples

As explained in the introduction, our main objective is to construct structured

quadratics, both real and complex, from given spectral data. To be more specific, we

solve the following problem:

(P) Given a structure S ∈ S and a list of elementary divisors

L = {(λ−λi)`ij , i = 1: s, j = 1:mi ≤ n, λi 6= λk if i 6= k,
s∑
i=1

mi∑
j=1

`ij = 2n},

(4.4)

admissible for the structure, construct an n×n quadratic Q(λ) with struc-

ture S having the prescribed spectral data.

One way to solve problem (P) is to construct an S-structured Jordan triple

(X, J, SJvS(J)X?), where J displays the given list L of elementary divisors. To

do so, we use the explicit expressions for J and SJ provided for each S ∈ S in Sec-

tion 3.5. Note that the structure of J imposes constraints on the structure of the list

L. The main difficulty lies in constructing X ∈ Fn×2n such that

XSJvS(J)X? = 0 (4.5)

and

det

[
XJ

X

]
6= 0, det(XJSJvS(J)X?) 6= 0. (4.6)

Note that the latter constraints are more likely to hold than the former constraint.

We consider each structure separately.

4.3.1 Hermitian and real symmetric quadratics

It follows from [71] that the list of elementary divisors L in (4.4) is made up of
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• r real elementary divisors (λ− λj)`j , j = 1: r, and

• t pairs of nonreal conjugate elementary divisors (λ−µj)mj , (λ−µj)mj , j = 1: t,

with `j,mj such that
∑r

j=1 `j + 2
∑t

j=1mj = 2n. The corresponding complex and

real Jordan matrices are given by Section 3.5.1, Section 3.5.2

J =
r⊕
j=1

J`j(λj)⊕
t⊕

j=1

(Jmj(µ̄j)⊕ Jmj(µj)), J =
r⊕
j=1

J`j(λj)⊕
t⊕

j=1

K2mj(µj, µ̄j),

respectively, and

SJ = S−1
J =

r⊕
j=1

εjF`j ⊕
t⊕

j=1

F2mj ,

where the εj = ±1, j = 1: r define the sign characteristic associated with the real

eigenvalues λj and must be such that [31, Prop. 10.12]

sig(SJ) =
r∑
j=1

1

2
(1− (−1)`j)εj = 0, (4.7)

where sig(SJ) is the signature of SJ , that is, the difference between the number of

positive eigenvalues and the number of negative eigenvalues of SJ . We easily check

that SJ = S?J and JSJ = (JSJ)?.

Then on using (4.7), we see that there exists an orthogonal matrix W ∈ F2n×2n

such that W TSJW =
[
In
0

0
−In

]
. If we let X̃ = XW = [ X̃1 X̃2 ] with X̃1 ∈ Fn×n of

full rank and write X̃2 = X̃1Θ for some unitary Θ ∈ Fn×n then

XSJvS(J)X? = X̃1X̃
?
1 − X̃2X̃

?
2 = 0,

Hence we can build X as

X = X̃W T = [ X̃1 X̃1Θ ]W T , (4.8)

which is completely determined by X̃1,Θ ∈ Fn×n with Θ unitary. Note that the

conditions in (4.6) hold for almost all X̃1 and Θ.

In the case where some of the 2n given eigenvalues are infinite, we start by applying

a homogeneous rotation G :=
[
c
s
−s
c

]
to the given spectrum as in (2.5) so that the

rotated eigenvalues are all finite (this can be done by setting c and s so that c/s is
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not one of the given eigenvalues). Then we build a (2, n)-self-adjoint Jordan triple

and the unique Hermitian/symmetric quadratic Q̃(λ̃) = λ̃2Ã2 + λ̃Ã1 + Ã0 that it

generates. Next, we homogeneously rotate back Q̃(λ̃) into Q(λ) = λ2A2 + λA1 +A0,

where A2 = Q̃(c, s) is singular, A1 = −2csÃ2+(c2−s2)Ã1+2csÃ0 and A0 = Q̃(−s, c).

Example 4.3.1 Consider the symmetric structure and L = {(λ− 2)3, (λ− 2), (λ−

i), (λ+ i)} with sign characteristic {+1,−1}, i.e., a ‘+’ sign associated with (λ− 2)3

and a ‘−’ sign associated with (λ − 2), so that (4.7) holds with (`1, ε1) = (3, 1) and

(`2, ε2) = (1,−1). Then

J =

 2 1

2 1

2

⊕ [ 2 ]⊕

[
0 1

−1 0

]
, SJ =

 1

1

1

⊕ (−1) [ 1 ]⊕

[
0 1

1 0

]
.

With the choice X̃1 = Θ = I3, we obtain

X =


√

2 0 0 0 0 0

0 0 0 1 1/
√

2 1/
√

2

0 −1 0 0 −1/
√

2 1/
√

2

 .

We easily check that

[
XJ

X

]
is nonsingular. The second and third columns of X are

generalized eigenvectors and for matrix polynomials, they can be equal to the zero

vector. Then (3.13)–(3.14) with Y = SJX
T and m = 2 yield

A2 =
1

4

 −5
√

2 −2
√

2
√

2 −2 0

−2
√

2 0 0

 , A1 =

 5 −
√

2 3
2
√

2

−
√

2 1 1
2

3
2
√

2
1
2

−1

 , A0 =

−5
√

2 1√
2√

2 0 −1

1√
2
−1 −1

2

 .
Note that our construction of Hermitian and real symmetric quadratics extends

the approach in [18], [48] which solves Problem (P) for real symmetric quadratics

under the assumption that L consists entirely of linear elementary divisors, i.e., `ij =

1 for all i = 1: s, j = 1:mi (or equivalently the eigenvalues are all semisimple).

