9 research outputs found

    A HIGH ACCURACY MINIMALLY INVASIVE REGULARIZATION TECHNIQUE FOR NAVIER-STOKES EQUATIONS AT HIGH REYNOLDS NUMBER

    Get PDF
    A method is presented, that combines the defect and deferred correction approaches to approximate solutions of Navier-Stokes equations at high Reynolds number. The method is of high accuracy in both space and time, and it allows for the usage of legacy codes (a frequent requirement in the simulation of turbulent flows in complex geometries). The two-step method is considered here; in order to obtain a regularization that is second order accurate in space and time, the method computes a low-order accurate, stable and computationally inexpensive approximation (Backward Euler with artificial viscosity) twice. The results are readily extendable to the higher order accuracy cases by adding more correction steps. Both the theoretical results and the numerical tests provided demonstrate that the computed solution is stable and the accuracy in both space and time is improved after the correction step. We also perform a qualitative test to demonstrate that the method is capable of capturing qualitative features of a turbulent flow, even on a very coarse mesh

    HIGH ACCURACY METHODS AND REGULARIZATION TECHNIQUES FOR FLUID FLOWS AND FLUID-FLUID INTERACTION

    Get PDF
    This dissertation contains several approaches to resolve irregularity issues of CFD problems, including a decoupling of non-linearly coupled fluid-fluid interaction, due to high Reynolds number. New models present not only regularize the linear systems but also produce high accurate solutions both in space and time. To achieve this goal, methods solve a computationally attractive artificial viscosity approximation of the target problem, and then utilize a correction approach to make it high order accurate. This way, they all allow the usage of legacy code | a frequent requirement in the simulation of fluid flows in complex geometries. In addition, they all pave the way for parallelization of the correction step, which roughly halves the computational time for each method, i.e. solves at about the same time that is required for DNS with artificial viscosity. Also, methods present do not requires all over function evaluations as one can store them, and reuse for the correction steps. All of the chapters in this dissertation are self-contained, and introduce model first, and then present both theoretical and computational findings of the corresponding method

    Mathematical Architecture for Models of Fluid Flow Phenomena

    Get PDF
    This thesis is a study of several high accuracy numerical methods for fluid flow problems and turbulence modeling.First we consider a stabilized finite element method for the Navier-Stokes equations which has second order temporal accuracy. The method requires only the solution of one linear system (arising from an Oseen problem) per time step. We proceed by introducing a family of defect correction methods for the time dependent Navier-Stokes equations, aiming at higher Reynolds' number. The method presented is unconditionally stable, computationally cheap and gives an accurate approximation to the quantities sought. Next, we present a defect correction method with increased time accuracy. The method is applied to the evolutionary transport problem, it is proven to be unconditionally stable, and the desired time accuracy is attained with no extra computational cost. We then turn to the turbulence modeling in coupled Navier-Stokes systems - namely, MagnetoHydroDynamics. Magnetically conducting fluids arise in important applications including plasma physics, geophysics and astronomy. In many of these, turbulent MHD (magnetohydrodynamic) flows are typical. The difficulties of accurately modeling and simulating turbulent flows are magnified many times over in the MHD case. We consider the mathematical properties of a model for the simulation of the large eddies in turbulent viscous, incompressible, electrically conducting flows. We prove existence, uniqueness and convergence of solutions for the simplest closed MHD model. Furthermore, we show that the model preserves the properties of the 3D MHD equations. Lastly, we consider the family of approximate deconvolution models (ADM) for turbulent MHD flows. We prove existence, uniqueness and convergence of solutions, and derive a bound on the modeling error. We verify the physical properties of the models and provide the results of the computational tests

    Rapid Evaluation of Radiation Boundary Kernels for Time-domain Wave Propagation on Blackholes

