1,275 research outputs found

    Economic-based Distributed Resource Management and Scheduling for Grid Computing

    Full text link
    Computational Grids, emerging as an infrastructure for next generation computing, enable the sharing, selection, and aggregation of geographically distributed resources for solving large-scale problems in science, engineering, and commerce. As the resources in the Grid are heterogeneous and geographically distributed with varying availability and a variety of usage and cost policies for diverse users at different times and, priorities as well as goals that vary with time. The management of resources and application scheduling in such a large and distributed environment is a complex task. This thesis proposes a distributed computational economy as an effective metaphor for the management of resources and application scheduling. It proposes an architectural framework that supports resource trading and quality of services based scheduling. It enables the regulation of supply and demand for resources and provides an incentive for resource owners for participating in the Grid and motives the users to trade-off between the deadline, budget, and the required level of quality of service. The thesis demonstrates the capability of economic-based systems for peer-to-peer distributed computing by developing users' quality-of-service requirements driven scheduling strategies and algorithms. It demonstrates their effectiveness by performing scheduling experiments on the World-Wide Grid for solving parameter sweep applications

    Preliminary specification and design documentation for software components to achieve catallaxy in computational systems

    Get PDF
    This Report is about the preliminary specifications and design documentation for software components to achieve Catallaxy in computational systems. -- Die Arbeit beschreibt die Spezifikation und das Design von Softwarekomponenten, um das Konzept der Katallaxie in Grid Systemen umzusetzen. Eine Einführung ordnet das Konzept der Katallaxie in bestehende Grid Taxonomien ein und stellt grundlegende Komponenten vor. Anschließend werden diese Komponenten auf ihre Anwendbarkeit in bestehenden Application Layer Netzwerken untersucht.Grid Computing

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Revista Economica

    Get PDF

    A Social Network Approach to Provisioning and Management of Cloud Computing Services for Enterprises

    Get PDF

    DRIVE: A Distributed Economic Meta-Scheduler for the Federation of Grid and Cloud Systems

    No full text
    The computational landscape is littered with islands of disjoint resource providers including commercial Clouds, private Clouds, national Grids, institutional Grids, clusters, and data centers. These providers are independent and isolated due to a lack of communication and coordination, they are also often proprietary without standardised interfaces, protocols, or execution environments. The lack of standardisation and global transparency has the effect of binding consumers to individual providers. With the increasing ubiquity of computation providers there is an opportunity to create federated architectures that span both Grid and Cloud computing providers effectively creating a global computing infrastructure. In order to realise this vision, secure and scalable mechanisms to coordinate resource access are required. This thesis proposes a generic meta-scheduling architecture to facilitate federated resource allocation in which users can provision resources from a range of heterogeneous (service) providers. Efficient resource allocation is difficult in large scale distributed environments due to the inherent lack of centralised control. In a Grid model, local resource managers govern access to a pool of resources within a single administrative domain but have only a local view of the Grid and are unable to collaborate when allocating jobs. Meta-schedulers act at a higher level able to submit jobs to multiple resource managers, however they are most often deployed on a per-client basis and are therefore concerned with only their allocations, essentially competing against one another. In a federated environment the widespread adoption of utility computing models seen in commercial Cloud providers has re-motivated the need for economically aware meta-schedulers. Economies provide a way to represent the different goals and strategies that exist in a competitive distributed environment. The use of economic allocation principles effectively creates an open service market that provides efficient allocation and incentives for participation. The major contributions of this thesis are the architecture and prototype implementation of the DRIVE meta-scheduler. DRIVE is a Virtual Organisation (VO) based distributed economic metascheduler in which members of the VO collaboratively allocate services or resources. Providers joining the VO contribute obligation services to the VO. These contributed services are in effect membership “dues” and are used in the running of the VOs operations – for example allocation, advertising, and general management. DRIVE is independent from a particular class of provider (Service, Grid, or Cloud) or specific economic protocol. This independence enables allocation in federated environments composed of heterogeneous providers in vastly different scenarios. Protocol independence facilitates the use of arbitrary protocols based on specific requirements and infrastructural availability. For instance, within a single organisation where internal trust exists, users can achieve maximum allocation performance by choosing a simple economic protocol. In a global utility Grid no such trust exists. The same meta-scheduler architecture can be used with a secure protocol which ensures the allocation is carried out fairly in the absence of trust. DRIVE establishes contracts between participants as the result of allocation. A contract describes individual requirements and obligations of each party. A unique two stage contract negotiation protocol is used to minimise the effect of allocation latency. In addition due to the co-op nature of the architecture and the use of secure privacy preserving protocols, DRIVE can be deployed in a distributed environment without requiring large scale dedicated resources. This thesis presents several other contributions related to meta-scheduling and open service markets. To overcome the perceived performance limitations of economic systems four high utilisation strategies have been developed and evaluated. Each strategy is shown to improve occupancy, utilisation and profit using synthetic workloads based on a production Grid trace. The gRAVI service wrapping toolkit is presented to address the difficulty web enabling existing applications. The gRAVI toolkit has been extended for this thesis such that it creates economically aware (DRIVE-enabled) services that can be transparently traded in a DRIVE market without requiring developer input. The final contribution of this thesis is the definition and architecture of a Social Cloud – a dynamic Cloud computing infrastructure composed of virtualised resources contributed by members of a Social network. The Social Cloud prototype is based on DRIVE and highlights the ease in which dynamic DRIVE markets can be created and used in different domains

    CORPORATE SOCIAL RESPONSIBILITY IN ROMANIA

    Get PDF
    The purpose of this paper is to identify the main opportunities and limitations of corporate social responsibility (CSR). The survey was defined with the aim to involve the highest possible number of relevant CSR topics and give the issue a more wholesome perspective. It provides a basis for further comprehension and deeper analyses of specific CSR areas. The conditions determining the success of CSR in Romania have been defined in the paper on the basis of the previously cumulative knowledge as well as the results of various researches. This paper provides knowledge which may be useful in the programs promoting CSR.Corporate social responsibility, Supportive policies, Romania

    3rd EGEE User Forum

    Get PDF
    We have organized this book in a sequence of chapters, each chapter associated with an application or technical theme introduced by an overview of the contents, and a summary of the main conclusions coming from the Forum for the chapter topic. The first chapter gathers all the plenary session keynote addresses, and following this there is a sequence of chapters covering the application flavoured sessions. These are followed by chapters with the flavour of Computer Science and Grid Technology. The final chapter covers the important number of practical demonstrations and posters exhibited at the Forum. Much of the work presented has a direct link to specific areas of Science, and so we have created a Science Index, presented below. In addition, at the end of this book, we provide a complete list of the institutes and countries involved in the User Forum
    corecore