Lancaster in [48] writes

X = [Xr1 Xr2 Xc Xc ] ,
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where Xc is an n× (n− r) matrix corresponding to complex eigenvalues in the upper

half plane, Xr1 (Xr2) is a real n× r matrix corresponding to the real eigenvalues for

which εj = 1 (εj = −1), and 0 < r < n. Assuming Xr1 and Xr2 are given together

with L,

XSJX
∗ = 0⇔ XcX

T
c +XcXT

c = −Xr1X
T
r1

+Xr2X
T
r2
.

Thus, XcX
T
c = R1− iR where R1 = 1

2
(−Xr1X

T
r1

+Xr2X
T
r2

) and R is a real symmetric

matrix which is chosen so that R1− iR has rank n− r. Takagi’s factorization is then

the tool to recover Xc, see [48, App. A] or [42, Section 4.4.4].

Generating quasidefinite quadratics

Recall that an eigenvalue λ0 is of definite type if its partial multiplicities are all equal

to 1 and the sign (in the sign characteristic) attached to each partial multiplicity

is the same (either positive or negative) and a definite type eigenvalue with posi-

tive(negative) sign is said to be of positive(negative) type. Note that the eigenvalue

2 in Example 4.3.1 is not of definite type.

The task of constructing an appropriate self-adjoint Jordan triple defined by the

three matrices X, J and SJ to produce quasidefinite quadratics follows directly from

Section 4.3.1. So for a quasihyperbolic quadratic,

J = diag(λ1, . . . , λ2n), SJ = diag(ε1, . . . , ε2n),

with εj = ±1 such that εj = εk if λj = λk and
∑2n

j=1 εj = 0 (see (4.7)). The matrix

X such that (X, J, SJX
?) forms an S-structured Jordan triple can be constructed as

in (4.8).

Example 4.3.2 Let J = diag(−1,−2,−3,−4) and let X̃1 = Θ = I2 in (4.8).

If SJ = diag(1,−1, 1,−1) then W =
[
e1 e3 e2 e4

]
, where ej is the jth

column of I4, X =

[
1 1 0 0

0 0 1 1

]
and on using (3.13)–(3.14) with m = 2 and

Y = SJX
T ,

A2 = I2, A1 =

[
3 0

0 7

]
, A0 =

[
2 0

0 12

]
, (4.9)

define a quasihyperbolic quadratic.
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Applying the homogeneous rotation G = −
√

2/2

[
1 −1

1 1

]
on J provides the

quasidefinite Q̃(λ̃) = λ̃2Ã2 + λ̃Ã1 + Ã0 with σ(Q̃) = {5/3, 2, 3,∞} where

Ã2 =
1

2
(A2 − A1 + A0) =

[
0 0

0 3

]
,

Ã1 = A2 − A0 =

[
−1 0

0 −11

]
, Ã0 =

1

2
(A2 + A1 + A0) =

[
3 0

0 10

]
.

If SJ = diag(1, 1,−1,−1) then W = I4 and (3.13)–(3.14) with m = 2 and Y =

SJX
T yield

A2 =
1

2
I2, A1 =

[
2 0

0 3

]
, A0 =

[
3/2 0

0 4

]
, (4.10)

which defines a hyperbolic quadratic that is overdamped since all of its eigenvalues are

negative. The two quadratics defined in (4.9) and (4.10) have the same eigenvalues

but different properties. The quadratic defined in (4.9) cannot be linearized into a

definite pencil whereas the quadratic defined in (4.10) can.

4.3.2 Complex symmetric quadratics

There are no additional constraints on the list L of elementary divisors in (4.4). If

L consists of (λ − λj)`j , λj ∈ C, j = 1: t with
∑t

j=1 `j = 2n then the corresponding

complex Jordan matrix is J =
⊕t

j=1 J`j(λj). The matrix SJ , using Section 3.5.3,

takes the form

SJ = S−1
J =

t⊕
j=1

F`j .

Since SJ = STJ ∈ R2n×2n, S2
J = I, there exists an orthogonal matrix W such that

W TSJW =
[
In
0

0
Σ2

]
, where Σ =

[
In−p

0
0
iIp

]
and p ≤ n depends on the number of

odd partial multiplicities `j (p = 0 when all eigenvalues are semisimple). If we let

X̃ = XW = [ X̃1 X̃2 ] with X̃1 nonsingular and write X̃2 = iX̃1ΘΣ for some complex

orthogonal Θ ∈ Cn×n then since vS(J) = I,

XSJX
T = X̃1X̃

T
1 + X̃2Σ2X̃T

2 = 0.
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Hence we can build X as X = X̃W T = [ X̃1 iX̃1ΘΣ ]W T which is completely

determined by X̃1, Σ and Θ.

Example 4.3.3 Consider the complex symmetric structure and L = {(λ− 2)2, (λ−

2), (λ− i)}. Then

J =

[
2 1

2

]
⊕ [ 2 ]⊕ [ i ] , SJ =

[
1

1

]
⊕ [ 1 ]⊕ [ 1 ] .

With the choice X̃1 = Θ = I3, we obtain

X =

[
−
√

2i
√

2i −i 0
√

2
√

2 0 −i

]
.