    Get PDF
    For scalar, electromagnetic, or gravitational wave propagation on a fixed Schwarzschild blackhole background, we describe the exact nonlocal radiation outer boundary conditions (ROBC) appropriate for a spherical outer boundary of finite radius enclosing the blackhole. Derivation of the ROBC is based on Laplace and spherical-harmonic transformation of the Regge-Wheeler equation, the PDE governing the wave propagation, with the resulting radial ODE an incarnation of the confluent Heun equation. For a given angular index l the ROBC feature integral convolution between a time-domain radiation boundary kernel (TDRK) and each of the corresponding 2l+1 spherical-harmonic modes of the radiating wave. The TDRK is the inverse Laplace transform of a frequency-domain radiation kernel (FDRK) which is essentially the logarithmic derivative of the asymptotically outgoing solution to the radial ODE. We numerically implement the ROBC via a rapid algorithm involving approximation of the FDRK by a rational function. Such an approximation is tailored to have relative error \epsilon uniformly along the axis of imaginary Laplace frequency. Theoretically, \epsilon is also a long-time bound on the relative convolution error. Via study of one-dimensional radial evolutions, we demonstrate that the ROBC capture the phenomena of quasinormal ringing and decay tails. Moreover, carrying out a numerical experiment in which a wave packet strikes the boundary at an angle, we find that the ROBC yield accurate results in a three-dimensional setting. Our work is a partial generalization to Schwarzschild wave propagation and Heun functions of the methods developed for flatspace wave propagation and Bessel functions by Alpert, Greengard, and Hagstrom.Comment: AMS article, 105 pages, 45 figures. Version 3 has more minor corrections as well as extra commentary added in response to reactions by referees. Commentary added which compares and contrasts this work with work of Leaver and work of Andersson. For publication, article has been cut in two and appears as two separate articles in J. Comp. Phys. 199 (2004) 376-422 and Class. Quantum Grav. 21 (2004) 4147-419

    Parallel Multiphase Navier-Stokes Solver

    Get PDF
    We study and implement methods to solve the variable density Navier-Stokes equations. More specifically, we study the transport equation with the level set method and the momentum equation using two methods: the projection method and the artificial compressibility method. This is done with the aim of numerically simulating multiphase fluid flow in gravity oil-water-gas separator vessels. The result of the implementation is the parallel Aspen software framework based on the massively parallel deal.II . For the transport equation, we briefly discuss the theory behind it and several techniques to stabilize it, especially the graph laplacian artificial viscosity with higher order elements. Also, we introduce the level set method to model the multiphase flow and study ways to maintain a sharp surface in between phases. For the momentum equation, we give an overview of the two methods and discuss a new projection method with variable time stepping that is second order in time. Then we discuss the new third order in time artificial compressiblity method and present variable density version of it. We also provide a stability proof for the discrete implicit variable density artificial compressibility method. For all the methods we introduce, we conduct numerical experiments for verification, convergence rates, as well as realistic models

    Rapid evaluation of radiation boundary kernels for time-domain wave propagation on blackholes: theory and numerical methods

    Get PDF
    For scalar, electromagnetic, or gravitational wave propagation on a background Schwarzschild blackhole, we describe the exact nonlocal radiation outer boundary conditions (robc) appropriate for a spherical outer boundary of finite radius enclosing the blackhole. Derivation of the robc is based on Laplace and spherical–harmonic transformation of the Regge–Wheeler equation, the pde governing the wave propagation, with the resulting radial ode an incarnation of the confluent Heun equation. For a given angular integer l the robc feature integral convolution between a time–domain radiation boundary kernel (tdrk) and each of the corresponding 2l+1 spherical–harmonic modes of the radiating wave field. The tdrk is the inverse Laplace transform of a frequency–domain radiation kernel (fdrk) which is essentially the logarithmic derivative of the asymptotically outgoing solution to the radial ode. We numerically implement the robc via a rapid algorithm involving approximation of the fdrk by a rational function. Such an approximation is tailored to have relative error ε uniformly along the axis of imaginary Laplace frequency. Theoretically, ε is also a long–time bound on the relative convolution error. Via study of one–dimensional radial evolutions, we demonstrate that the robc capture the phenomena of quasinormal ringing and decay tails. Moreover, carrying out a numerical experiment in which a wave packet strikes the boundary at an angle, we find that the robc yield accurate results in a three–dimensional setting. Our work is a partial generalization to Schwarzschild wave propagation and Heun functions of the methods developed for flatspace wave propagation and Bessel functions by Alpert, Greengard, and Hagstrom (agh), save for one key difference. Whereas agh had the usual armamentarium of analytical results (asymptotics, order recursion relations, bispectrality) for Bessel functions at their disposal, what we need to know about Heun functions must be gathered numerically as relatively less is known about them. Therefore, unlike agh, we are unable to offer an asymptotic analysis of our rapid implementation
    corecore