Since

[
XJ

X

]
is nonsingular, (3.13)–(3.14) with m = 2 and Y = SJX

T yield

A2 =

[
−2.4− 0.2i 0.2− 0.4i

0.2− 0.4i 0.4 + 0.2i

]
,

A1 =

[
8.6 + 0.8i −0.8 + 0.6i

−0.8 + 0.6i −0.6− 0.8i

]
, A0 =

[
−7.6− 0.8i 0.8 + 0.4i

0.8 + 0.4i −0.4 + 0.8i

]
.

4.3.3 ∗-even quadratics

It follows from [66] and Section 3.5.4 that the list of elementary divisors L in (4.4) is

made up of

• r purely imaginary (including 0) elementary divisors (λ− iβj)`j , j = 1: r, and

• t pairs of nonzero and non-purely imaginary elementary divisors (λ − iµj)mj ,

(λ− iµj)mj , j = 1: t,

with
∑r

j=1 `j + 2
∑t

j=1mj = 2n. The corresponding complex Jordan matrix is

J = −i

(
r⊕
j=1

J`j(−βj)⊕
t⊕

j=1

(Jmj(−µ̄j)⊕ Jmj(−µj))

)
.
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The matrix SJ given in Section 3.5.4 satisfies SJ = −S∗J , JSJ = (JSJ)∗ and must be

such that

sig(iSJ) =
r∑
j=1

1

2
(1− (−1)`j)εj = 0. (4.11)

Note that iSJ is real symmetric and on using (4.11) we see that there exists an

orthogonal matrix W such that W TSJW = −i
[
In
0

0
−In

]
. As for the Hermitian case in

Section 4.3.1 we can choose X to be of the form

X = [ X̃1 X̃1Θ ]W T ,

where X̃1,Θ ∈ Cn×n with X̃1 nonsingular and Θ unitary.

Example 4.3.4 Consider the complex ∗-even structure and L = {λ, (λ − 2i), (λ −

i)2, (λ− (1 + i)), (λ− (−1 + i))} with sign characteristic {−1,+1,−1} so that (4.11)

holds with (`1, ε1) = (1,−1), (`2, ε2) = (1, 1), (`3, ε3) = (2,−1). Then

J = −i

(
[ 0 ]⊕ [−2 ]⊕

[
−1 1

−1

]
⊕ [−1− i ]⊕ [ i− 1 ]

)
,

SJ = −i

(
(−1) [ 1 ]⊕ [ 1 ]⊕ (−1)

[
1

1

]
⊕

[
1

1

])
.

With the choice X̃1 = Θ = I3, we obtain

X =

 0 0
√

2i −
√

2i −
√

2i
√

2i

−1 0 0 0
√

2
√

2

0 −i −
√

2i −
√

2i 0 0

 ,

where

[
XJ

X

]
is nonsingular. Now, (3.13)–(3.14) with m = 2 and Y = SJX

∗ yield

A2 =

−1.5 1.5 −0.5

1.5 −0.5 0.5

−0.5 0.5 0.5

 , A1 =

 5i −2i 2i

−2i −i −i

2i −i −i

 , A0 =

 4 0 2

0 0 0

2 0 0

 .
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4.3.4 Real T -even quadratics

It follows from [66, Thm. 4.2] and Section 3.5.5 that the list of elementary divisors L

in (4.4) is made up of

• r zero elementary divisors λnj with nj even, j = 1: r,

• t pairs of real elementary divisors (λ + αj)
`j , (λ − αj)`j with `j odd if αj = 0,

j = 1: t,

• q pairs of purely imaginary elementary divisors (λ + iβj)
kj , (λ − iβj)

kj with

βj > 0, j = 1: q,

• p quadruples of nonreal and non-purely imaginary elementary divisors (λ +

µj)
mj , (λ− µj)mj , (λ+ µj)

mj , (λ− µj)mj , j = 1: p,

with
∑r

j=1 nj + 2
∑t

j=1 `j + 2
∑q

j=1 kj + 4
∑p

j=1mj = 2n. The corresponding real

Jordan matrix is

J =
r⊕
j=1

Jnj(0)⊕
t⊕

j=1

(
J`j(αj)⊕−J`j(αj)T

)
⊕

q⊕
j=1

K2kj(iβj,−iβj)⊕
p⊕
j=1

(
K2mj(µj, µ̄j)⊕−K2mj(µj, µ̄j)

T
)
.

The matrix SJ given in Section 3.5.5 satisfies SJ = −STJ and JSJ = (JSJ)T .

Now, from the Takagi factorization of real skew-symmetric matrices (see [42, Sec-

tion 4.4, problems 25-26]) and the form of SJ , we notice that there exists an orthog-

onal matrix W such that W TSJW =
[

0
−In

In
0

]
. If we let X̃ = XW = [ X̃1 X̃2 ] with

X̃1 ∈ Rn×n of full rank and write X̃2 = X̃1H for some real symmetric matrix H then

XSJX
T = −X̃2X̃

T
1 + X̃1X̃

T
2 = −X̃1HX̃

T
1 + X̃1HX̃

T
1 = 0.

Hence we can build X as X = X̃W T = [ X̃1 X̃1H ]W T for some X̃1, H ∈ Rn×n with

H symmetric.

Note that H can be the zero matrix. A simple 1 × 1 example is Q(λ) = 1 − λ2

which is built by

J =

[
1

−1

]
, SJ =

[
−1

1

]
, W =

[
1−i

2
1−i

2

1+i
2

−1−i
2

]
,
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with X̃1 = 1 and H = 0.

4.3.5 Complex T -even quadratics

It follows from [66, Thm. 4.2] and Section 3.5.6 that the list of elementary divisors L

in (4.4) is made up of

• r zero elementary divisors λmj with mj even, j = 1: r, and

• t pairs of elementary divisors (λ−λj)`j , (λ+λj)
`j with `j odd if λj = 0, j = 1: t,

with
∑r

j=1mj + 2
∑t

j=1 `j = 2n. The corresponding complex Jordan matrix is

J =
r⊕
j=1

Jmj(0)⊕
t⊕

j=1

(J`j(λj)⊕ J`j(−λj)).

From the structure of the matrix SJ that is given in Section 3.5.6, there exists an

orthogonal matrix W such that W TSJW =
[

0
−In

In
0

]
. The rest of the construction is

similar to that for real T -even quadratics in Section 4.3.4, except that H must now

be complex symmetric.

4.3.6 ∗-odd quadratics

It follows from [66] and Section 3.5.7 that the list of elementary divisors L in (4.4) is

made up of

• r purely imaginary (including 0) elementary divisors (λ− iβj)`j , j = 1: r, and

• t pairs of nonzero and non-purely imaginary elementary divisors (λ − iµj)mj ,

(λ− iµj)mj , j = 1: t,

with
∑r

j=1 `j + 2
∑t

j=1mj = 2n. The corresponding complex Jordan matrix is

J = −i

(
r⊕
j=1

J`j(−βj)⊕
t⊕

j=1

(
Jmj(−µ̄j)⊕ Jmj(−µj)

))
.

The matrix SJ given in Section 3.5.7 satisfies SJ = S−1
J = S∗J , JSJ = −(JSJ)∗ and

must be such that

sig(SJ) =
r∑
j=1

1

2
(1− (−1)`j)εj = 0.
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The construction of S-structured Jordan triples follows that of Hermitian quadrat-

ics in Section 4.3.1. In this case, for the leading matrix coefficient of Q(λ) to be

nonsingular, n must be even.

4.3.7 Real T -odd quadratics

It follows from [66, Thm. 4.2] and Section 3.5.8 that the list of elementary divisors L

in (4.4) is made up of

• r zero elementary divisors λ`j with `j odd, j = 1: r,

• t pairs of real elementary divisors (λ+αj)
nj , (λ−αj)nj with nj even if αj = 0,

j = 1: t,

• q pairs of purely imaginary elementary divisors (λ + iβj)
kj , (λ − iβj)

kj with

βj > 0, j = 1: q, and

• p quadruples of nonreal and non-purely elementary divisors (λ + µj)
mj , (λ −

µj)
mj , (λ+ µj)

mj , (λ− µj)mj j = 1: p.

with
∑r

j=1 `j + 2
∑t

j=1 nj + 2
∑q

j=1 kj + 4
∑p

j=1mj = 2n. The corresponding real

Jordan matrix is

J =
r⊕
j=1

J`j(0)⊕
t⊕

j=1

(
Jnj(αj)⊕−Jnj(αj)T

)
⊕

q⊕
j=1

K2kj(iβj,−iβj)⊕
p⊕
j=1

(
K2mj(µj, µ̄j)⊕−K2mj(µj, µ̄j)

T
)
.

The matrix SJ given in Section 3.5.8 satisfies SJ = S−1
J = STJ and S2

J = I. The

construction of S-structured Jordan triples follows that of real symmetric quadratics

in Section 4.3.1.

Note that for S ∈ {real T -even} (S ∈ {real T -odd}), SJ (JSJ) is a skew-symmetric

matrix and thus sig(iSJ) = 0 (sig(iJSJ) = 0). Using the form of SJ for real T -even

(real T -odd) in Section 3.5, sig(iSJ) = 0 (sig(iJSJ) = 0) does not impose any con-

straint on εj’s.
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4.3.8 Complex T -odd quadratics

It follows from [66, Thm. 4.2] and Section 3.5.9 that the list of elementary divisors L

in (4.4) is made up of

• r zero elementary divisors λ`j with `j odd, j = 1: r, and

• t pairs of elementary divisors (λ − λj)mj , (λ + λj)
mj with mj even if λj = 0,

j = 1: t,

with
∑r

j=1 `j + 2
∑t

j=1 mj = 2n. The corresponding complex Jordan matrix is

J =
r⊕
j=1

J`j(0)⊕
t⊕

j=1

(
−Jmj(λj)⊕ Jmj(λj)

)
.

The matrix SJ given in Section 3.5.9 satisfies SJ = S−1
J = −STJ and JSJ = (JSJ)T .

Consequently, there exists an orthogonal matrix W such that W TSJW = σ
[
In
0

0
Σ2

]
,

where σ = ±1 and Σ =
[
In−p

0
0
iIp

]
and p ≤ n. The construction of X is then analogous

to that for complex symmetric quadratics in Section 4.3.2.

4.3.9 ∗-(anti)-palindromic quadratics

For simplicity, we assume that −1 6∈ σ(Q). It follows from [68, Thm. 7.10] and

Section 3.5.10 that the list of elementary divisors L in (4.4) is made up of

• r elementary divisors (λ− λj)2`j+1 with λj ∈ C such that |λj| = 1, j = 1: r,

• t elementary divisors (λ− λj)2mj with λj ∈ C, |λj| = 1, j = 1: t, and

• q pairs of elementary divisors (λ−λj)kj , (λ−1/λj)
kj with λj ∈ C\{0}, |λj| 6= 1,

j = 1: q,

with
∑r

j=1(2`j+1)+2
∑t

j=1mj+2
∑q

j=1 kj = 2n. The corresponding complex Jordan-

like matrix is J = −SJS−∗J with SJ as in Section 3.5.10. The sign characteristic

associated with the eigenvalues of unit modulus of Q(λ) must satisfy a constraint

similar to (4.11). However, we will not go through the details here as we can use

the correspondence via Cayley transformations between ?-even/odd quadratics and

?-(anti)-palindromic quadratics as described in [65, Chap. 6]. The effect of Cayley

transformations on the sign characteristic is left for future investigation.
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Consider for example using the complex ∗-even case to handle the ∗-palindromic

one. Assume that the list of elementary divisors of a complex ∗-palindromic quadratic

matrix polynomial Q(λ) is given as above. Since −1 /∈ σ(Q), we can apply the Cayley

transformation

λj 7→ ρj :=
λj − 1

λj + 1
(4.12)

on the given list L to obtain L̃. The transformation (4.12) maps 1 to zero, other

eigenvalues of unit modulus are mapped to the imaginary axis. The pairs (λj, 1/λj)

for which λj 6= 0 and |λj| 6= 1 are mapped to (ρj,−ρj), ρj 6= 0. Now, we construct J

and SJ according to Section 4.3.3 to build a complex ∗-even Q̃(λ) that corresponds

to L̃. Finally, Q(λ) = (λ + 1)2Q̃
(
λ−1
λ+1

)
is a complex ∗-palindromic quadratic matrix

polynomial with elementary divisor list L.

Example 4.3.5 Consider the complex ∗-palindromic structure and

L =

{
(λ− 1),

(
λ− 4i− 3

5

)
, (λ− i)2, (λ− (2i− 1)),

(
λ− 1

2i− 1

)}
.

The transformation (4.12) maps L to

L̃ = {λ, (λ− 2i), (λ− i)2, (λ− (1 + i)), (λ− (−1 + i))},

which, with sign characteristic {−1,+1,−1}, leads to the quadratic Q̃(λ) = λ2A2 +

λA1 + A0 of Example 4.3.4. Now,

Q(λ) = λ2(A2 + A1 + A0) + λ(−2A2 + 2A0) + (A2 − A1 + A0)

is ∗-palindromic with elementary divisor list L.

Note that concerning the case where −1 ∈ σ(Q) but 1 6∈ σ(Q), the admissible

list of elementary divisors together with the corresponding matrices J and SJ can

be derived similarly from [68] and [87, Section 2.2.2]. The construction of Q then,

using a suitable Cayley transformation, is along the same lines as the case where

−1 6∈ σ(Q).



CHAPTER 4. INVERSE PROBLEMS 102

4.3.10 Real T -(anti)-palindromic quadratics

We assume that −1 6∈ σ(Q). It follows from [68, Thm. 7.6] and Section 3.5.11 that

the list of elementary divisors L in (4.4) is made up of

• p pairs of real elementary divisors (λ − λj)kj , (λ − 1/λj)
kj with λj ∈ R \ {0},

|λj| 6= 1, j = 1: p,

• q quadruples of nonreal elementary divisors (λ−λj)nj , (λ−λj)nj , (λ− 1/λj)
nj ,

(λ− 1/λj)
nj with |λj| 6= 1, λj 6= 0, j = 1: q,

• v elementary divisors (λ− 1)2mj , j = 1: v,

• t pairs of elementary divisors (λ− 1)2`j+1, (λ− 1)2`j+1 j = 1: t,

• u pairs of elementary divisors (λ − λj)`
′
j , (λ − λj)`

′
j with |λj| = 1, λj 6= 1, `′j

odd, j = 1:u,

• r pairs of elementary divisors (λ− λj)m
′
j , (λ− λj)m

′
j with |λj| = 1, λj 6= 1, m′j

even, j = 1: r,

with 2
∑p

j=1 kj+4
∑q

j=1 nj+2
∑v

j=1mj+2
∑t

j=1(2`j+1)+2
∑u

j=1 `
′
j+2

∑r
j=1 m

′
j = 2n.

The corresponding real Jordan-like matrix is J = −SJS−TJ with SJ as in Sec-

tion 3.5.11.

The rest follows from the case of real T -even/real T -odd quadratics as explained

in Section 4.3.9.

4.3.11 Complex T -(anti)-palindromic quadratics

We assume that −1 6∈ σ(Q). It follows from [68, Thm. 7.6] and Section 3.5.12 that

the list of elementary divisors L in (4.4) for a complex T -palindromic Q(λ) is made

up of

• t elementary divisors (λ− 1)mj with mj even, j = 1: t,

• q pairs of elementary divisors (λ−λj)kj , (λ− 1/λj)
kj with kj odd when λj = 1,

j = 1: q,
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with
∑t

j=1mj + 2
∑q

j=1 kj = 2n. The corresponding complex Jordan-like matrix is

J = −SJS−TJ with SJ as in Section 3.5.12.

Now for a complex T -antipalindromic Q(λ) with −1 /∈ σ(Q), see [68, Thm. 7.6],

L in (4.4) must be made of

• t elementary divisors (λ− 1)`j with `j odd, j = 1: t,

• q pairs of elementary divisors (λ − λj)kj , (λ − 1/λj)
kj with kj even if λj = 1,

j = 1: q,

with
∑t

j=1 `j + 2
∑q

j=1 kj = 2n. The corresponding complex Jordan-like matrix J =

−SJS−TJ with the corresponding SJ as in Section 3.5.12.

The rest follows from the case of complex T -even/complex T -odd quadratics as

explained in Section 4.3.9.

4.4 Other structured inverse eigenvalue problems

Now, we consider the problems of building a cubic P (λ) that belongs to some classes

presented in Figure 2.1 and generating hyperbolic tridiagonal quadratics.

4.4.1 Generating quasidefinite cubics

By Theorem 3.3.5 and (3.13)–(3.14), an (m,n)-self-adjoint Jordan triple (X, J, SJX
∗)

generates a uniquely defined P (λ) =
∑m

j=0 λ
jAj ∈ PS(Fn) where Aj, given by (3.13)–

(3.14) for j = 0:m with Y = SJX
∗, are Hermitian and [29, Thm. 1.3] shows that

sig(SJ) =

 0 if m is even,

sig(Am) if m is odd.
(4.13)

The columns of X determine the eigenvectors of a quasihyperbolic P (λ). In order to

build quasihyperbolic cubics, we want to construct an n × 3n matrix X, a 3n × 3n

real Jordan matrix J and a 3n× 3n matrix SJ such that

det

XJ
2

XJ

X

 6= 0,

 XSJX
? = 0

XJSJX
? = 0

, det(XJ2SJX
?) 6= 0. (4.14)
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Theorem 4.4.1 (quasihyperbolic cubic) For a given n×n matrix S1 = diag(±1),

a given n×n real diagonal matrix J1 and a given n×n matrix X1 with columns normal-

ized such that In−X1S1X
?
1 > 0, let X2 be the Hermitian positive definite square root

of In −X1S1X
?
1 and let X3, J3 be such that X3J3X

?
3 = X1J1S1X

?
1 +X2J2X

?
2 , where

J2 is diagonal with real entries chosen such that X1J
2
1S1X

?
1 +X2J

2
2X

?
2 −X3J

2
3X

?
3 is

nonsingular. Define

X = [X1 X2 X3 ] , J =

 J1 0 0

0 J2 0

0 0 J3

 , SJ =

S1 0 0

0 In 0

0 0 −In

 . (4.15)

If J has pairwise distinct diagonal entries then (X, J, SJX
?) is a (3, n)-self-adjoint

Jordan triple that generates a unique quasihyperbolic cubic matrix polynomial P (λ) =

λ3A3 + λ2A2 + λA1 + A0. Moreover if S1 = In and J1, J2 are chosen so that

λmax(J2) < λmin(J3) ≤ λmax(J3) < λmin(J1), (4.16)

then P (λ) is hyperbolic.

Proof. Note that since SJ = S?J and JSJ = (JSJ)?, (X, J, SJX
?) is a (3, n)-self-

adjoint Jordan triple if the constraints in (4.14) hold. Note that we just have to check

the first two constraints since the last one holds by assumption. The matrix X is

clearly of full rank because X2 is of full rank and, because J has distinct entries, the

first constraint in (4.14) is satisfied. For the second constraint we have that

XSJX
? = X1S1X

?
1 +X2X

?
2 −X3X

?
3

= X1S1X
?
1 + In −X1S1X

?
1 − In = 0,

XJSJX
? = X1J1S1X

?
1 +X2J2X

?
2 −X3J3X

?
3 = 0.

If S1 = In then by (4.13), A3 > 0. If (4.16) holds then J2 < J3 < J1 and hence

all eigenvalues belong to three distinct intervals on R, each containing n eigenvalues

of one type and the eigenvalue type of each interval alternates in sign with the right

most interval being of positive type. It follows from Theorem 2.3.4 that P (λ) is

hyperbolic.
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Note that one can use Weyl’s theorem [42, p. 181] together with [42, Thm. 4.5.9]

to chose X1, J1, J2 so that (4.16) is satisfied.

Example 4.4.2 For n = 2 the matrices

J1 =

 3.5 0

0 2

 , J2 =

 −1.5 0

0 −1

 , S1 = I2,

and

X1 =

 −0.8819i 0.4714i

0.4714i 0.8819i

 , X2 =

 1.4142 0

0 1.4142

 ,
satisfy the assumptions of Theorem 4.4.1 where ? = T and thus, with X3J3X

T
3 being

the eigendecomposition of X1J1X
T
1 +X2J2X

T
2 , define a (3, 2)-self-adjoint Jordan triple

that uniquely determines a hyperbolic cubic matrix polynomial whose coefficient

matrices are given by (3.13)–(3.14) with m = 3 and Y = SJX
T .

Once more, homogeneous rotations are the tool to generate quasidefinite cubics

with a singular leading coefficient.

Note that, for any m, we may use Section 2.5 to generate (diagonal) hyperbolic

matrix polynomials by choosing real eigenvalues that respect the characterization

(P1) in Theorem 2.3.4. These can be used to generate infinitely many (full) hyperbolic

matrix polynomials. The same applies for quasihyperbolics that are diagonalizable

by structure preserving congruences.

4.4.2 Generating tridiagonal hyperbolic quadratics

Ram and Elhay in [81] solve an IPEP for symmetric tridiagonal quadratic matrix

polynomials in the following settings: Given two sets of distinct complex numbers

{λj}2n
j=1 and {µj}2n−2

j=1 , two tridiagonal n × n symmetric matrices A1 and A0 are

determined such that

σ(Q) = {λj}2n
j=1, σ(Q̂) = {µj}2n−2

j=1 , (4.17)

where Q(λ) = λ2In+λA1+A0 and Q̂(λ) is the matrix polynomial obtained by deleting

the last row and column of Q(λ). Using [81, Alg. 2.1], we can generate infinitely many
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quasihyperbolic tridiagonal symmetric polynomials starting with {λj}2n
j=1 ⊂ R. Note

that all λj’s are of definite type as they are simple eigenvalues. We recall the following

algorithms.

Algorithm 4.4.1 [81, Alg. 3.1]

Input A set {(zj, yj)}mj=1, where m ≥ 2 and zj distinct.

Output At most 2(m − 1) solution sets {r, {dj}mj=0}. Each set of dj defines a

polynomial y(z) =
∑m

j=0 djz
j for which r is double zero and y(zj) = yj, j = 1:m.

The algorithm

(a) Solve the linear systems of equations

V g = [ y1 y2 · · · ym ]T , V h = [ zm1 zm2 · · · zmm ]T ,

for the vectors g and h where

V =


1 z1 z2

1 · · · zm−1
1

1 z2 z2
2 · · · zm−1

2

...
...

...
...

1 zm z2
m · · · zm−1

m

 .

(b) Form the polynomials π1(z) =
∑m

j=1 gjz
j−1, π2(z) = −zm +

∑m
j=1 hjz

j−1 and

θ(z) = π1(z)π′2(z)− π2(z)π′1(z).

(c) Solve θ(z) = 0.

(d) For each zero r of θ(z),

(i) Use π1(r)− dmπ2(r) = 0 to find dm.

(ii) Use d = g − dmh to determine the vector d = [ d0 d1 · · · dm−1 ]T .

Algorithm 4.4.2 [81, Alg. 2.1]

Input Two sets of distinct eigenvalues {λ(n)
k }2n

k=1 and {λ(n−1)
k }2n−2

k=1 .
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Output Two symmetric tridiagonal matrices

A1 =



α1 β1 0 · · · 0

β1 α2 β2 · · · 0

0 β2 α3
. . . 0

...
...

. . . . . .
...

0 0 0 · · · αn


, A0 =



γ1 δ1 0 · · · 0

δ1 γ2 δ2 . . . 0

0 δ2 γ3
. . . 0

...
...

. . . . . .
...

0 0 0 · · · γn


,

for which σ(Q) := σ(λ2In + λA1 + A0) = {λ(n)
k }nk=1 and σ(Q̂) = {λ(n−1)

k }2n−2
k=1 .

The algorithm

(a) For k = n, n− 1, . . . , 2,

(i) Compute yj = y(λk−1
j ) = −

∏2k
i=1(λ

(k−1)
j − λ(k)

i ), j = 1: 2k − 2.

(ii) Choose one solution set {r, {ci}2k−2
i=0 } from the choices produced by applying

Algorithm 4.4.1 to {(λ(k−1)
j , yj)}2k−2

j=1 and define p(λ) =
∑2k−2

i=0 ciλ
i.

(iii) Assign

αk =
2k−2∑
i=1

λ
(k−1)
i −

2k∑
i=1

λ
(k)
i , βk−1 = ±√c2k−2,

γk =

∏2k
i=1(r − λ(k)

i )∏2k−2
i=1 (r − λ(k−1)

i )
− r2 − rαk, δk−1 = −rβk−1.

(iv) If k > 2,

(1) Determine the polynomial q2k−4(λ) of degree 2k − 4 by the synthetic

division of p(λ) with the quadratic factor (βk−1λ+ δk−1)2.

(2) Find the zeros {λ(k−2)
i }2k−4

i=1 of q2k−4.

(b) Assign

α1 = −(λ
(1)
1 + λ

(1)
2 ), γ1 = λ

(1)
1 λ

(1)
2 .

Example 4.4.3 Given {λj}6
j=1 = {−6.5,−5,−4,−2,−1.5, 3}, we may take {µj}4

j=1 =
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{−3,−1, 0, 2} and construct the following quasihyperbolic tridiagonal polynomial us-

ing Algorithm 4.4.1 and Algorithm 4.4.2.

Q(λ) = λ2I3 +λ


4.0400 0.4834 0

0.4834 −2.0400 18.7285

0 18.7285 14

+


3.1312 1.0388 0

1.0388 0.3449 −19.3303

0 −19.3303 406.5050

 ,

with σ(Q) = {λj}6
j=1 and σ(Q̂) = {µj}4

j=1.

Now, if the interest is in generating hyperbolic quadratic tridiagonal symmetric

matrix polynomials then extra conditions must be imposed. Theorem 2.3.5 is useful in

solving the SIPEP of generating hyperbolic quadratic tridiagonal matrix polynomials

given two sets of real numbers σ(Q) = {λj}2n
j=1 and σ(Q̂) = {µj}2n−2

j=1 that satisfy 1,2

and 3 of Theorem 2.3.5. This problem is always solvable, [9, Thm. 5.1].

Example 4.4.4 Given

{λj}6
j=1 = {−7,−5,−4,−3,−2,−0.5}, {µj}4

j=1 = {−6,−4.5,−2.5,−1.5},

we construct the following hyperbolic tridiagonal quadratic matrix polynomial which

is consistent with the given data using Algorithm 4.4.1 and Algorithm 4.4.2.

λ2I3 + λ


7.0484 1.2162 0

1.2162 7.4516 2.4121

0 2.4121 7

+


9.89 3.9526 0

3.9526 11.8173 8.4171

0 8.4171 11.0684

 .

Note that, by Theorem 2.3.5, any matrix polynomial constructed from the data

given in Example 4.4.3 cannot be hyperbolic. The tridiagonal matrices produced by

Algorithm 4.4.2 are unique up to signs change along the subdiagonal, see (5) on [9,

p. 35].
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4.5 Concluding remarks

The hardest part in treating a SIPEP via building an associated S-structured Jordan

triple (X, J, SJvS(J)X?) is to solve

XJ jSJvS(J)X? = 0, j = 0:m− 2, (4.18)

for X. Equations (4.18) get more difficult to solve as m increases. We have shown

how to solve these equations when m = 2 for structures S ∈ S, where

S = {Hermitian, symmetric, ∗-even, ∗-odd, real T -even, real T -odd, complex T -even,

complex T -odd, ∗-palindromic, ∗-antipalindromic, real T -palindromic,

real T -antipalindromic, complex T -palindromic, complex T -antipalindromic}.

We have discussed the related quasihyperbolic inverse eigenvalue problem for m =

2, 3. Building an S-structured Jordan triple associated with an unknown matrix

polynomial of degree grater than two given some spectral information is a challenge.

Another challenge is to directly handle an IPEP when infinity is a prescribed eigen-

value. Approaches to solve (structured or unstructured) inverse quadratic eigenvalue

problems without constructing standard triples are possible [64], [71].
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Conclusions and Future Work

The thesis provides an extensive study of a group of structured matrix polynomi-

als that are associated with applications in science and engineering, in particular,

vibration analysis in structural mechanics. Hermitian, symmetric real or complex,

?-alternating and ?-palindromic matrix polynomials have been investigated from dif-

ferent aspects. Hermitian matrix polynomials with only definite type eigenvalues

in R ∪ {∞} are related to systems of differential equations with bounded solutions

under small perturbations. We call such polynomials quasidefinite. The well known

definite pencils and overdamped quadratics are just special cases of quasidefinite

matrix polynomials. Other subclasses of quasidefinite matrix polynomials are hy-

perbolic, definite, quasihyperbolic and gyroscopically stabilized matrix polynomials.

We have collected the quasidefinite matrix polynomials appearing in the literature

and presented them in a unified framework, leading to a clear classification of these

polynomials and their many subclasses, as shown in Figure 2.1. The main tools we

have used to produce this diagram are homogeneous rotations of matrix polynomials

and a new characterization of hyperbolic matrix polynomials that depends on the

distribution of their eigenvalue types along the real line. This characterization itself

relies mainly on the fact that a matrix polynomial is hyperbolic if and only if it has

a definite linearization in H(P ). Moreover, while studying quasihyperbolic matrix

polynomials, we were able to spot a new class of diagonalizable matrix polynomials.

Methods to determine whether a given matrix polynomial is overdamped, definite or

hyperbolic have been highlighted.

We have developed a general theory of structured standard triples for structured

110
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matrix polynomials by introducing the notion of S-structured standard triples, which

extends the known notion of self-adjoint standard triples linked to Hermitian matrix

polynomials. With the exception of T -(anti)palindromic matrix polynomials of even

degree with both −1 and 1 as eigenvalues, we have shown that P (λ) has structure

S if and only if P (λ) admits an S-structured standard triple, and moreover that

every standard triple of a matrix polynomial with structure S is S-structured. We

have investigated the important special case of S-structured Jordan triples. Indeed,

it turns out that structured standard triples involve a parameter matrix, usually

denoted by S as it is connected with the sign characteristic attached to real, purely

imaginary eigenvalues or eigenvalues of modulus 1, according to the structure of the

polynomial. The explicit form of S has been a topic of research in some recent

papers that handle real symmetric and T -even quadratic matrix polynomials [18],

[45]. However, we have shown that the explicit form of S, for any matrix polynomial

with structure S ∈ S of arbitrary degree, can be obtained easily by employing the

existing literature on canonical forms of structured pencils.

Structured standard triples can be used to solve an SIPEP in the setting that

some eigeninformation about the polynomial is given beforehand. The difficulty with

this approach of treating the inverse problem comes from the conditions that the

eigenvectors/generalized eigenvectors have to satisfy in order to define a structured

standard triple. For structures in S, we have dealt with a structured quadratic in-

verse eigenvalue problem and we have shown how to generate quasidefinite quadratic

and cubic matrix polynomials by solving proper IPEPs. We are considering the

possibility of having a MATLAB toolbox generating such structured quadratics and

quasidefinite cubics. For more general structured matrix polynomials of higher de-

grees, the inverse problem is much more complicated. Another approach for handling

structured quadratic inverse eigenvalue problems is the quadratic realizability prob-

lem (QRP) [64] which is to explicitly construct a specific Q(λ) that realizes a given

admissible list of elementary divisors. The solution of the QRP in [64] does not in-

volve eigenvectors at all which allows more freedom and simplifies the inverse problem

significantly. The quadratic matrix polynomials constructed in [64] are sparse and

more specifically they consist of blocks that are lower anti-diagonal with very low

(anti-)bandwidth. Structured version of the QRP, in particular Hermitian, is a topic

of an ongoing research [71]. The structured version is more complicated due to the
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required symmetries plus the role that the concept of sign characteristic plays.

There is a Cayley correspondence between ?-alternating and ?-palindromic matrix

polynomials [65, Section 6.3]. In [2], we are working on a similar correspondence

between Hermitian and ∗-palindromic matrix polynomials which leads to a clear

definition of the eigenvalue type for eigenvalues of modulus 1 associated with a ∗-

palindromic matrix polynomial of either even or odd degree. Consequently we can

extend [55, Thm. 14], which provides stable boundedness conditions for the solutions

of ∗-palindromic difference equations of even degree, to include the case of odd degree

equations. The result we obtain is consistent with the one in [82] which handles the

linear ∗-palindromic difference equations.
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